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Abstract—The present paper is devoted to the study of av-
erage consensus problems for undirected networks of dynamic
agents having communication delays. The accent is put here
on the study of the time-delays influence: both constant and
time-varying delays are considered, as well as uniform and
non uniform repartitions of the delays in the network. The
main results provide sufficient conditions (also necessary in
most cases) for existence of average consensus under bounded,
but otherwise unknown, communication delays. Simulations are
provided that show adequation with these results.

I. INTRODUCTION

In the last few years, the study of multi-agent systems

has received a major attention within the control commu-

nity. Driving applications include unmanned aerial vehicles,

satellite clusters, automated highways and mobile robots. In

all cases the aim is to control a group of agents connected

through a wireless network. More precisely, rather than

stabilizing the movement of each agent around a given set

point, the goal is to understand how to make the agents coor-

dinate and self-organize in moving formations. This problem

becomes even more challenging under partial communication

protocols, i.e. when each agent exchanges information only

with few others.

Many works in the literature focused on conditions for

guaranteeing that the agents asymptotically reach a consen-
sus, i.e. they agree upon a common value of a quantity of
interest [1], [2], [3], [4], [5], [6]. As an example, in a network

of moving vehicles a form of consensus is represented by

alignment, that happens when all vehicles asymptotically

move with the same velocity. In the aforementioned papers,

consensus problems have been studied under a variety of

assumptions on the network topology (fixed/switching), the

communication protocol (bidirectional or not), additional

performance requirements (e.g. collision avoidance, obstacle

avoidance, cohesion), and the control scheme adopted (also

termed consensus protocol). So far, just few works consid-
ered consensus problems when communication is affected by

time-delays. Some results for discrete-time agent models are

given in [7] and [8]. Two different consensus protocols for

continuous-time agent dynamics have been investigated in

[9] and [4]. More specifically, assuming that agents behave

like integrators and that communication delays are constant
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in time and uniform (i.e. they have the same value in all chan-

nels), an analysis of the maximal delay that can be tolerated

without compromising consensus has been performed in [9]

and [4]. In particular, the protocol adopted in [4] is capable

to guarantee average consensus (i.e. the state of each agent
converges, asymptotically, to the average of the initial agent

states rather than to an arbitrary constant) and the authors

provide an explicit formula for the largest transmission delay.

In the present work we generalize the results of [4] in

various ways. First, we consider uniform and unknown time-
varying delays and provide upper bounds to the maximal de-
lay that does not prevent from achieving average consensus.

Second, we derive similar conditions for networks affected

by non uniform, constant or time-varying delays. In the case
of non uniform and constant delays, we also show that if the

communication delay between two agents is equal to zero,

then average consensus may achieved irrespectively of the

magnitude of all others delays.

The network of agents is modeled in the framework of

Partial difference Equations (PdEs) introduced in [10] and

used in [6] analyzing the property of various linear and

nonlinear consensus protocols. PdEs are models that mimic

Partial Differential Equations (PDEs) and provide a math-

ematical description of the agents network where “spatial”

interactions (due to the network structure) and “temporal”

ones are kept separated and described by operators acting

either on space or time. Section II provides an introduction

to PdEs. The main results are presented through Sections III-

VI and three simulation experiments are discussed in Section

VII.

II. TOOLS FOR FUNCTIONS ON GRAPHS

The communication network is modeled through an undi-

rected weighted graph G defined by a set N = {1,2, . . . ,N}
of nodes and a set E ⊂ N × N of edges. Each node
represents an agent and an edge (x,y) means that the agents x
and y share the information about their states. Agents linked
by an arc are called neighbors. The neighboring relation is
denoted with x∼ y and we assume that x∼ x always holds.
Two nodes x and y are connected by a path if there is a finite
sequence x0 = x,x1, . . . ,xn = y such that xi−1 ∼ xi. The graph
G is connected when each pair of nodes (x,y) ∈ G×G is
connected by a path and complete if E = G×G.
Weights on the communication links are defined by a

function ω :N ×N → R
+ with the properties

ω(x,y) = ω(y,x) (1a)

ω(x,y) > 0⇔ x∼ y (1b)
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(a) Graph G. (b) Subgraph
G1.

(c) Subgraph
G2.

Fig. 1. A graph and the subgraphs associated to delays τ1 and τ2

Time-varying delays in communications, are elements of

the set, denoted D , of piecewise continuous functions R+ →
R+. A delay is associated to each edge through an onto

function T : E → D verifying T (x,y) = T (y,x). The last
equality amounts to consider delays that are symmetric, i.e.

the lags in transmissions from x to y and from y to x do
coincide. We denote r the number of independent time-delays
affecting the communication links, and I = {1, . . . ,r}. By
construction, the bound r ≤ N(N−1)

2 is valid.

Agents linked with the same delay τi(·), define a subgraph
Gi = (N ,T−1(τi)) with associated weights

ωi(x,y) =

{
ω(x,y) if T (x,y) = τi
0 otherwise

(2)

An example is reported in Figure 1. We highlight that the

subgraphs Gi may be disconnected even if G is connected.
Moreover, as shown in Figure 1(c), some nodes can be

isolated.

We consider now vector functions f : N → R
d defined

over a graph G. For instance, f (x) may represent the posi-
tion or the velocity of the agent x at a fixed time-instant.
Following [10], the partial derivative of f is defined as

∂y f (x)
.
= f (y)− f (x) (3)

and enjoys the following basic properties:

∂y f (x) = −∂x f (y) (4a)

∂x f (x) = 0 (4b)

∂ 2y f (x) = ∂y f (y)−∂y f (x) = −∂y f (x). (4c)

The integral and average of f are defined, respectively, as
∫
G
f dx

.
= ∑
x∈N

f (x), 〈 f 〉
.
=
1

N

∫
G
f dx. (5)

Note that, in (5), “dx” just indicates the integration variable.
The Laplacian of f is given by

∆ f (x) .
= −∑

y∼x
ω(x,y)∂ 2y f (x) = + ∑

y∼x
ω(x,y)∂y f (x). (6)

where the last identity follows from (4c). In an equivalent

way, the Laplacian can be written as

∆ f (x) =

∫
G

ω(x,y)∂y f (x) dy. (7)

The Laplacian operator associated to a subgraph Gi is

∆i f (x)
.
=

∫
G

ωi(x,y)∂y f (x) dy. (8)

Since the subsets {T−1(τi)}i∈I provide a partition of E , it

is immediate to verify that

ω(x,y) = ∑
i∈I

ωi(x,y) and ∆ f = ∑
i∈I

∆i f . (9)

In the sequel we summarize the main properties of the

Laplacian operator stated in [10]. The driving idea is to

mimic functional analysis tools for studying the classic

Laplacian defined on Sobolev spaces, (see [10] and [6] for

further details).

We denote with L2(G|Rd) the Hilbert space composed by
all functions f :N → R

d equipped with the scalar product
and the norm

( f ,g)L2 =

∫
G
f ·g, ‖ f‖2L2 =

∫
G
‖ f‖2 (10)

where · and ‖ · ‖ represent the scalar product and the
euclidean norm on R

d , respectively. Let H1(G|Rd) be the
space collecting all functions in L2(G|Rd) with zero average.
We will use the shorthand notation L2 and H1 when there
is no ambiguity on the underlying domain and range of the

functions. If G is connected, H1 is an Hilbert space [10]
endowed with scalar product

( f ,g)H1 =
∫
G

∫
G

ω(x,y)∂y f (x) ·∂yg(x) dxdy. (11)

Apparently, H1⊥ is the space of constant functions on G and
dim(H1⊥) = d. Moreover, the decomposition L2 = H1⊕H1⊥
is direct. The L2 orthogonal projection operators on H1 and
H1⊥ will be denoted as PH1 and PH1⊥

, respectively.

The eigenstructure of the Laplacian is completely charac-

terized by the next Theorem proved in [10].

Theorem 1: Let G be a connected graph. Then,

1) the operator ∆ :H1→H1 is symmetric, it has (N−1)d
strictly negative eigenvalues1 and the corresponding
eigenfunctions form a basis for H1;

2) for f ∈ L2, ∆ f = 0 if and only if f ∈ H1⊥.
Theorem 1 highlights that the Laplacian is invertible on the

subspace H1. Note that when ∆ is defined on L2, it has Nd
eigenvalues. In particular, in view of the decomposition L2 =
H1⊕H1⊥, (N−1)d eigenvalues are those considered in point
(1) of Theorem 1 and the remaining d are zeros (this property
follows directly from point (2) of Theorem 1).

The next theorem characterizes the eigenvalues of the

operators ∆i.
Theorem 2: The operators ∆i : H1 → H1, i ∈ I , are

symmetric and negative-semidefinite.

Proof: The proof is reported in [11]. �

We stress that all the spaces so far introduced are finite

dimensional. This can be seen by noting that the lifting

operator L : L2(G|Rd) → R
Nd defined as

L ( f )
.
=

[
f (1)T · · · f (N)T

]T
(12)

is an isometry (i.e. bijective and ‖ f‖L2 = ‖L ( f )‖) so
showing that L2 is isomorphic to R

Nd . Roughly speaking,
this means that all concepts introduced in the present section

could be re-written in terms of vector and matrices over RNd .

1Such eigenvalues will be termed “the eigenvalues of ∆ on H1”.
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Definition 1: Consider the linear operator A : L2(G|Rd)→
L2(G|Rd). Its matrix representation is the unique matrix
M (A) ∈ R

Nd×Nd that verifies L (A f ) = M (A)L ( f ), ∀ f ∈
L2(G|Rd).
The matrix representation of an operator can be used, for

instance, for computing the eigenvalues of A, since they co-
incide with the eigenvalues ofM (A), up to their multiplicity.
The operator ∆ is strongly related to the Laplacian matrix of
the graph G, defined next (see also [12]). In the sequel, the
(x,y) element of a matrix B will be denoted with (B)x,y.
Definition 2: For a graph G, the adjacency matrix A(G)

is an N×N matrix with entries

(A(G))x,y
.
=

{
ω(x,y) if x∼ y and x �= y

0 otherwise
(13)

The valency matrix V (G) is an N×N diagonal matrix with
entries (V (G))x,x

.
= ∑y∼xω(x,y) and the Laplacian matrix is

L(G)
.
= A(G)−V (G).

It is easy to verify thatL (∆ f (x)) = (L(G)⊗Id)L ( f ), where
⊗ is the Kronecker product and Id the identity matrix of order
d Then, M (∆) = L(G)⊗ Id .

III. DELAYED MULTI-AGENT MODELS AND PDES

Let v(x, t) ∈ R
d and u(x, t) ∈ R

d , x ∈ N , t ∈ R
+ denote

the state and control input of agent x at time t, respectively.
When each agent behaves as an integrator, the collective

dynamics is described by the (open-loop) equation v̇(x, t) =
u(x, t), where the dot indicates time-derivative. In this paper
we consider delayed Laplacian protocols of the type u =

∑i∈I ∆iv(x, t−τi(t)), thus yielding the closed-loop collective
dynamics

v̇= ∑
i∈I

∆iv(x, t− τi(t)). (14)

Formula (14) defines a time-delay Partial difference Equation
(PdE) (see [6] for a general definition of PdEs) whose
solution depends on the initial condition. As for linear time-

delay systems, if all delays are bounded by a constant τ̄ , the
latter may be given as a function ṽ ∈ C ([−τ̄,0],L2).
As shown in [6], PdEs can be always recast into Or-

dinary Differential Equations by using the lifting operator

(12). Then, it is not surprising that linear time-delay PdEs

inherit all the properties of linear time-delay systems. As an

example, if all delays are constant in time, the characteristic

equation associated to (14), is

E(s)
.
= sI− ∑

i∈I

e−sτi∆i = 0, s ∈ C (15)

where I is the identity operator on L2. Then, many properties
of the network of agents can be characterized in terms of the

poles of (14), i.e. the roots of (15). We outline that if the
delays are constant, model (14) coincides with the network

dynamics considered in Section 10 of [4].

The main goal of the present work is to investigate when

(14) guarantees average consensus.

Definition 3: The network dynamics achieves average
consensus if v→ 〈v(·,0)〉 as t→ +∞.

In absence of delays, u results in the Laplacian protocol,
and the PdE (14) reduces to the heat equation

v̇= ∆v v(·,0) = ṽ ∈ L2. (16)

The consensus properties of Laplacian protocols have been

analyzed in various works. In particular, A. Jadbabaie et al.
[1] proved that the Laplacian protocol is able to guarantee

average consensus under various assumption on the network

topology. A formal analysis of the PdE (16) has been

carried out in [6], where it has been also shown that the

Laplacian protocol can guarantee consensus even when the

agent dynamics are perturbed by exponentially decreasing

errors and/or an agent acts as the leader of the group.

In order to highlight the rationale we will use for analyzing

the PdE (14), let us summarize the main results of [6]

for the collective dynamics (16). Decomposing the state as

v(·, t) = v1(·, t)+ v̄(·, t), v1(·, t) ∈ H1, v̄= 〈v(·, t)〉 ∈ H1⊥, one
can show, through a simple variational technique, that the

velocity components fulfill the dynamics

˙̄v= 0 (17a)

v̇1 = ∆v1 (17b)

thus proving that the spaces H1 and H1⊥ are positively
invariant for (16). In particular, equation (17a) highlights

that the average velocity of the agents is constant in time.

Then an exponentially stable average consensus is achieved
if the origin of (17b) is exponentially stable, a fact that can

be easily shown by exploiting the characterization of the

eigenvalues of ∆ on H1 given in Theorem 1. In [6] it is also
shown that average consensus can be intuitively expected on

the basis of the physical analogy between (16) and the classic

heat equation.

For the delayed model (14), we will adopt a similar

argument. The next Lemma provides the dynamics of the

v1 and v̄ components.
Lemma 1: Given ṽ ∈ C ([−τ̄,0],L2), the function v is
solution to the PdE (14) if and only if v1 and v̄, are solutions
to the PdEs

Σ1 : v̇1 = ∑
i∈I

∆iv1(x, t− τi(t)), Σ̄ : ˙̄v= 0 (18)

equipped with the initial conditions v1(·, t)|[−τ̄,0] = PH1 ṽ(·, t),
v̄(t)|[−τ̄,0] = PH1⊥

ṽ(·, t) for t ∈ [−τ̄,0].

Proof: To prove the result, we use a variational argument by
testing each side of (14) against all c ∈H1⊥. This means that
we take the integrals∫

G
c · v̇ dx=

∫
G
c · ∑
i∈I

∆iv(x, t− τi(t)) dx. (19)

By using (8), the right side of (19) can be written as ∑i∈I Si,
where

Si =
∫
G
c ·

∫
G

ωi(x,y)∂yv(x, t− τi(t)) dydx. (20)

From (1a) and (4a), the functions gi(x,y) = ωi(x,y)∂yv(x, t−
τi(t)) are antisymmetric, i.e. gi(x,y) = −gi(y,x). Then, each
integral Si can be expanded into sums containing only terms
of the type c ·(gi(x,y)+gi(y,x)) that are all identically equal
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to zero. The fact that
∫
G c · v̇ dx = 0, ∀c ∈ H1⊥ corresponds

to the condition PH1⊥
v̇ = 0, or, equivalently, to ˙̄v = 0, thus

obtaining the dynamics Σ̄. From (14) we have

v̇1+ ˙̄v= ∑
i∈I

∆iv1(x, t− τi(t))+ ∑
i∈I

∆iv̄(x, t− τi(t)) (21)

and the dynamics Σ1 follows from ˙̄v= 0 and ∆iv̄= 0. �

Lemma 1 shows that the spaces H1 and H1⊥ are positively
invariant for the PdE (14). Moreover, as for (16), the average

state v̄ is constant in time and equal to 〈ṽ(·,0)〉. Then, the
problem of checking average consensus is reduced to proving

that v1→ 0 as t→ ∞.
We say that average consensus is globally exponentially,

resp. asymptotically stable, if the zero solution to Σ1 enjoys
the same property, i.e. if it is exponentially, resp. asymptot-

ically stable.

For subsequent use, we introduce the operator norm

‖∆‖ .
= maxu∈H1

( f ,∆ f )
( f , f ) = |λmin| = −λmin > 0 where λmin is

the minimal eigenvalue of the Laplacian on H1. Similarly,
by recalling that ∆ is invertible on H1, one has ‖∆−1‖−1 =
|λmax| = −λmax > 0.

IV. THE CASE OF UNIFORM DELAYS

In this section, we analyze the stability properties of the

dynamics Σ1 when the delay is uniform in the network, i.e.
when I is a singleton. We start with the simpler case of

time-invariant delays, considered also in [4]. The results of

the next Theorem coincide with those of Theorem 10 in

[4], but are proved through a different argument, i.e. the

diagonalization of the Laplacian operator on H1.
Theorem 3 (Constant delay): The zero solution is a glob-
ally exponentially stable solution to the PdE

v̇1(x, t) = ∆v1(x, t− τ), PH1⊥
v1(·, t]|[−τ̄,0] ≡ 0 (22)

for all possible 0≤ τ ≤ τ̄ , if and only if

τ̄ <
π
2‖∆‖

. (23)

Proof: In view of Theorem 1, the Laplacian can be diagonal-
ized on H1. Let {ψi}

(N−1)d
i=1 be an orthonormal set of eigen-

functions of ∆ forming a basis for H1 and associated to the
eigenvalues {λi}

(N−1)d
i=1 . Then v1(x, t) = ∑(N−1)d

i=1 αi(t)ψi(x)
for suitable functions αi : R+ → R. By testing each side of

(22) against ψ j we form the integrals
∫
G

(
(N−1)d

∑
i=1

α̇i(t)ψi(x)

)
·ψ j(x) dx=

=
∫
G

(
(N−1)d

∑
i=1

αi(t− τ)∆ψi(x)

)
·ψ j(x) dx (24)

By Theorem 1, formula (24) reduces to

α̇ j(t) = λ jα j(t− τ) (25)

System (25) is a first-order linear time-delay system. Since

λ j < 0, according to [13, Theorem A.5], system (25) is
exponentially stable if and only if τ < π

2|λ j | . Then, the PdE

(22) is exponentially stable if and only if all systems (25),

for j = 1, . . . ,(N− 1)d are exponentially stable, i.e. if (23)
holds. �

Remark 1: For h ≥ 0, it may be of interest to quantify
the largest delay τ̄h for which an exponential decay rate h
is guaranteed for the solutions to (22). Simple calculations

detailed in [11] reveal that τ̄h is given by

τ̄h
.
=min

{
τ ≥ 0 : ‖∆‖ehτ cos

(
τ
√
‖∆‖2e2hτ −h2

)
= h

}
.

The map h �→ τ̄h is decreasing, with τ̄0 = π/2‖∆‖, τ̄‖∆‖ = 0.
We consider now the case of a single time-varying delay.
Theorem 4 (Time-varying delay): The zero solution is a

globally exponentially stable solution to the PdE

v̇1(x, t) = ∆v1(x, t− τ(t)), PH1⊥
v1(·, t]|[−τ̄,0] ≡ 0 (26)

for all piecewise continuous delays τ(t) verifying 0≤ τ(t)≤
τ̄ , if and only if

τ̄ <
3

2‖∆‖
. (27)

Proof: As in the proof of Theorem 3, diagonalization of the
Laplacian on H1 leads to the study of the first-order systems
α̇i = λiαi(t− τ(t)), for any eigenvalue λi of ∆ on H1.
The conclusion is then deduced from a classical result

initially published in [14] and [15], (see also [13, p. 164]

and the references therein). �

If the nominal collective model is the PdE (16), Theorems

3 and 4 characterize the robustness of average consensus

with respect to different delay models. In particular, the

bounds given in Theorems (23) and (27) do not depend

upon the precise structure of the communication network

but only upon the magnitude of ‖∆‖. In other words, by
interpreting G as the “spatial” domain of the PdEs (22)
and (26), bounds (23) and (27) relate the maximal tolerated

delays to a spatial feature. Explicit formulas for ‖∆‖ in the
case of complete and loop-shaped networks are provided

in [11]. Other results linking the graph structure with the

eigenvalues of the Laplacian operator can be found in [16],

[17] and [18].

We also outline that the constant in (27) is smaller than the

corresponding one in (23), the greater conservativity arising

from the time-varying nature of the delay. However, the

bound (27) is the best possible one since the corresponding

stability condition is necessary and sufficient.

V. THE CASE OF NON-UNIFORM DELAYS

In this Section, we generalize the results of Section IV

to the case where the delays do not take a common value

in the whole network. Let us consider first the case of

constant delays. The next Theorem provides a robust stability

result for all possible delays τi within the interval [0, τ̄].
Quite remarkably, the bound (23) still gives a necessary and

sufficient condition for stability.

Theorem 5 (Constant delays): The zero solution is a
globally exponentially stable solution to the PdE

v̇1(x, t) = ∑
i∈I

∆iv1(x, t− τi), PH1⊥
v1(·, t]|[−τ̄,0] ≡ 0 (28)

for all possible 0≤ τi ≤ τ̄ , i ∈ I , if and only if (23) holds.
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Proof: The proof is available in [11]. �

We stress once more the robustness flavor of Theorem 5,

that requires just the knowledge of a common upper bound

τ̄ on the (unknown) delays τi. On the other hand, there may
exist combinations of delays τi such that τi ≥ τ̄ , for some
i ∈ I , but the PdE (28) remains asymptotically stable. An

example is provided in Section VII.

The argument used in the proof of Theorem 4 does not

seem to extend to the case of non-stationary delays. In

this case, the next Theorem provides a sufficient stability

condition.

Theorem 6 (Time-varying delays): The zero solution is a
globally stable solution to the PdE

v̇1(x, t) = ∑
i∈I

∆iv1(x, t− τi(t)), PH1⊥
v1(·, t]|[−τ̄,0] ≡ 0

for all piecewise continuous delay τi(t) verifying 0≤ τi(t)≤
τ̄ , if

τ̄ <
1

∑i,i′∈I ‖∆i∆i′‖‖∆−1‖
. (29)

Proof: The proof is reported in [11]. �

The results of Theorems 3–6 are summarized in Table I.

τ̄ Uniform delays Non-uniform delays

Time-invariant delays π
2‖∆‖ (E) π

2‖∆‖ (E)

Time-varying delays 3
2‖∆‖ (E) 1

∑i,i′∈I
‖∆i∆i′ ‖ ‖∆−1‖

(S)

TABLE I

BOUNDS ON THE WORST-CASE STABILIZING DELAY.

E: EXACT, S: SUFFICIENT.

Remark 2: By comparison with (27), the bound (29) de-
pends in a more involved manner upon the structure of the

communication network. However, one may check that (29)

is verified for example when

τ̄ <
1

(Tr∆)2‖∆−1‖

where Tr∆ is the trace of the Laplacian on H1. For checking
that the results of Theorems 4 and 6 are coherent, one can

use the following inequalities

∑
i,i′∈I

‖∆i∆i′‖‖∆−1‖ ≥

∥∥∥∥∥ ∑
i,i′∈I

∆i∆i′

∥∥∥∥∥‖∆−1‖ =

=

∥∥∥∥∥∥
(

∑
i∈I

∆i

)2∥∥∥∥∥∥‖∆−1‖ = ‖∆2‖‖∆−1‖ ≥ ‖∆‖ ,

that imply (29)≤ 1
‖∆‖ ≤ 3

2‖∆‖ . Also, we highlight the trade-

off between stability with large delays on the one hand, and

large decay-rate of the solutions on the other hand: the first

one requires a small ‖∆‖, whereas the second one requires
a large ‖∆−1‖−1 ≤ ‖∆‖.

Fig. 2. The multi-agent system, with the communication delays,
used in Section VII.

VI. A DELAY-INDEPENDENT CONDITION FOR AVERAGE

CONSENSUS

According to the standard terminology in time-delay sys-

tems, all the results presented in Sections IV and V are

“delay-dependent” in the sense that they guarantee average

consensus when all the communication delays are upper-

bounded by a suitable value τ̄ . Next, we show that if a
single delay is zero, average consensus may be achieved

irrespectively of the magnitude of all other delays. In this

sense, we provide a “delay-independent” condition for aver-

age consensus. For two operators A and B from L2 to L2, the
inequality “A< B on H1” means that

∀ f ∈ H1 \{0}, ( f ,(A−B) f )L2 > 0 . (30)

Theorem 7: Consider the PdE (28) and assume that τi′ ≡ 0
for an index i′ ∈ I . If

∆i′ < ∑
i∈I \{i′}

∆i on H1,

then, the zero solution is a globally exponentially stable

solution to (28) for any τi ≥ 0, i ∈ I \ {i′}. Conversely,
if the zero solution to system (28) with τi′ = 0 is globally
asymptotically stable for any τi ≥ 0, i ∈ I \{i′}, then

∆i′ ≤ ∑
i∈I \{i′}

∆i on H1 .

Proof: The proof is given in [11]. �

VII. EXAMPLES

We stress once more that the results in Sections IV and

V characterize robustness of average consensus, i.e. average

consensus for any value of the delays less or equal to τ̄ . In
order to illustrate this concept, we consider the network of

three agents whose communication graph G is represented
in Figure 2.

We assume that v(x, t) ∈ R
2, that the weights ω(x,y) =

1⇔ x ∼ y are used, and that the delays τi > 0, i = 1,2 are
constant in time. Moreover, the agents evolve according to

the PdE (14) starting from the initial conditions

ṽ(1, t) ≡ [2, 2]′, ṽ(2, t) ≡ [2, −2]′, ṽ(3, t) ≡ [1, 3]′

where t ∈ [−max{τ1,τ2},0]. The average velocity at time
t = 0 is v̄= [ 53 , 1]

′.

From Theorem 1, the eigenvalues of ∆ on H1 are the non
null eigenvalues of M (∆) (modulus their multiplicity). In
our case, one gets ‖∆‖ = 3, and the bound (23) is equal to
π/6� 0.524.
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Fig. 3. Time evolution of q(x, t) = ‖v(x, t)− v̄‖ for the multi-agent
system in Figure 2, with τ1 = τ2 = 0.51.
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Fig. 4. Time evolution of q(x, t) = ‖v(x, t)− v̄‖ for the multi-agent
system in Figure 2, with τ1 = τ2 = 0.53.

In the first experiment, we choose the delays τ1 = τ2 =
0.51 that are slightly below τ̄ . Then, Theorem 3 guarantees
average consensus and such a result can be verified from

Figure 3, where the evolution of ‖v(x, t)− v̄‖, x ∈ {1,2,3}
is represented. In the second experiment, we use τ1 = τ2 =
0.53, so having τ1 = τ2 > τ̄ . The dynamics of v1 becomes
unstable and average consensus cannot be achieved. This

can be clearly seen in Figure 4. Finally, we choose τ1 =
0.1 and τ2 = 0.7. In this case, τ2 violates the bound of
Theorem 3. However, τ1 < τ̄ and Theorem 3 cannot be used
for checking the average consensus property. In the present

case, the achievement of average consensus can be verified

by simulation, as shown in Figure 5.

VIII. CONCLUSIONS

We provided convergence analysis of an average consensus

protocol for undirected networks of dynamic agents having

communication delays. We considered constant or time-

varying delays, uniformly or non uniformly distributed in

the network. Sufficient conditions (also necessary in most

cases) for existence of average consensus under bounded,

but otherwise unknown, communication delays, have been

given. Simulations have been provided that demonstrate the

correctness of some bounds computed analytically.
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Fig. 5. Time evolution of q(x, t) = ‖v(x, t)− v̄‖ for the multi-agent
system in Figure 2, with τ1 = 0.1 and τ2 = 0.7.
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