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Abstract— In this paper we will formulate sufficient condi-
tions for the area contraction of k-dimensional surfaces under
the flow of a set of differential equations. We discuss the
connection with the Hausdorff dimension of invariant sets and
show how the presence of first integrals of the system influences
these results. We conclude with an application to almost global
asymptotic stability.

Index Terms— k-contracting vector fields, Hausdorff dimen-
sion, first integrals

I. INTRODUCTION

As is known from continuum mechanics, the divergence
of a vector field equals the rate at which volumes increase
or decrease, when flowing along the vector field. If the
divergence has a fixed sign, then no sets with a finite
volume exist that are invariant under the flow of the vector
field. Of course a vector field can always be modified by
multiplication with a positive function without changing the
dynamics. When considering the divergence of the modified
vector field and relating it to the rate of volume change of
sets, this is equivalent to introducing a density function that
associates a mass to (or redefines the volume of) a region in
the state space.

This extra degree of freedom was exploited in [1] to
establish a criterion for almost global asymptotic stability of
an equilibrium point of a dynamical system, which means
that the equilibrium point is locally stable and that the set of
points in the state space that will not converge to the equilib-
rium point has zero volume. The criterion involved expansion
of all volumes under the flow of the modified vector field
(i.e. positive divergence) and the finiteness of the volume
of the entire state space apart from some neighbourhood
of the equilibrium point. The set of points not converging
to the equilibrium point is invariant and if the equilibrium
point is locally asymptotically stable this set is also bounded
away from the equilibrium. It then has a finite volume and
it follows that this volume must be zero. In the case that
the equilibrium point is stable but not asymptotically stable,
the considered set can be written as a (countable) union of
invariant sets that are bounded away from the equilibrium

point. It follows that each set has volume zero and therefore
also its union.

To derive better bounds for the dimension of invariant sets
one can consider the k-dimensional area of a k-dimensional
surface in the state space (k ≤ n, with n the dimension of
the state space) and investigate how it evolves under the flow
of a dynamical system. The contraction or expansion of the
area of k-dimensional surfaces everywhere in the state space
implies that no invariant surfaces can exist with a finite area
of a(n) (integer) dimension larger than or equal to k (as we
will show in this paper). Since this will only lead to results on
regular surfaces, it is a restrictive result, but it can be gener-
alised by using the concept of Hausdorff dimension [2], [3],
[4] or box-counting dimension [5], [4]. A condition similar
to the one for the contraction/expansion of k-dimensional
surfaces can be derived to guarantee that Hausdorff d-
measures (d not necessarily integer) decrease/increase along
the flow of the vector field, implying that the Hausdorff
dimension of a bounded invariant set cannot be larger than
d.

Physical systems often exhibit symmetries and conserva-
tion laws, allowing us to derive stronger results. In this paper,
we generalise a result of [6] by showing that, if a system
has p conservation laws, the contraction (resp. expansion)
of k-dimensional surfaces will lead to contraction (resp.
expansion) of k − p-dimensional surfaces in an arbitrary
level set of the conservation laws. The previously mentioned
results can then be applied to give an upper bound for the
dimension of invariant sets in this level set.

II. OUTLINE AND PRELIMINARIES

Consider a dynamical system in R
n, given by the differ-

ential equation

ẋ = f(x),

and denote by φt(x) the solution with initial condition
φ0(x) = x. (We assume that f is continuously differentiable
in R

n, and that the dynamical system has no finite escape
time.) Further, assume there is a (positive definite) C3 metric
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g, taking the form

g =
∑
i,j

gijdxidxj .

(We let g denote both the metric and the (symmetric) matrix
consisting of the elements gij .) For a vector function v(x)
we will use the notation ∂v

∂x to denote the matrix with ∂vi

∂xj

on the i’th row and j’th column, while we will use det Aij

to denote the determinant of the matrix with Aij on the i’th
row and j’th column.

Although the results stated will be restricted to R
n, they

all can be generalised to arbitrary (but sufficiently smooth)
orientable manifolds [7].

In the following section we will derive an expression for
the area of a k-dimensional parallelepiped with respect to
a time-dependent metric, and we will give an upper bound
for its time-derivative. In section IV we will apply these
results to give an expression for the area of a k-dimensional
surface and an upper bound for its time-derivative when
evolving under the flow of the dynamical system. This results
in an upper bound for the dimension of regular bounded
invariant sets. In order to extend this result to arbitrary
bounded invariant sets, we will introduce the concept of
Hausdorff measure in section V, after which we will discuss
its evolution under the flow of the dynamical system and the
consequences for the Hausdorff dimension of invariant sets.

In section VI we assume that the dynamical system has
p first integrals and we show how the evolution of k-
dimensional surfaces is related to the evolution of k − p-
dimensional surfaces in the level set of the first integrals.
We conclude with some applications of the stated results,
one of which will be treated in more detail and clarified
with an example.

III. EVOLUTION OF THE VOLUME OF A PARALLELEPIPED

Consider a parallelepiped Pk spanned by k (k ≤ n)
linearly independent vectors w1, . . . , wk in a vector space R

n

that is equipped with a metric, represented by the symmetric,
positive definite matrix G. Then the length of the vector wi

equals √
〈wi, wi〉 =

√
wT

i Gwi.

First we will assume a standard metric: G = In. Let Bk be
an orthonormal basis in the k-dimensional subspace spanned
by the wi’s. Define Wn ∈ R

n×k and Wk ∈ R
k×k by

Wn =
[
w1 · · · wk

]
,

Wk =
[
[w1]Bk

· · · [wk]Bk

]
,

where [wi]Bk
is the column vector containing the coordinates

of wi with respect to the basis Bk. Then the k-dimensional
area/volume σk,s(Pk) (with respect to the standard metric)
of the aforementioned parallelepiped can be written as

σk,s(Pk) = |det Wk|
=

√
det(WT

k Wk),

and since the element on row i, column j equals
[wi]TBk

[wj ]Bk
= 〈wi, wj〉 = wT

i wj ,

σk,s(Pk) =
√

det(〈wi, wj〉)
=

√
det(WT

n InWn).

From now on we let the metric be arbitrary. The expression√
det(〈wi, wj〉) is not only coordinate independent, but also

defines the k-dimensional area for a general metric G:

σk(Pk) =
√

det(〈wi, wj〉)
=

√
det(WT

n GWn).

Assume that G = G(t) is time-varying and consider the
time-derivative of (σk(Pk))2 for the case k = 1 (Wn = w):

d(σ1(P1))2

dt
=

d
dt

(wT Gw)

= wT dG

dt
w,

which we rewrite as

d(σ1(P1))2

dt
= wT GLw,

with L = G−1 dG
dt , because we only want w to appear in

the combination wT Gw. So now we will show that we can
bound this expression by the product of σ1(P1)2 = wT Gw
and the largest eigenvalue of L. First note that G− 1

2 dG
dt G− 1

2

is symmetric (G
1
2 is the positive definite matrix satisfying

(G
1
2 )2 = G), such that there exists a Q0 ∈ R

n×n with

G− 1
2
dG

dt
G− 1

2 Q0 = Q0Λ,

QT
0 Q0 = In,

where Λ is diagonal (and real) with Λ11 ≥ · · · ≥ Λnn.
Setting Q1 = G− 1

2 Q0 we get

LQ1 = Q1Λ,

QT
1 GQ1 = In,

and the columns of Q1 form a basis of orthonormal (with
respect to G) eigenvectors of L. By writing w as a linear
combination of these eigenvectors we get

d(σ1(P1))2

dt
= wT GLw

= w′T QT
1 GLQ1w

′ (with w′ = Q−1
1 w)

= w′T QT
1 GQ1Λw′

= w′T Λw′ =
∑

i

2λiw
′2
i (with λi =

1
2
Λii)

≤
∑

i

2λ1w
′2
i = 2λ1w

′T w′

= 2λ1w
′T QT

1 GQ1w
′

= 2λ1w
T Gw

= 2λ1σ
2
1(P1),
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and thus

dσ1(P1)
dt

≤ λ1σ1(P1).

For general k-values one can prove that ([8])

dσk(Pk)
dt

≤ (λ1 + · · · + λk)σk(Pk).

IV. EVOLUTION OF THE AREA OF k-DIMENSIONAL

SURFACES

In the standard metric, the length σ1,s of a curve ψ(V )
in R

n, represented by the function ψ : V → R
n, V ⊂ R, is

given by the well-known expression

σ1,s(ψ(V )) =
∫

ψ(V )

√∑
i

(dxi)2 =
∫

V

√√√√∑
i

(
∂ψi

∂y

)2

dy.

For a general metric the length σ1 equals

σ1(ψ(V )) =
∫

ψ(V )

√∑
i,j

gijdxidxj

=
∫

V

√√√√∑
i,j

gij(ψ(y))
∂ψi

∂y

∂ψj

∂y
dy.

This formula can be extended to an expression for the area
of surfaces of larger dimensions in the following way. Let
V be a region in R

k such that the function ψ : V → R
n

defines a (smooth) k-dimensional surface in R
n. Then the

k-dimensional area σk(U) (with U = ψ(V )) can be found
by replacing Wn by ∂ψ

∂y dy and G by g(ψ(y)) in the previous
section and integrating over V :

σk(U) =
∫

V

√√√√det

(
∂ψ

∂y

T

g(ψ(y))
∂ψ

∂y

)
dy.

Now we let U evolve under the flow of the given dy-
namical system to obtain the time-variant surface φt(U) =
φt ◦ ψ(V ) and we consider its area:

σk(φt(U)) =
∫

V

√√√√det

(
∂ψ

∂y

T ∂φt

∂x

T

g
∂φt

∂x

∂ψ

∂y

)
dy

(where the argument of ∂ψ
∂y is y, that of ∂φt

∂x is ψ(y) and
that of g is φt(ψ(y))). To calculate the time derivative
d
dtσk(φt(U)), we first consider the matrix

L(f, g) = g−1(x)
d
dt

((
∂φt

∂x
(x)

)T

g(φt(x))
∂φt

∂x
(x)

)∣∣∣∣∣
t=0

= g−1 ∂f

∂x

T

g + g−1
∑

i

f i ∂g

∂xi
+

∂f

∂x
,

and denote the eigenvalues of 1
2L(f, g) in x ∈ R

n by
λ1(x) ≥ · · · ≥ λn(x). Then it follows from section III (with

Wn = ∂ψ
∂y dy and G(t) = (∂φt

∂x (x))
T
g(φt(x))∂φt

∂x (x)) that

∂

∂t

√√√√det

(
∂ψ

∂y

T ∂φt

∂x

T

g
∂φt

∂x

∂ψ

∂y

)∣∣∣∣∣∣
t=t0

≤ (λ1(x) + · · · + λk(x))

√√√√det

(
∂ψ

∂y

T

g(x)
∂ψ

∂y

)
,

where x = ψ(y). In the expression of d
dtσk(φt(U)) we can

bring d
dt into the integrand (as ∂

∂t ) and after applying the
previous formula we can put the sum of λi’s in front of the
integral by taking the supremum over the surface:

d
dt

σk(φt(U))
∣∣∣∣
t=t0

≤ sup
x∈U

(λ1(x) + · · · + λk(x)) σk(U).

This means that the supremum of the sum λ1(x)+· · ·+λk(x)
gives an upper bound for the rate at which k-dimensional
surfaces can increase.

Remark 1: Note that 1
2L(f, In) is the symmetric part of

∂f
∂x and corresponds to the strain (resp. rate of deformation)
tensor in continuum mechanics if we let f represent the
displacement (resp. velocity) of an elastic medium (resp.
fluid). This shows that L(f, In) contains all information
about deformation under the flow of the vector field f .

Remark 2: For a general manifold M one can choose an
arbitrary coordinate system on M to calculate 1

2L(f, g) and
its eigenvalues λi. Although 1

2L(f, g) is dependent on the
chosen coordinate system, its eigenvalues are not. The results
in this paper remain valid on general manifolds [7].

Assume that for some region Ω ⊂ R
n, it is true that

λ1(x) + · · · + λk(x) ≤ 0, ∀x ∈ Ω.

Then the area of any k-dimensional surface lying in Ω cannot
increase under φt. So if the k-dimensional surface under
consideration is invariant under the flow of the dynamical
system, then on this surface we must have that λ1(x)+ · · ·+
λk(x) = 0. Thus under some extra conditions on the set
{x ∈ Ω : λ1(x) + · · · + λk(x) = 0} (e.g. demanding that
its dimension is smaller than k) we can conclude that there
can be no invariant k-dimensional surfaces in Ω with a finite
area.

If we also have that

sup
x∈Ω

λ1(x) + · · · + λk(x) < 0,

then we have uniform contraction of k-dimensional surfaces
and then the previous result can be extended to arbitrary
(but still bounded) sets by using a result of Reitmann [3]
(that is based on an article by Douady and Oesterlé [2]). To
explain this result, we first need to recall the definition of
the Hausdorff dimension.

V. THE HAUSDORFF DIMENSION AND THE EVOLUTION

OF HAUSDORFF MEASURES

Consider a bounded set S in R
n. Cover S with a countable

number of balls of radius ri < ε, with ε > 0. For a given d ∈
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[0, n] and ε > 0, the Hausdorff outer measure µH(S, d, ε) is
defined as follows:

µH(S, d, ε) = inf
∑

i

rd
i ,

where the infimum is taken over all possible covers of S
that satisfy ri < ε, ∀ i. Keeping d fixed, µH(S, d, ε) as a
function of ε is decreasing and non-negative. Therefore, the
Hausdorff d-measure, equal to

µH(S, d) = lim
ε→0

µH(S, d, ε) ∈ R
+ ∪ {+∞},

is well-defined. If S is a smooth k-dimensional surface, this
measure has the property that µH(S, k) is proportional to
the k-dimensional area of the surface and therefore it can
be considered as an extension to the notion of length, (k-
dimensional) area and volume. It also follows that for a
general set S there exists a d∗ such that

d < d∗ ⇒ µH(S, d) = +∞,

d > d∗ ⇒ µH(S, d) = 0.

By definition, d∗ = dimH S, the Hausdorff dimension of
S. For instance, a two-dimensional surface in R

3 will have
d∗ = 2 and the above inequalities can be interpreted by
stating that it has an infinite length and zero (3-dimensional)
volume.

For the evolution of Hausdoff d-measures we will split d
in an integer part k and a fractional part s and consider the
linear interpolation between λ1+· · ·+λk and λ1+· · ·+λk+1.
From results in [3] and [4] one can then obtain the following:

Theorem 1: Let Ω be a subset of a manifold M with

sup
x∈Ω

λ1(x) + · · · + λk(x) + sλk+1(x) < 0,

where k ∈ {1, . . . , n − 1} and s ∈ [0, 1], and let S be a
bounded set, satisfying φt(S) ⊂ Ω, ∀ t ∈ R. Then, if we set
d = k+s, for each c > 0, there exists a T > 0 and a ε0 > 0,
such that for all t > T and ε ∈ (0, ε0)

µH(φt(S), d, ε) ≤ cµH(S, d, ε),

implying that

µH(φt(S), d) ≤ cµH(S, d).
Since we can choose c as small as we want, this means

that, under similar conditions as for the contraction of k-
dimensional surfaces, we also have that the d-dimensional
Hausdorff outer measure will decrease under the flow of the
dynamical system (for sufficiently large values of T ). So if
S is invariant under φt, then we can choose c < 1 to obtain
that for sufficiently small values of ε

µH(S, d, ε) = 0 and thus µH(S, d) = 0,

implying that
dimH S ≤ d.

Therefore there can be no bounded invariant sets in Ω with
a Hausdorff dimension larger than d.

Remark 3: Although the condition of S being bounded
and the definition of Hausdorff measure will depend on the

chosen metric, under some mild conditions the Hausdorff
dimension will not. This allows for deriving better upper
bounds for the Hausdorff dimension by choosing an appro-
priate metric.

VI. THE PRESENCE OF FIRST INTEGRALS

Assume there are p first integrals of the dynamical system,
denoted by the column vector h, such that∑

i

f i ∂h

∂xi
= 0,

and the matrix ∂h
∂x has full row rank everywhere in some

region Ω ⊂ R
n. Then the level set

LC = {x : h(x) = C},
with C ∈ R

p, is invariant under φt and we can consider the
restriction of the dynamical system to LC . Let ĝ be a metric
in LC ∩ Ω which has to be determined yet.

In a neighbourhood Ux ⊂ LC ∩Ω of some x ∈ LC ∩Ω we
can choose a coordinate system and calculate the correspond-
ing (n−p)×(n−p)-matrix L(f, ĝ) for ĝ. The matrix L(f, ĝ)
determines how the area of higher dimensional surfaces
evolves under φt in Ux with respect to ĝ. Let λ̂1(x) ≥ · · · ≥
λ̂n−p(x) denote the eigenvalues of 1

2L(f, ĝ) in x. (They are
independent of the chosen coordinate system.) Choose an
integer k with p ≤ k < n and an s ∈ (0, 1]. Then we can
prove the following.

Theorem 2: Under the above conditions, one can choose
ĝ in such a way that

λ̂1(x) + · · · + λ̂k−p(x) + sλ̂k−p+1(x)
≤ λ1(x) + · · · + λk(x) + sλk+1(x),

∀x ∈ LC ∩ Ω, ∀C ∈ R
p.

This means that, in the presence of p first integrals, the
contraction of k-dimensional surfaces (resp. Hausdorff d-
measures) leads to contraction of k−p-dimensional surfaces
(resp. Hausdorff d − p-measures) in any level set of the p
first integrals (but with respect to another metric).

f

h = C1

h = C2

Fig. 1. Area contraction in a 3D system with one first integral.

We will not give a proof of the previous theorem (a
proof can be found in [7] or [8]), but in this paragraph
we will try to provide some intuition. In figure 1 a system
is shown that contracts the area of 2-dimensional surfaces
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with respect to the standard metric. In this standard metric
though, 1-dimensional curves (such as the thicker lines) are
not contracted. However the system has a first integral h and
we can define a new metric in the level surface h = C1 by
setting the length equal to (or proportional to) the area of
the 2-dimensional surface that is formed by extending the
curve in the direction of ∇h (for the thicker lines, these are
the hatched surfaces). Since this area decreases under the
flow of the system, so will the (newly defined) length of 1-
dimensional curves lying in the level sets of h. By making the
extensions infinitesimally small (and dividing the resulting
area by some infinitesimally small factor — in figure 1 this
could be C2 − C1) the length definition is local and can be
represented by a metric ĝ.

We were also able to prove a converse theorem. If the
system contracts k − p-dimensional surfaces in each level
set (and some extra conditions are fulfilled), then the full
system contracts k-dimensional surfaces (and analogously
for Hausdorff measures) [7].

VII. APPLICATION TO ALMOST GLOBAL ASYMPTOTIC

STABILITY

The criterion from [1] mentioned in the introduction was
generalised in [9] to include almost global asymptotical
stability of an invariant set S, i.e. S is stable and the set R of
points not converging to S has measure zero. The condition
involved the expansion of n-dimensional volumes. (With our
notation, this comes down to λ1(x) + · · · + λn(x) > 0 in
some region.) Another condition guaranteed that R has a
finite volume. Since R is invariant under the vector field it
follows that it must have zero volume. This conclusion is
equivalent to µH(R,n) = 0. If the system also expands k-
dimensional surfaces and if it has p first integrals, then (under
an additional condition) we can use the previous results to
provide more information about the set R and to bound the
dimension of R.

So assume that f is a C1 vector field with flow φt and with
p first integrals hi, such that ∂h

∂x has full row rank everywhere
in Ω ⊂ R

n. Choose a C ∈ R
p and assume that the level set

LC = {x : h(x) = C} is compact and lies entirely in Ω. Let
d denote the distance function associated with the standard
metric and let S denote a closed set, invariant under f and
such that

∀ ε > 0, ∃ δ > 0 : ∀x ∈ Sδ : φt(x) ∈ Sε, ∀ t > 0,

with Sε = {x ∈ R
n : d(x, S) < ε}. In other words: S is

stable. Denote by RC the set

RC = {x ∈ LC : lim sup
t→∞

d(φt(x), S) �= 0}.

Then we can prove the following.
Theorem 3: If there exists a C3 metric g defined on Ω\S

such that

inf
x∈LC\S

sλn−k(x) + λn−k+1(x) + · · · + λn(x) > 0,

for some integer k ∈ [p, n−1] and some s ∈ (0, 1], (λ1(x) ≥
· · · ≥ λn(x) are the eigenvalues of 1

2L(f, g) in x), then

µH(RC , k + s − p) = 0,

implying that dimH RC ≤ k + s − p.
Proof: Denote by λ′

1(x) ≥ · · · ≥ λ′
n(x) the eigenvalues

of 1
2L(−f, g) in x. Then λ′

i(x) = −λn+1−i(x) and

sup
x∈LC\S

λ′
1(x) + · · · + λ′

k(x) + sλ′
k+1(x) < 0.

By theorem 2 there exists a metric ĝ such that

sup
x∈LC\S

λ̂′
1(x) + · · · + λ̂′

k−p(x) + sλ̂′
k−p+1(x) < 0,

where λ̂′
1(x) ≥ · · · ≥ λ̂′

n(x) are the eigenvalues of
1
2L(−f, ĝ) in x with respect to some coordinate system on
LC in a neighbourhood of x.

Now define RC,ε (ε > 0) by

RC,ε = {x ∈ LC : lim sup
t→∞

d(φt(x), S) ≥ ε}.

Note that RC = ∪ε>0RC,ε. The set RC,ε is invariant under
−f and because of the stability of S (under f ) there exists a
δ > 0, such that RC,ε ⊂ LC \Sδ . Therefore RC,ε is bounded
(with respect to ĝ) and we can apply theorem 1 on the vector
field −f and the invariant set RC,ε for arbitrary ε, resulting
in

µH(RC,ε, k + s − p) = 0.

If we choose a sequence of εi > 0 for which εi → 0 as i
tends to infinity, then we can write

µH(RC , k + s − p) ≤
∑
i∈N

µH(RC,εi
, k + s − p) = 0,

and thus dimH RC ≤ k + s − p.
Example 1: Consider the following vector field f in R

3:

f1(x1, x2, x3) = x2x
2
3 − x1x

2
3,

f2(x1, x2, x3) = −x1x
2
3 − x2x

2
3,

f3(x1, x2, x3) = (x2
1 + x2

2)x3.

One can easily verify that the function h, with

h(x) = x2
1 + x2

2 + x2
3,

is a first integral for the system ẋ = f(x), and ∂h
∂x has full

row rank everywhere in Ω = R
3 \ {0}. The level sets LC =

{x ∈ R
3 : h(x) = C}, with C > 0, are compact and lie

entirely in Ω. From the expression for f1 and f2 it follows
that the set S = {x ∈ R

3 : (x1, x2) = (0, 0)} is stable. With
the metric

g =
1

x2
1 + x2

2

I3

one can derive that the eigenvalues of 1
2L(f, g) satisfy

λ
(
λ2 − (x2

1 + x2
2 + x2

3)λ − (x2
1 + x2

2)x
2
3

)
= 0,

and that, with k = 2 and s > s0 = 3 − 2
√

2 ≈ 0.17,

inf
x∈LC\S

sλ1(x) + λ2(x) + λ3(x) > 0.
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So we can conclude that RC has a Hausdorff dimension
smaller than or equal to k + s0 − p = 4 − 2

√
2 ≈ 1.17.

Indeed, from the differential equations it follows that

d
dt

(x2
1 + x2

2) = −(x2
1 + x2

2)x
2
3,

such that the only points in R
3 that will not converge to S lie

in the plane {x ∈ R
3 : x3 = 0}, and thus RC is the circle

in this plane around the origin with radius
√

C and has a
Hausdorff dimension of 1. In figure 2 10 different trajectories
belonging to the same level set (C = 1) are shown. They all
start near the circle RC in the (x1, x2)-plane and converge
to the x3-axis. Since the trajectories are symmetric about the
(x1, x2)-plane one clearly sees that the points not converging
to the x3-axis must be lying on the aforementioned circle.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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Fig. 2. A plot of 10 different trajectories in the same level set.

VIII. OTHER APPLICATIONS

• For a dynamical system that contracts k-dimensional
surfaces, every bounded orbit will converge to an ω-
limit set with a Hausdorff dimension smaller than or
equal to k.

• In [4] it was proven that the contraction of 2-
dimensional surfaces in the neighbourhood of a limit
cycle is a sufficient condition for the asymptotic stability
of the limit cycle. The expansion of n-dimensional

volumes is sufficient to conclude that the limit cycle
is unstable.

• Length contraction (k = 1) leads to interesting proper-
ties and can be used for instance to analyse synchroni-
sation phenomena [10].

When the dynamical system has known first integrals, these
results can be made stronger or the conditions can be
weakened.
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[2] A. Douady and J. Oesterlé, “Dimension de Hausdorff des attracteurs.”
C.R. Acad. Sci. Paris, Sér. A, vol. 290, pp. 1135–1138, 1980.

[3] V. Reitmann and U. Schnabel, “Hausdorff dimension estimates for
invariant sets of piecewise smooth maps.” Zeitschrift für angewandte
mathematik und mechanik, vol. 80, no. 9, pp. 623–632, 2000.

[4] A. Noack, “Dimensions- und Entropieabschätzungen sowie
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