
Turning a toy into a didactic industrial regulator

Alberto Leva

Abstract— This manuscript presents a didactic application
based on the LEGO� MINDSTORMST M RCXT M architec-
ture1, and the BrickOS operating system. The RCX is turned
into a stand-alone regulator, that can accommodate for one
or more PIDs in various configurations, and whose operator
interface relies entirely on the LCD display and the buttons
of the RCX. The so obtained regulator is suitable for several
modulating control experiences, that anyone can make at home
using only standard LEGO parts. In addition, extending its
functionalities is a very interesting and didactically useful
exercise, as the problems to tackle are quite similar to those
encountered when dealing with real industrial devices.

I. INTRODUCTION AND MOTIVATION

The way from the specification of a regulator (e.g., a
block diagram) to its implementation is long, and heav-
ily dependent on the particular hardware/firmware/software
architecture employed. One of the hardest challenges is
perhaps when a (reasonably simple) control structure has to
be built on a very low-end device, with limited computational
resources and barely essential operator interface capabilities.
Needless to say, in such a situation also the debugging pos-
sibilities are scarce, and no “control-oriented” development
tool is available. In one word, the job has to be done with
a hardware normally composed of a microcontroller, a small
text display, and a few keys, while the development system is
typically an assembler or C compiler (often without floating
point arithmetic, though in this work this additional - and
significant - difficulty will not be addressed).

All the problems above are seldom treated deeply enough
in control education, particularly from the practical point of
view [1], [2], [3]. As a consequence too many industrial
implementations are poorly structured, cumbersome and dif-
ficult to manage and maintain [4], and above all the average
attitude of the (control) engineer toward the development of
small applications on simple architectures (as is the case, for
example, in many embedded systems) is often less systematic
than it should be.

This manuscript briefly shows how the LEGO MIND-
STORMS RCX can be turned into a regulator with three
analogue inputs and three analogue outputs, capable of run-
ning one or more PIDs (and potentially regulators of different
structure) in various configurations, and with an operator
interface that relies entirely on the RCX keys and LCD
display, and is quite similar to those of the typical stand-alone
industrial regulators. The purpose of the presented work

A. Leva is with Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
leva@elet.polimi.it

1LEGO, MINDSTORMS and RCX are registered trademarks of The
LEGO Group. Copyright 2005 The LEGO Group. All rights reserved.

twofold. The first is to describe a very simple experimental
setup, giving web references allowing the reader to find all
the information needed for building regulators on an RCX
and setting up some experiences; the idea is that anyone
possessing an RCX (a toy that many students have at home)
has a small control laboratory. Notice, by the way, that
the great majority of control experiments using LEGO (and
particularly MINDSTORMS) elements concentrate on logic
control, or robotics: a few examples of the huge literature
on the matter are [5], [6], [7], [8]. However, only a few
experiences (see e.g. [9], [10]) deal with modulating control.
More in particular, to the best of the author’s knowledge,
no didactic experience exists in which a control program
‘similar to a real-world one’ as long as the programming
tools, the code organisation and the operator interface are
concerned, has been implemented on the RCX architecture.

The second purpose of the work starts from the idea that,
from an architectural point of view, the RCX is quite a
good representative of the hardware frequently found when
implementing simple controllers [11]: the purpose is then
to show a possible way to educate students to implement
control software, even and particularly on low-end architec-
tures, based on a systematic and control-theoretically sound
approach, avoiding most of the problems that typically arise
when too many ad hoc, and not methodologically grounded,
solutions are taken. This involves interacting in depth with
the control code and modifying it; a particular organisation
of the code itself is proposed, justified and encouraged to
allow easy (cross)debugging—another important, and often
overlooked, lesson to learn.

II. THE EMPLOYED TOOLS

The presented work employs the following hardware and
software tools.

• the LEGO MINDSTORMS RCX [12], that in our
context can be thought of as a microcomputer based on
the Hitachi H8/3292 microcontroller with three analog
inputs, three analog outputs, an LCD display, four keys,
and an infrared communication port [13];

• BrickOS (formerly legOS), an embedded operating sys-
tem for the RCX released as open source within the
terms of the Mozilla license, featuring priority-based
multitasking, POSIX semaphores, dynamic memory
management, and IR networking, and providing an API
for the development of user programs in the C/C++
language [14];

• the gcc cross-compiler for the Hitachi H8/3292.
As explained in the following, care was taken to isolate

RCX-specific code into convenient modules, so that the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuIB20.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 3409

experience made with the presented system can be effectively
employed when implementing control code for different
architectures.

III. THE RCX-BASED REGULATOR

The control software in the RCX is entirely written in C,
and is organised in three modules:

1) the control module, that includes control, I/O and
timing functions,

2) the event handler that deals with user input (the RCX
keys), and

3) the display module, that manages the RCX LCD.

Each module is in turn organised in two parts:

1) a core part, that includes only computations, or stan-
dard C instructions, and

2) a RCX part, that isolates all the RCX-specific code
(e.g., calls to BrickOS primitives that deal with the
RCX inputs and outputs).

This structure allows to write, compile and test the com-
plex and application-specific part of the control code (i.e.,
the core part) on a different architecture than the RCX,
typically a PC. The RCX part of the code is much less
tied to specific applications, and once stabilised it is seldom
touched. Organising the code as suggested greatly eases the
development and debugging of applications, and should be
encouraged when developing embedded systems. It should
be made clear to the students that the possible availability
of an emulator for the target architecture is not necessarily
of help: when control code is ported on a real-time target,
there is no such thing as single-stepping.

The PID regulator implemented is in the 2 degree of
freedom (2-d.o.f.) standardised ISA form [15], i.e., in the
frequency domain, the control law

CS(s) = K
(
(bSP(s)−PV (s))+ 1

sTi
(SP(s)−PV (s))

+ sTd
1+sTd/N (cSP(s)−PV (s))

) (1)

In (1) the symbols SP(s), PV (s) and CS(s) denote, respec-
tively, the Laplace transforms of the set point, the controlled
variable and the control signal, K the PID gain, Ti and Td the
integral and the derivative time, N the ratio between Td and
the time constant of a second pole required for the controller
properness, and b and c the set point weights in the propor-
tional and derivative actions. The control law (1) is then
discretised with the backward difference method, written in
incremental form, and completed with antiwindup, bumpless
transfer between automatic and manual mode (the control
signal being subject in the latter case to manual increment or
decrement), and the so-called “increment/decrement locks”,
i.e., two boolean inputs (NoInc and NoDec) that prevent CS
from increasing and decreasing, respectively. These features
make the algorithm suitable for use in the most important
control structures.

The control software allows at present for several PID
regulators, possibly connected together to form structures

like cascade or multivariable controls, and is based on the
following data types and structures.

// DATA TYPES

typedef float REAL;

typedef unsigned char BOOL;

typedef struct { // PID parameters

REAL K; // Gain

REAL Ti; // Integral time

REAL Td; // Derivative time

REAL N; // Term 1+sTd/N

REAL b; // SP weight in P

REAL c; // SP weight in D

REAL Ts; // Sampling time

REAL CSmax; // Upper CS limit

REAL CSmin; // Lower CS limit

REAL deltaCSMAN; // Manual CS inc/dec

} PIDPARAMS;

typedef struct { // PID context

REAL SP; // SP

REAL SPold; // Previous SP

REAL PV; // PV

REAL PVold; // Previous PV

REAL CS; // CS

REAL CSold; // Previous CS

REAL Dold; // Previous D

BOOL MAN; // TRUE in manual

BOOL MANinc; // TRUE in CS man inc

BOOL MANdec; // TRUE in CS man dec

BOOL HIsat; // TRUE when CS=CSmax

BOOL LOsat; // TRUE When CS=CSmin

BOOL NoInc; // Prevent CS inc

BOOL NoDec; // Prevent CS dec

BOOL ForceMAN; // Force PID in man

BOOL IAmRunning; // TRUE when PID runs

} PIDLOOPDATA;

To specify a control structure, it is first necessary to
allocate the following global entities (the example reported
refers for brevity to a single PID).

// GLOBAL VARIABLES

// For each PID, define and allocate

// 2 PIDPARAMS structures (PIDa,PIDb)

// 2 pointers to them (PIDedit,PIDrun)

// PIDrun points to the current

// parameters, PIDedit to those

// that the user can modify

// 1 PIDLOOPDATA structure for the

// loop context

#define NUMBER_OF_PIDs 1

PIDPARAMS PIDa[NUMBER_OF_PIDs],

PIDb[NUMBER_OF_PIDs],

*PIDedit[NUMBER_OF_PIDs],

*PIDrun[NUMBER_OF_PIDs];

PIDLOOPDATA PIDloop[NUMBER_OF_PIDs];

//index of initially current PID

3410

int currentPID = 0;

//Initial tracking status

BOOL trackingCS = FALSE;

// Initial mode

BOOL manual = FALSE;

The C language implementation of the PID follows.

// 2-d.o.f. ISA PID ALGORITHM

void PID(PIDPARAMS* R, PIDLOOPDATA* L) {

REAL deltaSP,deltaPV,deltaP,deltaI;

REAL D,deltaD,deltaCS;

deltaSP = L->SP-L->SPold; // SP var.

deltaPV = L->PV-L->PVold; // PV var.

if (!L->MAN && !L->ForceMAN) { // AUTO

deltaP = R->K

*(R->b*deltaSP-deltaPV); // P

deltaI = R->K*R->Ts/R->Ti

*(L->SP-L->PV); // I

D = (R->Td*L->Dold+R->K*R->N*R->Td

*(R->c*deltaSP-deltaPV))

/(R->Td+R->N*R->Ts);

deltaD = D-L->Dold; // D

deltaCS = deltaP+deltaI+deltaD;

if ((deltaCS>0 && L->NoInc)

|| (deltaCS<0 && L->NoDec))

deltaCS=0; // lock

} else { // MAN

deltaCS = 0;

if(L->MANinc && !L->MANdec) {

deltaCS = R->deltaCSMAN;

L->MANinc = FALSE; }

if(L->MANdec && !L->MANinc) {

deltaCS = -R->deltaCSMAN;

L->MANdec = FALSE; }

D = 0; }

L->CS = L->CSold+deltaCS;

// Antiwindup

if(L->CS>R->CSmax) L->CS=R->CSmax;

if(L->CS<R->CSmin) L->CS=R->CSmin;

// Signal saturations

L->HIsat = (L->CS==R->CSmax);

L->LOsat = (L->CS==R->CSmin); }

// State update

L->CSold = L->CS; L->SPold = L->SP;

L->PVold = L->PV; L->Dold = D; }

The control code is organised in threads, to ensure that
real time requirements are met. The following code excerpt
is relative to the control thread of the single PID application.

// CONTROL THREAD (example with 1 PID)

void executePID() {

// This thread manages the execution of

// a single PID regulator

time_t time_cycle = 0; // Set up

double CSraw = 0;

motor_a_dir(fwd);

motor_a_speed(0);

while (1) {

// Time stamp: start of PID exec

time_cycle = sys_time;

// Disable context change (Edit/Run)

PIDloop[0].IAmRunning = TRUE;

// Read input

PIDloop[0].PV = (REAL)(100-LIGHT_1);

// PID algorithm exec

PID(PIDrun[0],&PIDloop[0]);

// Write output

if (PIDloop[0].SP == 0

&& PIDloop[0].MAN == FALSE)

CSraw = 0;

else CSraw = 255*(PIDloop[0].CS

-PIDrun[0]->CSmin)

/(PIDrun[0]->CSmax

-PIDrun[0]->CSmin);

motor_a_speed((int)CSraw);

// Enable context change (Edit/Run)

PIDloop[0].IAmRunning = FALSE;

//Check if sampling time is kept

wait_event(&checkSampleTime,

time_cycle); }

Other threads, that normally do not need modifying on
the part of the user who creates a new control application,
manage the keys, the display, and so forth. Thread synchro-
nization is obtained through the BrickOS semaphores, which
is standard practice in POSIX-compliant environments. The
only additional precaution is that the system prevents chang-
ing the parameter set of a particular regulator (i.e., swapping
its PIDrun and PIDedit pointers) amidst the execution of a
control step involving that regulator, for obvious reasons.

IV. THE DOCUMENTATION

Another important aspect of the didactic activity (so
important, in the author’s opinion, to deserve a section in
this manuscript) is the creation of a suitable documentation
for the user of the produced control application.

Contrary to intuition, that task proved to be quite difficult
for the students, due basically to two reasons. One is that
the user interface of the RCX is very simple, so that
performing all the required operation involves many complex
key sequences. The second is that the system is configurable,
and therefore the documentation has to be easy to extend
adapt if a different control configuration (e.g., a cascade
control system) is built.

The choice adopted was to structure the documentation
along a basically graphical approach, explaining the required
user operations visually. Figure 1 reports a small example,
namely the explanation of how the RCX keys are used, and
how numerical items are entered.

According to the students, writing a clear documentation
was almost as difficult as programming the system. They
tested their work by having other students, not involved

3411

in the project, using the regulator. The unanimous opinion
was that producing the documentation was a very important
experience, and made the students aware of several too
frequently overlooked problems.

V. THE POSSIBLE DIDACTIC EXPERIENCES

A. Using the regulator as is

The RCXD-based regulator can be used for a number of
experiences, and the reader is surely able to imagine many
possible ones. The LEGO system provides a lot of different
sensors and actuators, so that many of those experiences can
be made with LEGO parts only: for example, the LEGO
lamp and temperature sensor can be used to build a very
simple temperature control system. In the following, a speed
control application is presented to give an idea of what can
be done with the presented regulator. In any case, experience
leads to conclude that the most natural didactic objectives to
pursue with the regulator used as is are the following:

• understand the physical structure of a control system,
and learn to recognize its elements in a very simple
implementation they can fully inspect;

• get accustomed with the user interface of simple, stand-
alone regulators, and learn to perform the typical control
operations (startup, automatic/manual switching, and so
on);

• learn to apply systematic procedures for PID tuning
(e.g., methods based on the identification of simple
models ‘in the field’) using the limited data provided
by the user interface of such regulators;

Such experiences can be made easily also at home, based
on simple guidelines given in the regulator’s documentation.
Interested students can take profit of this activity starting
from the basic courses of Automatic Control.

B. Extending the system

Students can also extend the system, either by constructing
different control systems based on the basic blocks already
available (e.g., a cascade or a multivariable system), or by
building new blocks (e.g., a new type of regulator, a filter,
and so on). The first type of activity is not particularly
difficult, requires C programming capabilities but little or no
knowledge of BrickOS, and leads essentially to the following
didactic achievements:

• understanding the organisation of the control software
into threads, and consequently how to structure a given
application into real-time and non real-time tasks, using
the BrickOS priority system accordingly;

• understanding the profound difference between a ‘multi-
tasking’ and a ‘real-time’ application (two concepts that
are too frequently confused and wrongly overlapped by
the students), i.e.,

– that multitasking is useful for real-time applica-
tions, but not strictly necessary, and

– that a multitasking application, if overloaded, works
with degraded performance, while an overloaded
real-time application simply does not work;

• understanding the user interface primitives made avail-
able by BrickOS and by the code developed in the
presented project, and using them effectively.

Such an activity can be proposed to undergraduate stu-
dents, and helps them a lot connecting concepts that they feel
as coming from ‘computer science’ and from ‘automation
control’, which is a very important educational result.

The second type of activity requires good programming
and code structuring capabilities, and in some cases quite
deep knowledge of BrickOS, and is suitable for graduated
students. it is also possible, once an application has been
developed on the RCX, to port that application on a ‘real-
world’ microprocessor-based controllers. Some preliminary
studies in this direction appear promising from the didactic
standpoint.

VI. AN APPLICATION EXAMPLE

In this section, a simple application example is presented.
The system under control is composed of two LEGO MIND-
STORMS motors, connected with a flexible transmission
as depicted in figure 2. One of the motors drives the
transmission, while the second acts as mechanical load and
tacho generator at the same time. The controlled variable is
the load rotational speed, while the control variable is the
motor command. A bar can be lowered manually to increase
the overall transmission friction; two bushes under the bar
allow for easily repeatable experiments. The experimental
setup used, together with some similar ones, is described
with more details in [9].

Fig. 2. The speed control system.

The system is entirely composed of LEGO elements ex-
cept for a passive RC filter with gain equal to 0.5, necessary
to clean up the tacho output from noise, and to equalize the
typical tacho output voltage produced with a 1:1 transmission
to the RCX input range. The filter is composed of one resistor
and one capacitor, and is easily constructed on a breadboard,
or even cutting a LEGO cable and connecting the resistor and
the capacitor to the so obtained cable terminals, as indicated
in figure 3. The transfer function from the tacho voltage VT

to the RCX input voltage VRCX derived from the scheme of
figure 3 is

3412

Fig. 1. Excerpt 1 from the user manual: key table for the RCX, and how to manage numerical items.

VT (s)
VRCX (s)

=
1/2

1+ sRC/2
, (2)

and therefore suitable values for R and C are 15 kΩ and 8.2
µF, respectively, leading to a time constant of approximately
60 ms, suitable for the speed control experiments of this
work.

R

C

LEGO

cable

(tacho

side)

LEGO

cable

(RCX

side)

R

Fig. 3. The tacho generator cable and filter.

A better, and slightly more complex, tacho interfacing
circuitry is shown in figure 4, and is recommended wherever
it is possible to do some (quite basic) breadboard assembly.
Neglecting for simplicity the role of the OP-AMP buffer, the
diodes and the adapting resistor R4, the transfer function of
this circuit, with the same notation of (2), turns out to be

VT (s)
VRCX (s)

=

R2
R1+R2

1+ sRC
(

R1R2
R1+R2

+R3

) . (3)

As a consequence, the values of figure 4 lead, as required,
to a static gain of 0.5 and a time constant of 68 ms.

To acquire the analog speed value on the RCX, the input
used (input 1 in the presented application) is configured as a
light sensor, since that configuration is, among hose provided
by BrickOS, the nearest to the acquisition of a constant

voltage value, and the measurement is obtained with the
simple instruction

PIDloop[0].PV = (REAL)(100-LIGHT_1);

For further details, the reader can refer to the RCX and
the BrickOS documentation.

Figure 5 shows a closed-loop response of the system to
a speed set point step. To record the required signals, a PC
is used with a National Instruments 6024E analog interface
card, and a simple application written in the LabVIEW
programming language. The PC is not necessary for the con-
troller operation, it is just used to obtain data for visualization
and analysis, so the idea of ‘allowing for control experiences
at home’ is preserved. It would be possible to have the RCX
record the data and then send them to a PC through the IR
port, but one should take into account the limitations of the
RCX memory. In any case, implementing such an extension
would be very easy.

VII. FUTURE WORK

The system is open to a wealth of activities. Some exam-
ples may be

• designing and implementing additional control experi-
ments, involving other types of (LEGO) sensors, and
other control structures;

• creating a PC-based application, e.g. in the java lan-
guage to improve portability, capable of interacting with
the RCX-based regulator via the IR port, to provide the
system with a more powerful and user-friendly interface,
data logging capabilities, and so forth;

• employing the RCX IR port to create a network of RCX-
based regulators and possibly PCs, adhering to some
FieldBus standard.

3413

Fig. 4. Improved interfacing of the tacho generator.

Fig. 5. Closed-loop set point step response of the speed control system.

VIII. CONCLUSIONS

A didactic application based on the LEGO MIND-
STORMS RCX and the BrickOS operating system has been
presented. The RCX is turned into a stand-alone industrial
regulator, fully functional and whose computational core
and operator interface rely only on the RCX resources.
The presented application is relative to a single-loop PID
regulator, but the system is entirely open (the code is written
in C and totally accessible), so that different and more
complex control structures can be accommodated for. Also,
some possible future activities were briefly outlined.

The presented work allows anyone possessing an RCX
to do modulating control experiments, since all the required
tools can be downloaded and used freely, within the open
source paradigm. In addition, interacting with the control
code permits to experience most of the typical difficulties
encountered when developing control software for simple
architectures, with limited computational and interface re-
sources. Such an experience greatly increases the imple-
mentation capabilities of students, and makes their approach
to control software development more compatible with the
requirements of the professional domain.

The RCX PID project has its own home page located
at the URL http://www.elet.polimi.it/upload/leva/Projects-
/RCXPID2003/. It is possible to download the project doc-
umentation (at present in Italian, an English translation is
underway) and the code of the presented example, both in
source (.c) and compiled (.lx) form.

IX. ACKNOWLEDGEMENTS

The author is grateful to the former students Alex Mancas-
troppa and Paolo Romagnoli, who implemented the system
and wrote the documentation for their BSc thesis, working
at the Cremona site of the Politecnico di Milano. Many

thanks are due also to several other students, who tested
the produced didactic application and provided very useful
comments.

REFERENCES

[1] N. Kheir, K. Åström, D. Auslander, K. Cheok, G. Franklin, M. Mas-
tem, and M. Rabins, “Control systems engineering education,” Auto-
matica, vol. 32, no. 2, pp. 147–166, 1997.

[2] M. Soklic, “Laboratory for real-time and embedded systems,” Com-
puters in Education, vol. 12, no. 4, pp. 1–11, 2002.

[3] A. Leva, “A hands-on experimental laboratory for undergraduate
courses in automatic control,” IEEE Transactions on Education,
vol. 46, no. 2, pp. 263–272, 2003.

[4] ——, “An experimental laboratory on control structures,” in Proc. ACC
2004, Boston, MA, 2004.

[5] M. Cyr, V. Miragila, T. Nocera, and C. Rogers, “A low-cost, innova-
tive methodology for teaching engineering through experimentation,”
Journal of Engineering Education, vol. 86, no. 2, pp. 167–171, 1997.

[6] B. fagin, “An Ada interface for LEGO MINDSTORMS,” Ada Letters,
vol. 21, no. 2, Sept. 2000.

[7] A. Kumar, “Using robots in an undergraduate artificial intelligence
course: an experience report,” in Proc. 31st Annual Frontiers in
Education Conference, Reno, NV, 2001.

[8] J. Schumacher, D. Welch, and D. Raymond, “Teaching introductory
programming, problem solving and information technology with ro-
bots at West Point,” in Proc. 31st Annual Frontiers in Education
Conference, Reno, NV, 2001.

[9] D. Gasperini, F. Schiavo, W. Spinelli, C. Veber, and A. Leva, “A set of
hardware and software tools for control education,” in Proc. IBCE’04,
Grenoble, France, 2004.

[10] P. Gawthrop and E. McGookin, “A LEGO-based control experiment,”
IEEE Control Systems Magazine, vol. 24, no. 5, pp. 43–56, Oct. 2004.

[11] D. Baum, Dave Baum’s efinitive guide to LEGO MINDSTORMS. New
York, NY: Springer-Verlag, 2000.

[12] The LEGO MINDSTORMS official home page. [Online]. Available:
http://www.legomindstorms.com/

[13] LEGO MINDSTORMS internals page. [Online]. Available:
http://www.crynwr.com/lego-robotics/

[14] The BrickOS operating system home page. [Online]. Available:
http://brickos.sourceforge.net/

[15] K. Åström and T. Hägglund, PID controllers: theory, design and
tuning—2nd edition. Research Triangle Park, NY: Instrument Society
of America, 1995.

3414

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

