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Abstract— Artificial lifting is a costly, but indispensable
means to recover oil from high depth reservoirs. Continuous
gas-lift works by injecting high pressure gas at the bottom of
the production tubing to gasify the oil column, thereby forcing
the flow of fluid to surface facilities. The problem consists in
deciding which wells should produce and allocating a limited
lift-gas rate to the active ones, subject to lower and upper
bounds on gas injection, activation precedence constraints,
and nonlinearities and discontinuities of the well performance
curves. To this end, this paper develops a piecewise linear
formulation of the lift-gas allocation problem that allows
the application of powerful integer-programming algorithms.
More specifically, it analyzes the constraint polyhedron of the
piecewise linear formulation and extends cover inequalities of
the knapsack polytope to the problem at hand.

I. INTRODUCTION

Not unlike other economic sectors, the oil industry is
relying on modern automation and control technology to
cut costs in response to the pressure from environmental
legislation and competitive markets. Artificial gas-lift tech-
niques, for instance, are implemented to recover oil in high
depth wells. It works by injecting high pressure gas at the
bottom of a well to gasify the fluid column, thereby boosting
the reservoir’s internal pressure and forcing the flow of
fluid to surface facilities, where the mixture is separated in
oil, gas, and water [1]. Because the availability of gas can
be limited and the gas-compressing costs are pronounced,
one faces the combinatorial problem of deciding which
wells should produce and allocating the lift-gas rate to the
active ones. Even though the lift-gas allocation problem has
appeared in the literature since the early 70’s with varied
emphasis [2], [3], [4], most of the literature disregard the
combinatorial issues or suggest ad hoc rules that can lead to
suboptimal allocations. To this end, dynamic programming
algorithms have been developed for lift-gas allocation that
can cope with combinatorial decisions, activation prece-
dence constraints, and multiple well performance curves
[5], [6]. This paper proposes the piecewise-linearization of
the nonlinear well performance curves to render the lift-
gas allocation problem a mixed-integer linear programming
(MILP) problem. The advantages of the MILP approach
are threefold. First, it allows the optimal allocation of lift-
gas for large and very large oil fields. Second, it can
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be more efficiently generalized to handle multiple facility
constraints. Third, the theory and algorithms from integer
programming [7], [8] can be used to advantage in solving
the problem of concern.

The remainder of this paper develops a piecewise-linear
formulation of the lift-gas allocation problem, analyzes the
constraint polyhedron, and extends cover inequalities of the
precedence constrained knapsack problem to the problem
at hand.

II. PROBLEM DEFINITION

The lift-gas allocation problem can be expressed in
mathematical programming as follows:

P(G): Max  f=Y fulq!.q) (1.1)
S.to: Zilvzl q! < g™ (1.2)
Vo < Ym, ¥(m,n) €E[G]  (1.3)
Forn=1,... N:
9o = d5(q}) (1.4)
Liyn < g} < unyn (1.5)
yn €40,1} (1.6)

having the following given parameters and functions:

e N is the number of oil wells;

e g7 is the maximum lift-gas rate yielded by the gas-
compressing station (subscript “i” indicates injection);

e I, and u, are lower and upper bounds respectively on
the lift-gas injection into well n;

e f, is the profit function of well n obtained by selling
the hydrocarbons discounted processing and gas com-
pression costs, typically a linear function of ¢} and gJ};

« G(q?) is a nonlinear, continuous function modeling the
outflow from a well n in response to the injection of a
lift-gas rate ¢ within the interval [[,,u,];

e« G=(V,E) is an acyclic, directed graph that spells out
the precedence constraints on the activation of wells,
where V = {1,...,N};

and deciding upon the values of the variables:

e g7 is the lift-gas rate allocated to well n;

e ¢ is the outflow from well n (the subscript “o”
indicates output flow); and

e Y, is a binary variable taking on value 1 if the n'" well
is activated, and O otherwise.

Proposition 1: [6] P(G) is NP-Hard in the strong sense.

In words, the above proposition says that there does not

exist a pseudo polynomial algorithm for P(G) unless P =
NP [9], which is a motivation for the investigation hereafter.
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ITII. PIECEWISE LINEAR FORMULATION

Definition 1: Q" = {(¢""",q¥"),..., (q?’K(”),qg’K("))} is a
set of k(n) pairs of gas injection and outflow for well n,
such that ¢i* = 72(q"), k=1,...,k(n).

Assumption 1: For each well ne A4 ={1,...,N}:

i) 0< g/ < g™ for each 1 <k < x(n) which implies

that the probe injection points are distinct;

ii) ¢"' =1, and ¢ K, < ¢ to leave out unneces-
sary probe points; and

iii) (¢ k,qo ) cannot be expressed as a convex combina-
tion of the elements of Q" — {(¢'"*,¢+*)} for each k to
discard redundant points.

Having introduced the above notation, we can follow the
procedure from [7, Section 1.1.4] to piecewise-linearize the
well performance curves ¢ (as illustrated in Figure 1) and
recast P(G) as an MILP problem:

Ppl(G) .
J=Max f=3" S5 ko 2.0)
S.to: Zn < g 2.1
X1 < X1, V(m,n) € E[G] (2.2)
Forn=1,...,N:
Afn,() < Xn,1 (2.3)
/,an,l < Xn,2 (2.4)
Fork=2,...,k(n)—1:
A’mk < Xn.k +xn7k+1 (25)
/’Lnt,l((n) < Xn,x(n) (2.6)
S =1 2.7)
S =1 (2.8)
D iy I 2.9)

Forn=1,...,N, k=0,...,k(n):

g >0 (2.10)
Forn=1,...,N, k=1,...,k(n):

ok € {0,1} 2.11)

where:

o %= (g, ¢o") is the contribution to the objective
function by well n at the probe point (¢}, ¢+");

® (qghoaqgﬁo) = (030)’

 (q7,4}) is a convex combination of the elements of
0" = {(4},q5)y U Q" where ¢ = 51 ¢ A

o Ay ={Aux:k=0,...,x(n)} is the set of factors that
induce the convex combination of the elements of Q";

o Xy = {xy 1 k=1,...,k(n)} is the set of discrete
variables that force the convex combinations to use
only two consecutive points from O"; Xu ) takes on
value 1 if and only if (¢} ,q()) is a convex combination
of (g1, gx* ") and (¢/"*,¢b") for 2 <k < K(n) as
illustrated in Figure 1; note that x, ; = 1 if and only if
well n is shut off, and otherwise the well is producing.

o
(40,45

(a}.45)

2
q(!
| /
. R G R
9o (4/.495)
XLox o ox xy oxs o X o i
2
0 q! q qlff(")
Fig. 1. Piecewise-linearization of the well performance curve.

Notice that y, = Zlinz) X . For the sake of brevity,
additional notation is introduced: A = Uilvzl Ay x= Uivzlxn;
gi={q":n=1,...,N}; and K =YY  x(n). In terms of
this notation, the space of feasible solutions can be conve-
niently expressed as the polyhedron &,,;(G) = {(x,A,q;) €
BX x RE+2V: (x,4,¢;) meets the constraints (2.1) through
(2.10)}, where B = {0, 1}.

Proposition 2: 1f:

D fuld?) = fu(q?, G (q})) is a concave function in (1, un];
ii) P,(G) is obtained from P,;(G) by removing variables
Xn2,- 1%y x(n)» dropping the constraints (2.4)-(2.6) and
(2.8), and replacing (2.3) by an equality;
iii) no element @5 e Fr = {(q]
(g f” (7))} can be written as a convex COHlbl-
nation of the elements of F" —{(g!", k 4y and
iv) (x,4,q) is an optimal solution to P,(G);
then A, x + A, 41 =1 for some 0 <k < k(n) — 1.
Proof: 'We only need to consider the case in which
xu1 = 0. Let f,(g?") be the piecewise linear function ap-
proximating £, (g} ) By concavity of f,, [condition (1)],

it follows that Zk 1/'L R < fn(zk | nkqf”k) = fn(q;’),
and from the optlmahty of (x,A,q) [condition (iv)], we

conclude that Zk i 7L f”k Fu(q!
{1,...,x(n) — 1} and ”k,?t”kﬂ € Ry such that knk—i—
Apipr =1 and ! =2, zq" “+2, 4 #+1_From condition
(ii), (¢7, fu(q} )) can be obtained only from convex com-
bination of (g*, k) and (g nktl en, k“), implying that
7 3 FH1 nk
(a8 Fula?) = A (a7 ™) 4 Ty oy (g f55T). Con-
sequently, only 2 .% and A, 7., can be nonzero, which in
turn demonstrates the claim. [
From an inspection of the constraints of Pp;(G), one real-
izes that some decision variables can be readily eliminated
which results in a more compact formulation. The variables
that can be expressed as functions of the others are:

Vltl fn 1)

™). There must exist k €

g = 1= 3.1)
ln,O = Xn,1 (3.2)
)Ln,l =1- A'n 0~ ZK(n) )Ln, = 2;{1"2) (xn.,k - )*n,k) (33)

q; = K(") (ql K+ (g - Q?’l)/’l’n,k) (3.4)

4423



By piecewise-linearizing the objective function and sub-
stituting the expressions given by (3.1)—(3.4) for the re-
spective variables of the formulation P,;(G), the following
equivalent but more compact formulation results:

Pcpl(G) :
N x(n)
Max f=3 Y (ot (4 D) @0
n=1k=2
S.to:
N K n,1 n.k n,1
2 2 (qi) Xnk + (q T —gq; )ln,k) < qgnax 4.1)
n=1k=2
S i = S x i W (man) €E[G] (42)
Forn=1,...,N:
S i < 1 4.3)
PIAE I Sy W (4.4)
PYMENED WP HEY (45)
For k=2,...,k(n)—1:
/,Ln,k < Xnjg + Xnj+1 (4.6)
A’n,K‘(n) < Xn,x(n) 4.7
Forn=1,....N, k=2...,x(n):
A,n,k Z 0 (48)
Xnk € {0,1} 4.9)

whose variables and interpretations are identical to those of
the formulation P,;(G). The vectors x and A can aggregate
arrays of variables as they did in P,;(G), this way allowing
the feasible space of P.,;(G) to be more compactly rep-
resented by the polyhedron Z.,(G) = {(x,A) € BK"N x
RE=N: (x,1) meets constraints (4.1) through (4.8)}.

IV. CUTTING PLANES

Here and further along the text, we introduce notation to
support our developments:

o A ={m:JpathfrommtoninG}andA,=A}—{n};

e root(G) ={n:|A,| =0} are the root nodes of G;

o Op = Dyca, g;"" is the minimum amount of gas nec-

essary to activate the wells that precede n;

e 0" = g, +¢"*" is the minimum amount of gas

required to activate well n at its highest injection level.

Proposition 3: P.,(G) is  full dimensional if
max{c)*:n€ N} < g,

Proof: (Sketch) We only outline the main steps of
the demonstration. The claim can be proven by obtaining a
unit vector from linear combination of the elements of &
for each variable!. Let X = {x,x:n€ A k=2,....k(n)}
denote the set of x variables and A = {1, :n € A k=
2,...,k(n)} denote the set of A variables, but not their
values. Let also z(U) € & be a solution obtained by setting

the variables from U C X UA to unit (while the remaining

'Hereafter, & will be a shorthand for £, (G)

variables are set to zero)® and let 1(y) € BK~N x RK=N be
the unit vector whose positive entry corresponds to variable
y € XUA. The proof can be divided in two main parts.

(Part I) Unit vectors are obtained for all variables associ-
ated with root nodes. Take any n € root(G). Clearly z(x, ) €
& and 1N (xp2) = z(x,2). By noticing that z(x, 2,4, 2) € 2,
a unit vector can be obtained for A, , by making 1(2,2) =
2(xn,2,An2) — N(x,2). Following this pattern, 1 (x,x) and
N(Ayx) can be produced for k =3,...,Kk(n).

(Part II) Unit vectors are synthesized for all variables
associated with non-root nodes. Let T = (ny,...,n;) be a
topological order of G[V —root(G)], i.e., forall 1 <i< j<
t,nj¢A,. Fori=1,... t (in topological order), unit vectors
are produced for all variables associated with vertex n;.
Let X' = {x;:j € A, }. Because o0, < ¢/"™, z(X') € &
and from induction in the topological order, it follows that
N(x2) = 2(X') = Xjea, N(xj2). With X" = X" U {42},
one can verify that z(X”) € 2 and N(An2) = 2(X") —
Y cat N(x)2). In the same manner of Part I, one can follow
this pattern to get N(zp, k) and N (A, 1) for k=3,...,x(n).

At this point, unit vectors have been obtained for all ele-
ments of X UA. Because the null vector is a valid solution,
Z.pi(G) has [ X UA|+ 1 affinely independent vectors and,
hence, dim(Z,,1(G)) =23 | (k(n)—1)=2(K—N). =

A. K-Covers

One of the most successful techniques to design MILP
algorithms rests on the identification of valid inequalities
from the combinatorial structure of the problem, preferably
facet inducing inequalities. Families of valid inequalities
and separation procedures or heuristics are key to imple-
ment effective branch-and-cut algorithms [8]. Henceforth
we extend the cover inequalities of the constrained knapsack
polyhedron [10] to Z.,;(G). But, before defining K-cover
and its induced inequalities, we augment the notation:

e O={(mk):n=1,...,Nand k=2,...,k(n)} is the

set of pairs of wells and activation levels;

o Q, ={(nk) € Q} is Q restricted to well n;
o QU)=U,cyQn where U C .1

o« N(S)={n:(nk) €S} for SCQ;

o Q(S) = Unen(s) 2 Where S C Q;

o S(nk)=S— {(n k)} for S C Q;

o Y(S) =Znpes ‘Lr‘[’kfl for § € Q;

« m =< n means that m precedes n in a topological order
of G, ie, meA/;

o m < n means that m strictly precedes n in a topological
order of G, i.e., mEA,;

o [(U)=UneyA,l is the set of ancestors of U C .4/,

o 1(S) =Unen(s)An is the set of ancestors of the nodes
appearing in N(S), where S C Q;

e« HU)={n€U:PmeU such that n <m} forU C .4,
o H(S)={(n,k)eS:neH(N(S))} where S C Q; and
o« T'(S)={(n,j): (n,k) €S and 2 < j <k} for SC Q.

2The curly brackets that delimit the elements of a set will be omitted
to simplify notation.
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Definition 2: C CQ is a cover if:
i) m # n for all distinct pairs (m,i),(n, j) € C;
ii) 1(C) = N(C);
iii) k=2 for all (n,k) € C—H(C); and
iv) y(C) > qi"*.
For a cover C, the wells appearing in N(H(C)) cannot
be simultaneously activated at the levels specified in H(C).
Definition 3: A cover C is a K-cover if for every § C
H(C) with [S| =K it is true that y(dg) > ¢/ for Oy =
Q(I(S))NC, but for any (n,k) €S, y(Ps—{(n,k)}) < g".
Definition 4: A cover C is a strictly K-cover if for every
S C H(C) with |S| =K it is true that y(Dg) > ¢"* for &g =
Q(I(S))NC, but for any (n,k) € S, y(Ps—{(n,k)}) < g™~
if k=2 or else y((®s— {(n,k)}) U{(n,k—1)}) < g"*.
Proposition 4: If C is a K-cover then

2(n,k)eH(c) Xnk <K-1 (5)

is a valid inequality of Z¢c = {(x,A) € Zpi(G) : Xy =
Mgk =0,Y(n,k) e Q—-T(C)}.

For a K-cover C, there does not exist enough resources to
simultaneously activate any subset of H(C) with cardinality
K, which leads to inequality (5). The terminology presented
below will simplify forthcoming demonstrations.

Definition 5: Given S C Q, define z(S) = (x(S),A(S)) as:

x(S)nx=1,Y(nk) €S
x(8)nx =0,Y(nk) eQ—S
A8 =1,¥(nk) € @ ={(n,j): (n,j+1)€S,j =2}
A(S)nx=0,Y(n,k) € Q—0
Proposition 5: Given a strictly K-cover C, inequal-
ity (5) induces a maximal face Fr = {(x,A) € ¢ :
Z(n,k)EH(C) Xnk = K- 1} of @C if and only if

m{SCH [|S|=K— 1}9( ($))nc=0 ©)
Proof: Inequahty (5) is valid for &¢ from the defini-
tion of K-cover.

(Necessity) Suppose that (6) does not hold and let
(', k') € Nyscreylsi=k—-1 LU(S)) NC. For any T C T(C)
such that z(T) = (x(T),A(T)) € Fc, (n',k") must appear in
T. It then follows that all z = (x,A) € F¢ satisfy x, p =1
and, hence, Fc CF = {(x,A) € Pc:xyp =1} If Fc #F,
then F¢ is not maximal. Thus, for F¢ to be maximal, Fr =F,
but (5) is not a scalar multiple of x,/» < 1, contradicting
the claim. '

(Sufficiency) To see that (5) induces a facet, let F; be a
maximal face of ¢ containing F¢ and induced by:

2(,17/()61-(0 T kX k + 2(,17/()61-(0 .un.,ka'n.,k <m (N

We only outline the main steps to demonstrate that (5) and
(7) differ only by a multiplicative constant, which in turn
proves the claim.

(I) Take any (n,k) € A(C) =C— H(C). There must exist
T CH(C) with |T| =K —1 such that n € [(T). Let ® =
Q(I(T))NC. Clearly z(®) € Fc. Let z(®P) be identical to
z(®) except that A(®)! , = €. For & > 0 sufficiently small,
2(®)' € F¢ because C is a strictly K-cover. Thus, for z(®)

Fig. 2. Activation precedence graph

and z(®)' to belong to Fy, z(®) and z(®)" must meet
(7) at equality, which leads us to conclude that ,; = 0.
Consequently, (7) becomes

Z(n,k)EF(C) Ton kX ke &= Z(n,k)el"(c)fA(C) Mo A < T

For the remaining steps, we only indicate the key points:

(I)  show that u,; = 0 for all (n,k) € T'(C) —A(C);
(IIT)  show that m, ; =0 for all (n,k) € A(C);
(IV) show that m,; =0 for all (n,k) € T(C) —A(C) —

H(C), proving that (7) is X (ux)cH(C) TniXnk < 05
(V)  show that m,; = m,, ; for all (n,i),(m,j) € H(C);
(VD) conclude that (5) is a scalar multiple of (7).

The steps (I)-(VI) show that (5) is a facet of F¢. |

A K-cover C where K = |H(C)| is referred to as a minimal
cover. Clearly, any subset S C H(C) of a K-cover C yields
a minimal cover Cs = Q(I(S))NC if |S| = K. The inequality
(5) induced by a non-minimal K-cover C is stronger than
the inequality yielded by a minimal cover Cg C C.

B. Illustrative Example of K-Cover

Take the activation precedence constraint graph G de-
picted in Figure 2 for a cluster of 9 Wells The injection rate
available is ¢ = 6 and the values g” appear in Table L.

An example of cover is C ={(1,2),(2,2), (3,2), (4,3),
(5,3),(6,3)}. Condition (i) of Definition 2 is verified.
Condition (ii) holds since /(C) = {1,2,3,4,5,6} = N(C).
Notice that H(C) = {(4,3),(5,3),(6,3)} and C—H(C) =
{(1,2),(2,2),(3,2)} which implies condition (iii). Finally,
Y(€C)=05+14+1+2+2+4+2=8.5> ¢ and condition
(iv) holds.

For K = 2, C is also a K-cover. The subsets
of H(C) with cardinality K are S45 = {(4,3),(5,3)},
Ss6=1{(4,3),(6,3)}, and Ss5¢6 = {(5,3),(6,3)}, which in-
duce I(Ss5) = {1,2,3,4,5}, 1(S46) = {1,2,3,4,6}, and

(SS (,) = {1 2,3,5 6} Further, @45 = 9(1(545)) neC =
{(1,2),(2,2),(3,2),(4,3),(5,3)}, a5 = QU(S46)) NC =
{(1 2),(2,2) (3 2) (473)7(673)}’ and @5,6 = Q(I(SS,G)) n
C=1{(1,2),(2,2),(3,2),(5,3),(6,3)}. Notice that y(PD45)
= Y(Ds6) = Y(Ds¢) = 6.5 > ¢/"*. However, for all S, ,, €
{54.5,546,55.6}, V(@um—{(1,1)}) = 4.5 < g"™ for every
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(1,t) € Spm. Consequently, the K-cover inequality
Z(n,k)eH(C) Xnk=Xs3+x53+x3<1=K—-1 (9)

is valid for Z¢ where T'(C) = {(1,2),(2,2), (3,2), (4,2),
(4,3),(5,2), (5,3),(6,2),(6,3)}. Actually, C is a strictly K-
cover. For example, in the case of @45, y((Ps5 —{(4,3)})U
{(4,2)}) =5.5 < ¢ and y((Ps5 —{(5,3)HU{(5,2)}) =
5.5 < g"™. This property holds for ®4¢ and ®5¢ as well.
Because iscu(cysi=x—13 QUS))NC = [Q(I({(4,3)}))
N QI({(5,3)})) N QU({(6,3)}))] N C =0, C satisfies
condition (6) and consequently it induces a facet of Z¢.

C. Lifting K-Covers

Thus far we have shown that a strictly K-cover induces a
maximal face of ¢ which is a projection of Z.(G).
Although (5) is valid for the feasible set of P.,;(G), in
principle it can be “lifted” [8], [7], [11] to obtain a stronger
and possibly facet-inducing inequality for Z.,;(G):

P D>

(n,k)eH(C) (n,k)€Q-T(C)

Buk(Cxux <K—1  (10)

where B, x(C’) are the lifting factors. Besides C, the lifting
factors depend on the order C' = {(ny,k),...,(nr,kr)} of
Q —T(C) in which they are lifted. These factors can be
computed by solving a sequence {K;(C'):t=1,...,T} of
problems akin to P.,;(G) defined recursively by:

K (C'):

& = Max Z

t—1
X 2 Bk (C1)xy iy (11.0)
(n,k)€H(C)—Qy, j=1

S.to: Y xuk <1, VneN, (11.1)
(n,k)ES;t
P e A () ¥
(n,k)eA;
2 Xm.k > 2 -xn,k7v(m7n) € E[G[]Vf]]
(m,k)EStm (n,k)ESt
(11.3)
Y, xwp>1,V¥mel({m})—{n} (11.4)
(m,k)ES,)m
Xk €4{0,1}, Y(nk) € A (11.5)
fort=1,...,T, where:
e Ny =N(C)UI({ny,...,m})—{n},
o Sin=(CU{(n1,k1),...,(ne, k) }) Ny,
o Ar= UnEN, Sle'
and the coefficients f3,,1;(C’) are defined by:
ﬁ,,ﬁkj(C’):K—l—ej,t:1,...,T—1 (12)

Proposition 6: If C' obeys a topological order of G
Vi, je {1,...,T},i < J, either n; An;ork; < kjif n; =nj),
then inequality (10) is valid for Z.,;(G).

Proof: (By induction in t) For the basis, t = 1, there are
two possibilities. If x,, x, = 0, then (10) becomes the cover
inequality (5) which is valid by definition. If x,,, x, =1, then

TABLE I
INJECTION RATES FOR THE OIL WELLS

Injection Levels q;"k

3 4 5 6 K
5 6
5 5.5
5 6

3
~
|

=

9

o
n

4.5

W W W W W W
(98]
-lk-u]-lk-lk-lk-h

5

o = LY. B OO SR
e e e
IS VN S CHCH SRR I
W
NN WL R Voo
_
W

(10) is valid if B, 4 (C') <K —1 —max{z(n,k)eH(C) X
s.to (i) at most 1 pair (n,k) of each n € N(C) is active;
(ii) the total gas allocated does not surpass the available
rate discounted minimum required to activate pair (ny,k;);
(iii) the precedence constraints are respected and all levels
of activation appearing in S;, are permitted for each n €
N;; and (iv) pairs are either selected or not} = K— 1 —
max{z(,,ﬂk)eH(c)xmk . s.to (111)—(115)} =K-1—-¢ =
By, k, (C') because C’ is topologically ordered.

For the induction step, ¢ > 1, there are two possibilities. If
Xn, k, = 0, then (10) is valid by induction. If x,, ;, = 1, then
(10) is valid if ﬁ"t,kr (C/) <K-1- max{Z(,,)k)eH(C) Xnk +
23.;11 B, x; (c )x,,jykj : s.to (i) at most 1 pair (n,k) of each
n € N, is active; (ii) the total minimum gas allocated does
not surpass the available rate discounted the minimum
required to activate pair (n;,k;); (iii) the precedence con-
straints are respected and all levels of activation appearing
in S;, are permitted for each the n € N;; and (iv) pairs
are either selected or not} = K — 1 —max{ ¥, )cn(c) Xnk +
z’j;ll By (C)xu, i, = sto (1ILD-(11.5)} = K—1—¢ =
B, i, (C') as C' is topologically ordered. [ |

D. Pseudo-Lifting K-Covers

The task of computing exact lifting factors is comparable
to solving P,,;(G) which may render the procedure imprac-
tical. One may otherwise attempt to compute approximate
factors o, 1;(C) in place of B, 4 (C'), hereafter called
pseudo-lifting factors. In introducing these approximate
lifting factors, the notation below will be handy:

e [(C) =Q—T(C) has the variable indexes to be lifted;

o Tu(C)={(n,j):(n,k) €H(C),j=k+1,...,k(n)} has

the indexes to be lifted that have a counterpart in H(C);

o T4(C)=A{(n,j):(n,k) eC—H(C),j=k+1,...,x(n)}

has the indexes with counterpart in C — H(C);
e T3(C) =T(C)—Tx(C)—T4(C) has the other indexes;
o forany n€ 4 and (m,j) € Q—Q,, let:

-1 oo
{‘Lr'n'] +2en,-ardi fméA,

J—1 s .
f"" — ,m if meA,

o(n)m,j =

be the minimum amount of resources necessary to
activate well m at level j, in the worst case, given that
well n has been activated at some level;

e H(C,n,k)=H(C)—{(n,k)};
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o H(C,n,k), CH(C,n,k) is such that:
(1) |H(C,n,k)y| =h and
(i) min{c(n)m,; (m,j) € H(Cnk)}y >
max{c(n),,: (m,j) € H(C,n,k) —H(C,n,k)},
in other words, H(C,n,k), is a subset of H(C,n,k)
with & pairs that need the highest amount of resources
to be activated if a pair (n,j), n € N(H(C)), is active;
o H(C,n), CH(C) is such that:
(1) |H(C,n)y| =h and
(i) min{c(n)m,;: (m,j) € H(C,n)y} > max{c(n)m,;:
(m7]) € H<C) - H(C>n)h}’
that is, H(C,n);, is a subset of H(C) with A pairs that
require the highest amount of resources to be activated
if a pair (n,j) is active.
Taking advantage of the above notation, we can propose
pseudo-lifting factors for the elements of I'(C) that are
tailored for the subsets Ty (C), T4(C), and T'3(C).

Definition 6: The pseudo-lifting factor o, for (n,k) €
Ty(C) is Oy = 1+max{h: X jen(cnsm), O MWmj <

k=1 —q?’5<n)71}, where (n,6(n)) € H(C).

Definition 7: The pseudo-lifting factor oy, for (n,k) €
FAI(C) is Oy ke = max{h : Z(m,j)EH(C,n)h G(}’l)mhl' < q?’k71 —
a;" }.

IWith respect to the elements of T'z(C), there is some
choice on how the approximate lifting factors can be
calculated. Let ©¢,©y,...,0O be a partition of T'(C) such
that for all ,1 <r <R, the following holds:

i) H(©,) ={(n;2),...,(n,,x(n;))} for some n, € AN,
(i) m < n, and i =2 for all (m,i) € ©, — H(O,).

Definition 8: Given a partition {©,}8 of Ts(C), the
pseudo-lifting factor oy, for (n,k) € ©, is defined as
follows:

o Ox=max{/: X jenicay, OMm; < g =g} if

r=20;

o Oy = max{h : ZSm,j)eH(C,n)h o(mm; < ¢ +

}if r> 1 and (n,k) € H(O,);

Ximjco,-n©) 4
and
o 0 =0if r>1and (n,k) € ©,—H(O,).
Proposition 7: Given a K-cover C and pseudo-lifting
factors ¢, ; obtained as above, the pseudo-lifted inequality:

> Xkt D (13)

(n,k)eH(C) (n.k)el(C)
is valid for Z.,/(G).
E. Illlustrative Example of Lifting and Pseudo-Lifting

O kXn k <K-1

The computation of lifting factors can be exemplified for
the instance given in Table I with precedence constraint
graph depicted in Figure 2. We take C’ as the lexicographic
ordering of the elements of T'(C), (m,i) < (n,j) in C" if
m < n or else m=n and i < j, which induces a topological
order of T'(C). The application of the lifting and pseudo-
lifting procedures yield the coefficients given in Table II. In
computing the pseudo-lifting factors, the partition of T'z(C)
was taken as ©yp =0, O] = Q7, O, = Qg, and O3 = Qq.

TABLE II
LIFTING AND PSEUDO-LIFTING COEFFICIENTS
Coeffi cients f}x(C")/ 0tk (C)

n\k 2 3 4 5 6
1 0/0 0/0 170 1/1
2 0/0 0/0 1/1 1/1
3 0/0 0/0 0/0 1/1
4 /1 171

5 1/1

6 1/1 1/1

7 0/0 1/1

8 170

9 1/0

V. CONCLUSIONS AND FUTURE WORKS

This paper presented key concepts of the gas-lifted oper-
ation of oil wells and the lift-gas allocation problem under
precedence constraints. A piecewise-linear reformulation
was proposed to render the problem a mixed-integer linear
programming problem, thereby allowing the application of
the theory and algorithms from the domain of integer pro-
gramming. Specifically, we simplified the piecewise-linear
formulation to obtain a full dimensional polyhedron and ex-
tended K-covers for the problem at hand. The face induced
by a K-cover was shown to be maximal for the projection
of the polyhedron over the space of variables spanned by
the cover. We also proposed exact and approximate lifting
procedures to strengthen the original inequalities, both of
which were illustrated in a simple scenario.

Future work will be focused on the design of procedures
to separate K-covers, the extension of 1-configuration in-
equalities to P.,;(G), and the computational analysis of the
developments heretofore in solving large problem instances.
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