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Abstract— In this paper the problem of modelling flexible
thin beams in multibody systems is tackled. The proposed
model, implemented with the object-oriented physical systems
modelling language Modelica, is completely modular, allowing
the realization of complex systems by simple aggregation of
basic components. The finite element method is employed as the
basic scheme to spatially discretize the model equations; exploit-
ing the modular features of the language, a new discretization
scheme (mixed finite element-finite volume) is derived as well.
Selected simulation results are presented in order to validate the
model with respect to both theoretical predictions and literature
reference results.

I. INTRODUCTION

Many control engineering applications require the devel-
opment of simulation models for flexible multibody systems
(e.g., robot manipulators, helicopter rotors, aircraft wings,
space structures, machining tools, etc.) both dynamically
accurate and computationally affordable.

The task of developing models for generic-shaped, fully
deformable bodies is usually demanded to specialized simu-
lation tools, due to the complexity of the task. Such models
are usually adequate for structural analysis and design tasks,
while being far too complex for affordable dynamics analysis
and control systems prototyping.

On the other hand, particular classes of deformable bodies,
such as flexible beams, can be represented with less complex
models which are still able to represent all the dynamically
relevant deformation effects.

Flexible beams are continuous non linear dynamical sys-
tems characterized by an infinite number of degrees of free-
dom. Obviously, dealing directly with infinite dimensional
models is impractical both for dynamic analysis and simu-
lation purposes. Hence it is necessary to introduce methods
to describe flexibility with a discrete number of parameters.

Three different approaches have been traditionally used to
derive approximated finite dimensional models: lumped pa-
rameters, assumed modes and finite element method [1],[2].
In this paper, the latter one is used, since it is the most suited
for a modular approach [3].

In the finite element method approach [4], the flexible
beam is divided into several elements, with a local descrip-
tion of the deformation field by the use of element-wise basis
functions.

In order to manage the complexity, a real modular ap-
proach is also needed. The main characteristics of this
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approach are:

• models description by stating physical principles rather
than by writing calculation algorithms (acausal mod-
elling);

• realization of models of large, complex and heteroge-
neous physical systems by basic components connec-
tion;

• charging the simulation environment with the task of
defining the computational causality of the assembled
model.

Among the various modular physical modelling languages
and tools developed from the end of the 70’s (e.g., OMOLA
[5], gPROMS [6], MOSES [7]), Modelica [8] and Dymola
[9] have emerged respectively as a standard for a mod-
ular, acausal modelling language and for a complete and
efficient modelling and simulation environment. Dymola is
also considered in this work as the development framework.
In particular, a main contribution of the paper is the de-
velopment of the model of a flexible thin beam, based on
the finite element method, as a component of the Modelica
MultiBody library [10]. The model is valid as long as the
deformation field is small compared to the beam length, as
it is the case, for example, when studying the dynamics of
vibrations in machining tools. However, by exploiting the
modular approach and the symbolic manipulation capabilities
of the environment, several beams can be easily connected
in mixed finite element-finite volume models, in order to
account for large deformations.

The paper is organized as follows: Section II contains an
introduction to the modular modelling techniques for multi-
body systems; in Section III the problem of the representation
of a generic deformable body in a multibody system is
introduced; in Section IV the development of the equations of
motions is shown; in Section V the Modelica implementation
is analyzed; Section VI contains selected simulation results;
finally, in Section VII the main results are summarized and
future developments are introduced.

II. MODULAR MODELLING FOR MULTIBODY SYSTEMS

The development of the equations of motion for a com-
plete multibody system is a task whose complexity in-
creases very rapidly with the number of bodies involved.
Furthermore, such development of the equations of motion
is not suitable for model reusability, a key requirement for
advanced modelling techniques.

Modern modelling languages for physical systems such as
Modelica [8], on the other hand, allow the development of
complex multibody systems by aggregation of simple models
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Fig. 1. Mechanical Connector Scheme

from a library containing all the basic components (e.g., rigid
bodies, joints, forces, etc.).

Models are described in Modelica in a declarative form,
i.e. by stating physical principles rather than by writing
calculation algorithms. This results in acausal models, de-
scribed by DAE (Differential-Algebraic Equations) systems,
which represent in the most natural and physically consistent
way each system component, while the task of defining the
computational causality of the assembled model is charged
to the simulation environment. It is important to recall that in
Modelica the interaction among (sub)models is implemented
through connectors only, whose design is of paramount
importance. A connector is defined by a set of effort variables
and by a set of flow variables and the simulation environment
implements a connection by equating the effort variables and
by balancing the flow variables.

Modelling and simulation of multibody systems can be
dealt with in Modelica through a standard library, which
however can handle only rigid bodies. A reference frame
is associated to the connector of the MultiBody library and
a connection is equivalent to a rigid overlapping of the two
connector frames (it is the abstraction of an ideal “welding”
realized at the frame location). The multibody connector
assumes the cut force and torque as flow variables, while
the effort variables are given by the position of the origin
of the connector frame with respect to the world frame and
by an “orientation object”, describing the relative orientation
between the world frame and the connector frame (Fig. 1).

The body reference system orientation can be effi-
ciently represented with a rotation matrix having a different
parametrization depending on the body specific dynamic
conditions; however, the library has been designed so that
the choice of any specific rotation matrix parametrization is
automatic and completely transparent to the user.

The library provides several utility functions to operate
on instances of the object, for example to rotate vectors and
to compute the angular velocity, while the linear velocity
and acceleration and the angular acceleration are simply
computed by applying the derivative operator der() to
the corresponding variables. The library innovative features
allow the possibility connecting the components in any
arbitrary fashion, along with automatic analytic handling of
kinematic loops by mean of advanced symbolic manipulation
techniques [11].

The generation of a numerically efficient procedural form
from the description of the model in the Modelica language
is carried out in several steps. First, the object-oriented code
is “flattened” in a set of constants, variables, functions and
equations and the connection equations are generated. Then,
after the conversion of the system of equations in BLT
form, an algebraic simplification follows, removing the trivial
equations and resulting in a minimal set of equations. If
needed index reduction is also performed [12].

III. DEFORMABLE BODY DEGREES OF FREEDOM

In a generic multibody system, the position, in local
coordinates, of a point on a specific deformable body has
the following expression:

u = u0 +u f , (1)

where u0 is the “undeformed” (i.e., rigid) position vector
and u f is the deformation contribution to position (i.e., the
deformation field).

The description of the generic deformation of a body
requires the deformation field to belong to an infinite dimen-
sional functional space, requiring, in turn, an infinite number
of deformation degrees of freedom.

In this paper, the deformation field is described by an
approximation of the functional basis space it belongs to,
supposing such space has a finite dimension, say M, so
that the vector u f can be expressed by the following finite
dimensional product:

u f = Sq f , (2)

where S is the [3×M] shape functions matrix (i.e., a matrix
of functions defined over the body domain and used as a
basis to describe the deformation field of the body itself)
and q f is the M-dimensional vector of deformation degrees
of freedom.

The position of a generic body point can then be expressed
in world reference as follows:

r = R+Au = R+A(u0 +Sq f ) = R+Au0 +ASq f , (3)

where R is the vector identifying the origin of the body
local reference system and A is the rotation matrix for such
reference system.

The representation of a generic deformable body in world
reference requires then 6 + M d.o.f. (i.e., 6 corresponding
to rigid displacements and rotations and M to deformation
fields):

q =
[
qr q f

]T = [R θ q f ]T , (4)

where θ represents the undeformed body orientation angles
and qr is a vector containing the 6 rigid degrees of freedom.

IV. EQUATIONS OF MOTION

The equations of motion for a generic flexible body in a
multibody system can be developed applying the principle
of virtual work [1], which states that the virtual work of the
inertial forces δWi must counterbalance the sum of the virtual
work of the continuum elastic forces δWs and of the external
ones δWe:

δWi = δWs +δWe . (5)
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The terms of equation (5) are defined as follows:

δWi =
∫

V
ρδrT r̈dV , (6)

δWs = −
∫

V
δεT σdV , (7)

δWe =
∫

V
δrT Fe dV +

∫
Ω

δrT fe dΩ , (8)

where V is the body volume, ρ is the body density, δr is an
infinitesimal virtual displacement, r̈ is the body acceleration
(in world reference), δε is a vector of virtual infinitesimal
internal strains, σ is the internal stresses vector, Fe is the
vector of external volume forces, Ω is the body surface and
fe is the vector of external surface forces.

The exploitation of the principle of virtual work lead to
the following expression for the generalized Newton-Euler
equations of motion in body axes [3]:⎡⎢⎢⎣ mRR S̃

T

t S

S̃t Iθθ Iθ f

S
T

IT
θ f m f f

⎤⎥⎥⎦
⎡⎣ R̈

α
q̈ f

⎤⎦ =

=

⎡⎣ 03,1
03,1

−Kf f q f −D f f q̇ f

⎤⎦ +

⎡⎣ QR
v

Qθ
v

Q f
v

⎤⎦ +

⎡⎢⎣ Q
R
e

Q
θ
e

Q f
e

⎤⎥⎦ ,

(9)

where R̈ and α̈ are the body linear and angular acceleration,
Kf f is the structural stiffness matrix [4], D f f is a damping
term modelling the dissipative properties of the material, QR

e ,
Qθ

e and Q f
e are the generalized components of the active

forces associated to translational, rotational and deformation
coordinates, respectively, and the other quantities are defined
as follows:

mRR =
∫

V
ρdV , (10)

mRθ =
∫

V
ρA(u×)T AT dV , (11)

mR f =
∫

V
ρASdV , (12)

mθθ = −
∫

V
ρAu×u×AT dV , (13)

mθ f =
∫

V
ρAu×SdV , (14)

m f f =
∫

V
ρST SdV , (15)

S =
∫

V
ρSdV = AT mR f , (16)

St =
∫

V
ρudV , (17)

S̃t =
∫

V
ρ(u×)dV = AmRθAT , (18)

Iθθ =
∫

V
ρ(u×)T (u×)dV = AT mθθA , (19)

Iθ f =
∫

V
ρ(u×)SdV = AT mθ f , (20)

QR
v = −ω×ω×St −2ω×Sq̇ f , (21)

Qθ
v = −ω× Iθθω− İθθω−ω× Iθ f q̇ f , (22)

Q f
v = −

∫
V

ρST
(

ω̃
2
u+2ω̃Sq̇ f

)
dV . (23)

Equations (9) are valid for a general deformable body,
though many of the quantities involved (e.g., the matrix Kf f )
depend on specific body characteristics such as the shape or
the material properties.

From now on, the case of a thin beam will be considered.
In detail, it will be assumed that the body is a 1D elastic
continuum with constant cross-sectional properties. Further-
more, it will be assumed that the beam constitutive material is
homogeneous, isotropic and perfectly elastic (i.e., the elastic
internal forces are conservative). Finally, it will be assumed
that the deformation field is restricted to lie within the xy
plane of the beam local reference system.

These assumptions do not restrict the model validity or
generality, since the model remains still representative for a
large number of dynamic simulation applications (e.g., many
of the flexible robots commonly studied have flexible links
which can be represented by such model).

A. The element point of view

The finite element method is based upon a discretization
of the beam into N elements. A single element can itself be
viewed as a thin beam characterized by a planar deformation
field. It is then possible to define the local dimensionless ab-
scissa as ξ = x/�, where x is the longitudinal local coordinate
and � is the element length.

In [4] it is shown that the partial differential equations
associated with the deformation problem at hand, under the
hypothesis of elastic constitutive law for the material, require,
for a consistent finite element formulation, the use of linear
and Hermite cubic polynomials for the approximation of the
axial and transversal deformation field, respectively. Thus,
for a single element, the generic equations of motion (9) can
be expanded as follows:

u f ,el =

⎡⎣ u f 1,el
u f 2,el
u f 3,el

⎤⎦= Sel q f ,el ,

Sel =

⎡⎣ 1−ξ 0 0
0 1−3ξ2 +2ξ3 �(ξ−2ξ2 +ξ3)
0 0 0

· · ·

· · ·
ξ 0 0
0 3ξ2 −2ξ3 �(ξ3 −ξ2)
0 0 0

⎤⎦=

⎡⎣ Sel1
Sel2
Sel3

⎤⎦ ,

q f ,el =
[
q f 1,el q f 2,el q f 3,el q f 4,el q f 5,el q f 6,el

]T
,

(24)

where the subscript el is used to refer the quantities to a
single element.

Fig. 2 depicts the element coordinate systems associated
with the deformation degrees of freedom: q f 1,el and q f 4,el

are associated with axial compression, q f 2,el and q f 5,el with
transversal displacement and q f 3,el and q f 6,el with extremities
rotation.

The third row of the shape matrix Sel is composed only
by zeros, according to the hypothesis of planar deformation.
Such hypothesis and the assumption of a homogeneous,
isotropic and elastic material for the beam, allow to exploit
the Euler-Bernoulli theory and to calculate the elastic poten-
tial energy Uel , neglecting the contribution of shear stresses
and considering only the work of the resulting axial force
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Fig. 2. Element coordinate systems

Nel and bending moment Mel , as follows [4]:

Uel =
1

2

∫
�

(
Nel

Ea

∂Nel

∂x
+

Mel

EJ

∂Mel

∂x

)
dx =

1

2

∫
�

⎛⎝EJ

(
∂2u f 2,el

∂x2

)2

+ Ea

(
∂u f 1,el

∂x

)2
)

dx =
1

2
qT

f ,elKf f ,elq f ,el ,
(25)

where E is the material Young’s modulus, a is the (constant)
cross-sectional area and J is the (constant) cross-sectional
second moment of area. The analytical expression for the
matrix Kf f ,el , usually known as the structural stiffness ma-
trix, can be found in reference books on structural mechanics
(e.g., in [4]).

B. Finite Element Method Equations Assembly

The equations of motion for the entire beam can be
obtained by assembling the equations of motion for beam
elements as the one defined in the previous subsection. The
body reference system will be the local reference system
located at the root of the first element, so that the rigid
degrees of freedom, common to all the elements, will be
referred to such coordinate system.

Let then m and L be the mass and length of the entire
beam, and N the number of elements to be used, so that
� = L/N. Indicating with

−̂→
X the reference system unit vector

along the beam axis, the expression of the generic position
u j of a point of element j is

u j = u0 j +SelB jq f =
[
ξ j�+( j−1)�

]−̂→
X +SelB jq f , (26)

where u0 j is the position of the root of the jth element,
Sel is the shape functions matrix defined by (24), B j is the
so-called connectivity matrix and q f is a vector containing
the deformation degrees of freedom for the whole beam.

The matrices B j have the following form:

B j =
[

06,3( j−1) I6 06,3(N− j)
]
,∀ j = 1, · · · ,N . (27)

The connectivity matrices are used to relate the vector q f ,
which contains the deformation degrees of freedom for the
whole beam, to the corresponding jth element, according to
the expression:

q f ,el j = B jq f . (28)

The dynamics of the complete flexible beam can then be

Fig. 3. Tangent (left) and pinned (right) reference systems

described by equation (9), using the following expressions:

S =
N

∑
j=1

m

L

∫
Vj

SelB jdVj ,

St =
N

∑
j=1

m

L

∫
Vj

u jdVj ,

Iθθ =
N

∑
j=1

m

L

∫
Vj

⎛⎜⎝ u2
2 f j

−u2 f j u1 j 0

0 u2
1 0

0 0 u2
1 j

+u2
2 f j

⎞⎟⎠dVj ,

Iθ f =
N

∑
j=1

m

L

∫
Vj

⎛⎝ O(3N,1)
O(3N,1)

u1 j Sel2 −u2 j Sel1

⎞⎠dVj ,

m f f =
N

∑
j=1

m

L
BT

j

(∫
Vj

ST
elSeldVj

)
B j ,

Kf f =
N

∑
j=1

BT
j Kf f ,elB j ,

Q f
v =−

N

∑
j=1

m

L

∫
Vj

[
BT

j ST
el

(
ω̃

2
u j +2ω̃SelB jq̇ f

)]
dVj .

(29)

C. Deformation Boundary Conditions

The equations of motion for the whole beam must be
completed by enforcing suitable boundary conditions for the
finite element approximation of the deformation partial dif-
ferential equations. That means assuming prescribed values
for some of the deformation displacements, rotations and
velocities (linear or angular) at the body boundaries which
are, for the case at hand, the beam root and tip.

The most commonly used boundary conditions for flexible
beams are of two kinds, commonly associated with two
different reference system: the tangent frame and the pinned
frame condition (Fig. 3).

In both cases six conditions are given: the tangent one
enforce null deformation at the beam root (i.e., q f 1, q f 2, q f 3,
q̇ f 1, q̇ f 2, q̇ f 3 equal to zero for the first element), while the
pinned one enforce null axial and transversal displacement
at the beam root (i.e., q f 1, q f 2, q̇ f 1, q̇ f 2 equal to zero for
the first element) and transversal displacement at the beam
tip (i.e., q f 5 and q̇ f 5 equal to zero for the last element).

The choice of which of the two set of conditions has to
be used largely depends on the problem at hand.

Boundary conditions can be enforced into equations (9)
with suitable modifications of the connectivity matrices B1

and BN , by zeroing some entries. For example, for the
tangent reference conditions, BN remains unvaried and B1

becomes

B1 =
[

03,3 03,3
03,3 I3

06,3(N−1)

]
. (30)
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Fig. 4. Volume coordinate systems

D. Extended Formulation of the Equation of Motion

In the finite element formulation for the equation of motion
for a flexible beam, the reference directions of the internal
actions are the same for all the elements. Such representation
is acceptable as long as the deformation field is small
compared to the beam length, as it is the case, for example,
when studying the dynamics of vibrations in machining tools.

On the other hand, when large deformations are involved,
the internal actions reference directions should change ac-
cordingly to the deformation field. That means that it is
necessary to define a local reference system for each element
(Fig. 4). This corresponds to the application of the finite
volume method to assemble the equations of motion solved
over each element (i.e., over each volume). This representa-
tion is valid also for large beam deformation, as long as the
deformation field is small compared to the volumes length.

Furthermore, it is possible to assemble the equation of
motion for a mixed (finite element-finite volume) formulation
by dividing every volume into several elements.

It is not necessary to go into the detailed calculations
for the finite volume or the mixed formulation since, as it
will be shown in Section V, the equations of motion for
such extensions can be automatically calculated with the aid
of symbolic manipulation algorithms applied to the finite
element formulation.

V. MODELICA IMPLEMENTATION

The finite element formulation for the model has been
implemented using the Modelica language, creating thus
a new component, called FlexBeamFEM. The component
interfaces are two standard mechanical flanges from the
new MultiBody library [10]. The connectors choice makes
the component fully compatible with the library, so that it
is possible to connect directly the flexible beam with the
pre-defined models such as mechanical constraints (revolute
joints, prismatic joints, etc.), parts (3D rigid bodies) and
forces elements (springs, dampers, forces, torques).

In detail, the flexible beam component uses two mechani-
cal flanges as physical representation of the two ends of the
beam while the motion is ruled by equations (9).

The terms QR
e ,Qθ

e ,Q
f
e (i.e., the external actions) are com-

puted on the basis of the forces and torques exchanged at
the two connectors.

The model parameters include the beam length and cross
sectional area, the material density and Young modulus, the
cross sectional inertia, the damping factor and the number
of elements.

Particular care has been put into the realization of a 3D
interface for the model to visualize the simulation results

Fig. 5. Large beam deformation (left) and Slider-crank mechanism (right)

(Fig. 5), implemented by exploiting the features of the
graphical environment of the multibody library.

The finite volume model and the mixed one can be easily
obtained by connecting several finite element beams com-
posed by one or more elements, respectively. The achieve-
ment of such results, which significantly simplify the models
implementation, is based on the modular approach adopted
in the finite element model development. The assembly of
the equations of motion for these cases is demanded to
Modelica-based simulation environments, which usually em-
ploy advanced symbolic manipulation techniques and index
reduction algorithms.

The dynamical properties of the latter models are sig-
nificantly complex and accurate, featuring a displacement
description which is fully non-linear and allowing the simu-
lation of large displacement due to deformation (Fig. 5) at the
cost, though, of a significant increase of the computational
complexity with respect to the “pure” finite element model.

VI. SIMULATIONS

The different flexible beam models have been validated
by several simulation analysis performed within the Dymola
simulation environment [9]. The most significative ones are
reported in the following subsections.

A. Free Vibration

In this simulation the free vibration of a flexible beam is
analyzed. The test-case has been set up in order to investigate
the models properties with respect to theoretical predictions.

The beam component is connected to the world reference
system, so that no rigid motion is allowed; furthermore, no
gravity field is considered.

At the initial time instant the beam is standing still with a
non-null tip displacement, then it evolves, vibrating, towards
steady state.

The vibration frequencies of a flexible beam clamped at
the root can be calculated by solving the following partial
differential equation:

ρa
∂2y(x, t)

∂t2 +EJ
∂4y(x, t)

∂x4 = 0 (31)

with the following boundary and initial conditions:⎧⎪⎨⎪⎩
y(0, t),

∂y

∂x
(0, t),

∂2y

∂x2(L, t),
∂3y

∂x3(L, t) = 0

y(x,0) = f (x),
∂y

∂t
(x,0) = 0

(32)

where x is the axial coordinate, y is the transversal displace-
ment and f (x) is the initial deformation field.
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Fig. 6. Tip displacement frequency spectrum

The beam, made by aluminium, has square cross section
a = 1cm2, length L = 2m, density ρ = 2700kg/m3, Young’s
modulus E = 72 · 109N/m2 and has been discretized with
N = 10 elements. The initial tip displacement is 1cm.

Table I contains a comparison between the results for for
the first five vibrational modes obtained by simulation and
by solving numerically equation (31). The results are in good
accordance, as it is shown also in Fig. 6, depicting the tip
displacement frequency spectrum.

Mode Frequency∗ [Hz] Frequency† [Hz] Error [%]
1 2.0854733 2.0854750 8.418e-005
2 13.0694381 13.0698705 3.308e-003
3 36.5948052 36.6041219 2.545e-002
4 71.7112127 71.7795490 9.529e-002
5 118.543772 118.842591 2.521e-001

∗ Theoretical prediction † Simulation result

TABLE I

THEORETICAL AND MODEL NATURAL FREQUENCIES

B. Elastic Slider-crank Mechanism

The simulation of an elastic slider-crank mechanism,
reported as a reference test-case also in [13], has been
performed to validate the models for use within closed-loop
mechanical chains. The simulation set up involves a slider,
a rod and a crankshaft connected by revolute joints (Fig. 5).

The crank has length L = 0.152m, cross sectional area
a = 0.7854cm2 and second moment of area J = 4.909 ·
10−10 m4, density ρ = 2770kg/m3 and modulus of elasticity
E = 109 N/m2. The connecting rod has the same physical
parameters of the crank, apart from the lenght L = 0.304m
and the Young’s modulus E = 5 ·107N/m2. The crank and the
connecting rod have been discretized with 3 and 8 elements,
respectively. Finally, the slider block has been assumed to
be a massless rigid body.

During the simulation, the crankshaft is driven by a torque
with the following law:{

M(t) = [0.01(1− e−t/0.167)]Nm , t ≤ 0.7sec
0 , t > 0.7sec

(33)

The slider position and the connecting rod tip transverse
displacement are depicted in Fig. 7. The results are in perfect
accordance with those reported in [13].

Fig. 7. Slider block position and tip transverse displacement of the
connecting rod

VII. CONCLUSION AND FUTURE WORK

In this paper, a new model for flexible thin beams in
Modelica is introduced. The model, fully compatible with
the MultiBody library, is based on the application of the
finite element method. Selected simulation results have been
presented in order to validate the model properties with
respect to scientific literature reference cases.

Future work will include the model extension to handle
full 3D deformation and distributed loads. The model will
also be employed for the development of applications in the
field of robot control and satellite attitude control.

REFERENCES

[1] L. Meirovitch, Analytical Methods in Vibration. Macmillan Publish-
ing, New York, 1967.

[2] A. Shabana, Dynamics of Multibody Systems. Cambridge University
Press, 1998.

[3] G. Ferretti, F. Schiavo, and L. Viganò, “Object-Oriented Modelling
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