
Abstract—This paper presents a new approach to the 
problem of dynamic obstacle avoidance. Our developed 
approach, the Gradient Velocity Obstacle algorithm, has been 
designed specifically to operate in real-time on a non-holonomic 
car-like vehicle with a Ladar sensor being used for obstacle 
detection. The algorithm has been demonstrated both through 
simulation tests and operation on a test vehicle platform. 

I. INTRODUCTION

Autonomous motion of intelligent vehicles, specifically in 
environments containing dynamic road obstacles, is an 
exciting field of research. In order for success to be achieved 
in this field a number of areas of research must be integrated 
including sensor design, data fusion, map building, 
localization, off-line optimized path planning methods and 
real-time high-speed obstacle avoidance methods. 

Due to dynamic obstacle avoidance being just one small 
segment amongst this large group of topics it is often 
overlooked. Also, its close link to the path planning problem 
often causes the solution required for this complex and 
distinct area to be underestimated. This is exemplified by the 
fact that most researchers make obstacle avoidance methods 
that are designed for operating in an a priori environment 
amongst static obstacles. They then believe that in order to 
make these methods operate in real-time among dynamic 
obstacles it is only a matter of increasing processing power 
and applying small modifications to achieve the same 
success. This is strongly refuted by Kohout [1] who criticizes 
current path planning methods that are largely computed off-
line and unsuitable for application to a real-time scenario 
with dynamic obstacles. 

As the current focus on dynamic obstacle avoidance is 
from a traditional path planning view, terminology currently 
used is from the view point of the vehicle’s surrounding 
environment [2]. For example an environment is described as 
dynamic if obstacle information becomes known over time. 
This paper will however adopt a new terminology taken from 
the view point of the vehicle platform. Therefore rather than 
describing a dynamic environment, an algorithm would be 
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referred to as operating in real-time by gathering details 
about the environment on-the-fly (after the algorithm has 
begun execution). Alternatively an offline algorithm uses a 
priori information about the environment to determine its 
maneuver prior to execution. This allows the attributes 
dynamic and static to refer to moving and stationary 
obstacles respectively. Also, to describe the motion 
constraints of a vehicle, the term holonomic is used to 
describe a vehicle capable of unconstrained motion such as 
turning on its axis and near instant acceleration within a 
specified (normally low) velocity range. 

The organization of this paper is as follows. In Section II, 
areas of related work are discussed. Section III summarizes 
the Dynamic window approach. Section IV gives a brief 
explanation of the Velocity Obstacle approach. Our 
proposed method, the Gradient Velocity Obstacle Algorithm, 
is detailed in Section V. In Section VI, experimental results 
using both a simulated environment and an autonomous 
vehicle are presented. Finally, the conclusions can be found 
in Section VII. 

II. RELATED WORK

The separation of obstacle avoidance into different 
problems is a very controversial subject in which there are 
many differing opinions. Most agree that there are two 
approaches, global and local (though not always with these 
titles). This however is where the agreement ends and, due to 
the differing definitions applied by different authors, it is 
common to find solutions to the problem classified as global 
by one author and local by another. This confusion is 
increased by the common practice of combining local and 
global solutions to the problem together in an attempt to 
form a complete system. 

For the purposes of this paper the following definitions of 
global and local will be used. Global solutions to the 
dynamic obstacle avoidance problem operate in a static 
environment by computing offline an optimized path from 
start to finish that avoids all known static obstacles. Local 
solutions use only a small fraction of the world space and 
operate real-time in an unknown environment. Therefore 
they have an inherent advantage in avoiding dynamic 
obstacles. However, they may also have the disadvantage of 
not being able to produce an optimal solution and may get 
trapped in local minima (such as a large U shaped obstacle) 
[2].

The first techniques designed specifically for avoiding 
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dynamic obstacles used various techniques to determine the 
point where a collision would occur between the vehicle and 
the obstacles. The techniques that were developed include 
configuration-time space [3], path-velocity decomposition 
[4], and collision fronts [5]. Configuration-time space 
operates by searching for a path in configuration space over 
time by estimating new positions of obstacles assuming 
constant velocities and unchanging direction. Path-velocity 
decomposition separated the control of velocity and 
direction, allowing velocity to be altered along the path in 
order to avoid obstacles that have been found to cross the 
chosen path. Collision fronts consists of creating an 
accessibility graph of the environment that is the set of the 
points on obstacles which are achievable by the vehicle 
moving at maximum speed [5]. 

Another technique for avoiding dynamic obstacles is the 
Velocity Obstacle approach [6]. Unlike the previous 
techniques, the Velocity Obstacles approach directly uses 
velocity information to determine which velocities will cause 
the vehicle to collide with an obstacle. As this method uses 
the velocities of the obstacles directly when calculating 
possible collisions it is ideal for real-time applications. 

Before we discuss the details of the Velocity Obstacle 
approach, we will firstly, in Section III, describe the 
Dynamic Window approach. Although the Dynamic Window 
approach has not been specifically designed for controlling a 
vehicle’s motion amongst dynamic obstacles it consists of an 
elegant step structure concept which eliminates unsuitable 
velocities until the vehicles best possible velocity is chosen. 
This step structure is also deployed in our algorithm in order 
to enhance the structure of the original Velocity Obstacle 
approach. 

III. DYNAMIC WINDOW APPROACH

The dynamic window approach [7] is an obstacle 
avoidance method that is capable of operating in a real-time
environment amongst dynamic obstacles using the position 
of obstacles relative to the mobile platform. The algorithm 
was originally designed for a non-holonomic vehicle, taking 
into account the kinematics and dynamics of syncro-drive 
robots. The kinematics of the vehicle is considered by 
searching the velocity space (v, ) consisting of the 
translational velocities v and angular velocities  that are 
achievable by the vehicle as represented in Figure 1.  

The dynamic window approach is implemented in four 
steps each of which involves a further reduction of the 
vehicle’s available velocities until the best possible 
translational and angular velocities have been chosen. The 
first step restricts the vehicle’s velocity space to the 
achievable velocities, which are the set of translational and 
angular velocities achievable taking into account the 
kinematic constraints of the vehicle.  

This set of achievable velocities is then reduced to those 
velocities that can safely avoid obstacles near the vehicle 
resulting in a set of velocities called admissible velocities. 
For the purposes of this method obstacles are considered 
avoided if the vehicle can modify its velocity or come to a 
complete stop to avoid a collision. This definition is far from 
ideal as it doesn’t guarantee to keep the vehicle in motion 
and doesn’t calculate future points of likely collision as is 
necessary to successfully avoid dynamic obstacles over a 
long driving time horizon. 

The third step of the method is to create a dynamic 
window of the admissible velocities consisting of velocities 
that can be achieved within a certain time frame and within 
the acceleration constraints of the vehicle. This is normally a 
rectangular window centered on the current velocity of the 
vehicle and extended according to the vehicle’s acceleration 
capabilities. 

The fourth and final step of the dynamic window approach 
is to search the dynamic window using a cost function to find 
the best translational velocity v and angular velocity  based 
on a set of heuristics. The heuristics of the cost function 
favor velocities in the direction of the goal, angle(v, ), that 
maintain a large distance from obstacles, dist(v, ), and that 
operate at faster speeds, velocity(v, ). This is all 
incorporated into a weighted function using coefficents 

, , and  that allows the relative importance of each of 

the behaviors to be modified, 

( , ) ( ( , )

( , ) ( , )),

G v w angle v w

dist v w velocity v w
 (1) 

which is then computed over the discretised set of 
translational and angular velocities located in the dynamic 
window. 

IV. VELOCITY OBSTACLE APPROACH

The Velocity Obstacle approach [6], unlike the majority of 
other obstacle avoidance methods, is capable of operating 
amongst dynamic obstacles as it has been specifically 
designed for this purpose. 

In order to calculate the Velocity Obstacle (VO), with 
reference to Figure 2, consider two circular objects, A and B,
at time t0, with velocities vA and vB where A represents the 
vehicle and B represents a moving obstacle. The first step is 
to reduce the vehicle circle, A, to a single point, Â and to 

enlarge the object circle, B by the radius of A to B̂ . This now 

v

min max

maxv

Dynamic Window

Current Velocity

Figure 1: Dynamic Window Search Space [7]
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minimizes computation by only having to calculate the 
intersection of a point and a circle. 

A Collision Cone, ,A BCC is created using Â and B̂ which 

is the set of colliding relative velocities between Â and 

B̂ and is defined as: 

, , ,
ˆ| 0A B A B A BCC v B

where ,A Bv is the relative velocity of Â with respect to B̂ ,

,A B A Bv v v , and ,A B is the supporting line of ,A Bv . Any 

relative velocity within ,A BCC will cause A and B to collide.  

In order to avoid multiple obstacles, absolute velocities 
must be used by adding the velocity of the obstacle, vB, to 
each velocity in CCA,B thereby forming the Velocity 
Obstacle, VO, where ,A B BVO CC v  and  is the 

Minkowski vector sum operator, ( )
B

A B A . The 

VO then is the set of colliding absolute velocities between Â

and B̂ . By finding the union of the individual velocity 

obstacles, 
1 i

m

Bi
VO VO , where m is the number of 

obstacles, multiple obstacles can be avoided using a 
combined velocity obstacle (VO). Therefore the vehicle can 
avoid a collision by selecting any velocity outside of the 
combined velocity obstacle; these velocities are known as 
avoidance velocities. 

The dynamics of the vehicle are considered by computing 
the set of velocities that the vehicle can reach in the set time 
interval and are known as achievable velocities. By choosing 
avoidance velocities that are also achievable velocities a set 
of achievable avoidance velocities is formed. These 
achievable avoidance velocities can then be searched using a 
cost function in order to select the velocity that best fulfils a 
set of heuristics. 

Recently some modifications have been suggested to the 
Velocity Obstacle method. One modification is the 
introduction of a short time horizon so that priority is given 
to avoiding obstacles that are directed towards an imminent 
collision [6]. Another modification has been to create a non-
linear velocity obstacle capable of avoiding collisions with 

obstacles that do not move along a linear path [8]. 

V. GRADIENT VELOCITY OBSTACLE APPROACH 

The Gradient Velocity Obstacle approach, as suggested by 
the name, is a modification of the Velocity Obstacle 
algorithm that uses a gradient rather than an absolute 
velocity obstacle. The motivation for the utilization of a 
gradient is that, in the case of a non-holonomic vehicle, it is 
possible that all of the achievable velocities may result in a 
collision. In this case it is necessary to take the best possible 
action to avoid the obstacle(s) in multiple steps by way of a 
gradient. 

This approach has the benefit of using the well-structured 
steps of the Dynamic Window approach and the ability to 
operate amongst dynamic obstacles provided by the Velocity 
Obstacle approach. The combination of the Dynamic 
Window approach and the Velocity Obstacle approach has 
been investigated before, though independently, in [9], 
though this method fails to find the need for gradient velocity 
obstacles. 

Similarly to the Velocity Obstacle approach the Gradient 
Velocity Obstacle method operates in Cartesian velocities Vx

and VY rather than translational and angular velocity pairs. 
This decision was made due to the test vehicle platform – 
Cycab [10], using the IBEO Ladar sensor that provides 
velocity information on obstacles in Cartesian pairs. 

In addition to the integration of the Dynamic Window 
approach and the Velocity Obstacle approach a number of 
other improvements were made, namely: the holonomic 
constraints of a car-like vehicle were incorporated; the 
velocity obstacle was discretised for improved performance 
and converted to a gradient; and a new cost function was 
created.

A. Holonomic Constraints 

Most methods developed for obstacle avoidance are to be 
implemented on a holonomic vehicle with differential drive. 
Our method was required to be implemented on a car-like 
platform that required the consideration of non-holonomic 
constraints such as the inability of turning on the spot, i.e. to 
turn without forward motion. 

The non-holonomic constraints of the vehicle were 
incorporated into the achievable velocities step of the 
dynamic window approach structure by limiting the 
maximum lateral velocity, Vx, based on the forward velocity, 
VY. By either limiting the maximum curvature of the vehicle, 
C, or by finding its rotational velocity, d /ds, the maximum 

steering angle can be calculated by simplifying the vehicles 
motion to a two-wheel bicycle, as shown in Figure 3,  

1 tan d
C

R L ds
(3)

where is the vehicle’s heading direction. The maximum 

Figure 2: Construction of a Velocity Obstacle [6] 

5073



steering angle is then used to limit the Cartesian velocity 
pairs based on the lateral velocity of the vehicle. 

B.  Gradient Velocity Obstacle 

For the Velocity Obstacle method to interact with the 
Dynamic Window stage of the Dynamic Window approach, 
the Velocity Obstacle had to be converted from an absolute 
indicator of a collision to a gradient. The reason for this is 
when the Cost Function is used to select a velocity from the 
dynamic window it is possible that the whole dynamic 
window can contain collision velocities. In the case where an 
absolute velocity obstacle is used, and no avoidance is 
possible in the next iteration, the vehicle will no longer try to 
avoid a collision and will favor the other heuristics, in this 
case, speed and goal heading. By changing the velocity 
obstacle to a gradient, the vehicle can select velocities that 
will eventually place the vehicle along a safe path to avoid 
the obstacle that is essential in order for this method to be 
able to operate in real-time. 

The Gradient velocity obstacles algorithm is as follows: 

1. Extend the left-most point (LMP) and right-most point 
(RMP) of the obstacle along LMPRMP by the vehicle 
width and a safety distance to LMP' and RMP'

2. For each point P(x0,y0) inside the gradient velocity 
obstacle

Find P1(x1,y0) on OCP
Find P2(x2,y0) on 'OLMP
The Gradient value at P0 is calculated with:

0 1

1 2

1
2

P P

P P
(4)

This algorithm results in a gradient with a maximum value 

of 1.0 at the center of the Velocity Obstacle and a value of 
0.5 at its edge. A simplified example of the calculation of the 
Gradient Velocity Obstacle can be seen in Figure 5. Outside 
the steering constraints are blocks representing velocity pairs 
not possible due to holonomic constraints; inside the steering 
constraints blocks not covered by the gradient velocity 
obstacle represent safe velocity pairs; and boxes inside the 
gradient velocity obstacle represent velocity pairs that are 
predicted to result in a collision. 

When more than one obstacle is present the individual 
gradient velocity obstacles are combined and averaged by 
the number of obstacles. This then encourages the vehicle to 
place higher priority on avoiding velocities that would cause 
collisions with multiple obstacles. As the gradient is 
currently calculated prior to combination of velocity 
obstacles, it is feasible that more than one local minimum 
could occur which may result in the vehicle maintaining an 
unsuitable velocity. In the future a new method of combining 
multiple velocity obstacles will be investigated which will 
remove the possibility of local minima.  

C. Cost Function 

Similar to the cost function used in the Dynamic Window 
approach (1), apart from the change in coordinate systems; a 
function composed of three heuristics was used in this 
method to search for the next velocity of the vehicle. The 
three heuristics used were angle(Vx,Vy), speed(Vx,Vy), and 
inhibition(Vx,Vy) where Vx indicates lateral velocity and Vy

indicates forward velocity relative to the vehicle platform.   
The angle heuristic is used to provide the vehicle with a 

goal-directed behavior by finding the heading of the vehicle 
if it takes the current (Vx,Vy) velocity pair and then 
subtracting this from the goal heading and normalizing this 
value with . This results in a value of 1 if the velocity pair is 

V  =  V y

V x =  V  sin

R

Figure 3: Simplification of Vehicle to Bicycle.

O
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y

Figure 4: Implementation of the Gradient Velocity Obstacles 
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Figure 5: Gradient Velocity Obstacles
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directly towards the goal, and a value of 0 if in the totally 
opposite direction.  

1 1tan tan

( , )

x

y

x y

VyGoal

xGoal V
angle V V (5)

The speed heuristic makes the vehicle favor moving at 
faster velocities. The function for doing this is to normalize 
the current Vy velocity by the fastest velocity of the vehicle, 
Vy max.

max

( , ) y
x y

y

V
speed V V

V
(6)

The inhibition heuristic converts the gradient of the 
velocity obstacles into a value that indicates the safety in 
choosing the velocity pair. 

( , ) 1 ( , )
x yx y V Vinhibition V V window index index (7)

Therefore if the dynamic window value (represented by 
window(x,y)) is 0, indicating the velocity will not cause a 
collision, the inhibition will be 1 and therefore maximized. 
However if the velocity is a collision velocity, the gradient at 
the point of the velocity pair will be subtracted from 1 
making the velocity pair less likely to be chosen. This 
heuristic together with the gradient of the Velocity 
Obstacles, ensures that the vehicle will head in a direction 
that avoids a collision. 

Combining these three heuristics the Cost Function 
becomes: 

( , ) ( , )
                  ( , )
                    ( , )

x y x y

x y

x y

C V V angle V V
speed V V

inhibition V V
(8)

where , , and  are the cost function parameters of the 
angle, speed and inhibition functions respectively. 

V. EXPERIMENTAL RESULTS

Testing of the method was first performed in a simulation 
environment and then on our experimental test platform. For 
simulation, a model of the Ladar sensor was used to provide 
data. The Ladar sensor data was simulated over an 180o field 
of view with any obstacle within a 20x20m radius becoming 
visible. In accordance with the Ladar sensors data the left-
most, closest, and right-most points of the obstacle were then 
provided. 

The aim of testing was to create simulated environments 
that would occur in a typical inner-city environment. 
Obstacles were modeled as circular figures, and by using 
different sizes were used to represent various moving 

obstacles such as pedestrians, cyclists, automobiles, and 
buses. Each obstacle was then given a starting point and a set 
velocity. Combinations of these obstacles were then used in 
the simulation of six possible scenarios. These scenarios 
were a static obstacle on a collision path with the vehicle, a 
static obstacle on a non-collision path with the vehicle, an 
intersection scenario, a head on collision scenario, a lane-
merge scenario and a sidewalk/adjacent lane scenario. 

All tests were performed using the cost function 
parameters of 0.3,  0.1,  0.6 with the simulated 

vehicle operating at 7m/s (25 km/h), and obstacles operated 
up to a maximum of 16.5m/s (60 km/h). Of the total 248 test 
cases performed the algorithm had an 89.1% success rate at 
avoiding all obstacles while maintaining a safety distance of 
a meter, and of reaching the goal. The exclusion of cases 
with obstacles operating at 16.5m/s raised this to 97.2% 
indicating that the current sensor setup is not yet adequate 
for operating with obstacles moving at velocities greater than 
7m/s.  

In Figure 6 an example test of the simulation environment 
can be seen in which three obstacles are present. All of the 
obstacles and the vehicle are moving at 7m/s. Each instance 
of the vehicles and obstacles represents a critical stage of the 
simulation. The first stage shows the initial position of all the 
obstacles and the vehicle prior to the simulation starting. In 
the second stage the figure shows when the vehicle has just 
detected the first obstacle and is about to begin an evasive 
maneuver to the left. By the third stage the vehicle has 
detected obstacle two and using the combination gradient 
velocity obstacle continues to avoid to the left. The fourth 
stage shows the vehicle detecting the third obstacle and the 
gradient velocity obstacle of the third obstacle causes the 
vehicle to reduce its speed to avoid the collision. The fifth 
stage shows the vehicle maintaining a slow admissible 
velocity about to avoid the third obstacle, then increase 
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Figure 6: Intersection Scenario Test in Simulation Environment
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speed and reach the goal. 
In addition to simulation, testing was also performed on 

the test vehicle platform. Initial tests were performed at low 
speeds (0.5m/s) with static and slow moving obstacles. The 
results were promising and gave initial success though more 
time needs to be spent performing on-road testing of the 
algorithm. 

The algorithm was tested on our test vehicle platform, 
shown in Figure 7, which is a car-like vehicle operated using 
a 3 GHz Pentium 4 embedded computer, a second PC 
running a real-time Linux kernel and two MPC555
microcontrollers. The algorithm was implemented on the 
embedded computer that is used for high-level behaviors, 
while the secondary PC and the MPC555 controllers are 
used for low-level behavior consisting mostly of motor 
control. For the purposes of obstacle avoidance, the test 
vehicle platform was equipped with an IBEO Ladar Sensor 
[11] that performs scans at a frequency of 10Hz over a 270o

area (though only 180o was utilized) at 0.25o degree 
intervals. The sensor can track 25 objects internally and 
transmits details of up to 20 objects that lie within a set 
object output area normally 6x6m, via the CAN bus. The 
range of the Ladar sensor is dependent on reflectivity but 
ranges from 100m at 90% reflectivity to 50m at 10% 
reflectivity. 

During testing the cause of collisions was found to be 
local minima occurring in the gradient velocity obstacles 
upon the combination of multiple velocity obstacles. In the 
future calculating the gradient velocity obstacle after all 
velocity obstacles have been combined will extend this 
method. This would also allow the algorithm to follow a 
slow moving obstacle or stop to avoid a collision thereby 
giving success in the abortive maneuver of a similar method 
[9].

VI. CONCLUSION

This paper has outlined the current state of the art in 
research on the topic of autonomous motion of a driverless 
vehicle operating amongst dynamic obstacles. It has also 
presented a new algorithm, the Gradient Velocity Obstacle 
approach that is capable of avoiding a collision in a time-
varying environment at high speeds.  

The Gradient Velocity Obstacle algorithm has been shown 
through simulations to operate successfully at high speeds in 
a number of scenarios modeled on an inner-city environment. 
The gradient velocity obstacle used in this method allows for 
the vehicle to reach avoidable velocities in more than a 
single step.  

Future work will be done on removing local minima from 
the gradient velocity obstacle, investigating the inclusion of 
recent modifications to the velocity obstacle as outlined 
previously, and on a method to constrain the path that the 
algorithm considers. Also, as the Gradient Velocity Obstacle 
method has only been tested at low motion, future work will 
involve testing the method using higher velocities of both the 

test vehicle platform and the dynamic obstacles. 
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