
Partially Observed Inventory Systems
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Abstract— In some inventory control contexts, such as Vendor
Managed Inventories, inventory with spoilage, misplacement,
or theft, inventory levels may not always be observable to
the decision makers. However, when shortages occur, inventory
levels receive more attention and they may become completely
observed. We study such an inventory control context where
the unmet demand is lost and orders must be decided on the
basis of partial information to minimize the total discounted
costs over an infinite horizon. This problem has an infinite-
dimensional state space, and for it we establish the existence of
a feedback policy when one period costs are bounded or when
the discount factor is sufficiently small.

I. INTRODUCTION

Inventory control is among the most important topics in
operations research. One of the critical assumptions in the
vast inventory literature, dating back to at least the Harris lot
size model of 1913 [7], has been that the level of inventory at
any given time is fully observed. Some of the most celebrated
results, such as the optimality of the base-stock policy, have
been obtained under the assumption of full observation. Yet
the inventory level is never fully observed in practice. In such
an environment, most of the well-known inventory policies
are not only not optimal, but are also not applicable. A main
reason for why the analysis of inventory problems under
partial observations has been neglected lies in its mathemat-
ical difficulty. Whereas one works with a finite dimensional
state space in the full observation case, one usually has to
deal with an infinite dimensional state space in the partial
observation setting. More specifically, the inventory level at
a given time is no longer a system state in �n, it must now be
represented by its conditional probability given some limited
information available at that time. Thus, the analysis takes
place in the space of probability distributions. This is, of
course, inevitable, and simplifies only in particular situations,
when for instance the separation principle applies; see [1] for
example.

Concerning controls of dynamic systems in general, a
great step forward was achieved in the applied mathematics
and engineering control literature, when the Zakai equation
[9] was discovered. Prior to that, the evolution of the condi-
tional probability had been studied with the highly nonlinear
Kushner equation [8]. The Zakai equation uses a transforma-
tion that changes the Kushner equation into a pair of linear
equations. This transformation corresponds to the concept
of “change of measure” [6]. While it does not remove the
infinite dimensionality, the linearity has permitted a number
of important control problems with partial observations to be
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solved. Of course, there remain numerical difficulties due to
the infinite dimensionality of the state. Nevertheless, a sound
theory is available.

The key idea in going from the Kushner equation to the
Zakai equation is in introducing unnormalized conditional
probabilities in place of conditional probabilities. This lin-
earizes the state equation, and the problem becomes much
simpler to study. Ideas of this kind have not been introduced
yet in the context of solving partial observation control
problems in management. While the standard Zakai setup
cannot be directly applied to inventory problems, we show
that unnormalized conditional probabilities can be introduced
and are indeed quite appropriate.

II. THE ZERO BALANCE WALK MODEL

We study a periodic review inventory problem with par-
tially observable inventory levels. In our model, the inventory
levels are not automatically observed by the Inventory Man-
ager (IM) who decides on order quantities. We first construct
a finite horizon model with T periods. The order of events
in any given period t is as follows: The IM observes the
event when the inventory level falls to zero, but he does not
observe the inventory level when it is positive. The manager
determines how much to order and the order is delivered
instantaneously. Next the customer demand occurs, but it is
not observed by the IM unless the inventory level drops to
zero. In each period, the IM incurs inventory related costs,
but he does not observe these costs immediately. Lastly the
state defining the inventory level is updated for the next
period.

In classical inventory settings, the inventory level It at the
beginning of period t is observed, and is used to determine
the order quantity qt in period t. Each period t has a random
demand Dt defined on the probability space (Ω,F , P ). The
demand is met, to the extent possible, from the on-hand stock
It + qt. We suppose that the demand that is not immediately
met from the on-hand stock is lost. Then the evolution of
inventory dynamics is given as follows:

It+1 = (It + qt − Dt)+ for t ≥ 1. (1)

We assume demand Dt to be i.i.d. A generic demand is
denoted by D, which is i.i.d. with each Dt. Let f denote the
density and F denote the cumulative distribution of D. Let
F̄ = 1 − F .

When the demand is met entirely, inventory holding costs
apply to the remaining inventory. Otherwise, there are lost
sales costs. It is well known that the base stock policy is
optimal for this setting. It is interesting to investigate the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoB11.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 1023



validity of the optimality of the base stock policy, or lack of
it, for the zero-balance walk model.

In the zero-balance walk model, the inventory levels are
partially observed by the IM as follows.

I1 is either 0 or its distribution is known. (2)

In general, the IM does not observe the demand or the
inventory level. However, looking at empty shelves and
concluding It = 0 does not take much effort, and constitutes
a free observation. Thus, we allow It to be observed only
when the inventory shelves are empty (i.e. [It = 0]). To study
such partial observations of the inventory level, we introduce
a signal (message) random variable

zt := 1IIt=0, t ≥ 0. (3)

The signal zt is a discrete-time Markov Chain with the
state space {0, 1}: 1 means an empty shelf and 0 means
a nonempty shelf.

When the inventory levels are fully observed, the order qt

is adapted to the sigma field Ft := σ({Ij : 1 ≤ j ≤ t})
generated by the inventory levels observed by period t. Note
that the demand observations up to the beginning of period t
also generate the same field, i.e., Ft = σ({I1, Dj : 1 ≤ j ≤
t−1}). With our partial observations model, qt is adapted to
Zt := σ({zj : 1 ≤ j ≤ t}). Clearly Zt ⊂ Ft, so our partial
observations model must decide on order quantities on the
basis of less than full information.

Given a stationary cost function c(It, qt) that depends on
the beginning inventory level It and the order size qt in
period t, and with q̃ defining the admissible sequence of
actions q̃ = {q1, q2, . . . }, the total discounted cost is defined
by

J(ζ, π, q̃) := E
T∑

t=1

αtc(It, qt), (4)

where α < 1 is the discount factor. The initial conditions are
a pair (ζ, π(x)), where ζ is 1 or 0. If ζ is 1, then I1 = 0.
If ζ is 0, then I1 > 0 and π(·) is the probability distribution
of I1. We look for qt, adapted to Zt, t ≥ 0, to minimize
J(ζ, π, q̃).

A. Evolution of State Probabilities

We now develop the conditional probability density πt(.)
of It given Zt−1 and It > 0. By definition,∫ x

0

πt(y)dy = P(It ≤ x|Zt−1, It > 0).

Since the event [It = 0] is observable, conditional probabil-
ities are needed only when It > 0.

For any real and bounded test function ϕ(.), we can use
the conditional Bayes theorem (e.g. [6]) to obtain∫ ∞

0

ϕ(x)πt(x)dx = E[ϕ(It)|Zt−1, It > 0]

=
E[ϕ(It)1IIt>0|Zt−1]

E[1IIt>0|Zt−1]
=

E[ϕ(It)1IIt>0|Zt−1]
P(It > 0|Zt−1)

. (5)

In order to obtain a recursive expression for πt in terms
of πt−1, we begin with expressing E(ϕ(It)|Zt) in terms of
conditional expectations with respect to Zt−1 in the next
lemma.

Lemma 1.

E(ϕ(It)|Zt) = 1IIt=0ϕ(0) + 1IIt>0
E(ϕ(It)1IIt>0|Zt−1)

P(It > 0|Zt−1)
= 1IIt=0ϕ(0) + 1IIt>0E(ϕ(It)|Zt−1, It > 0)

(6)

Instead of the conditional expectations in Lemma 1, the
left-hand side in (6) can also be expressed by using the
conditional density function πt. Using (5) on the right-hand
side of (6) gives

E(ϕ(It)|Zt) = 1IIt=0ϕ(0) + 1IIt>0

∫ ∞

0

ϕ(z)πt(z)dz. (7)

The density πt is obtained by setting (6) and (7) to be equal.
For It = 0, this equality yields πt = δ which is the Dirac
delta function taking the value of zero everywhere except at
0 where it is infinite. For the more interesting case of It > 0,
the next lemma molds (6) into a convenient form to set (7)
equal to (6) and solve for πt.

Lemma 2.

E(ϕ(It)|Zt)1IIt>0 =

1IIt−1=0

∫ ∞
0

ϕ(z)f(qt−1 − z)1Iqt−1≥zdz

F (qt−1)
+ 1IIt−1>0 ×∫ ∞

0
ϕ(z)

∫ ∞
(z−qt−1)+

f(y + qt−1 − z)πt−1(y)dydz∫ ∞
0

F (y + qt−1)πt−1(y)dy
. (8)

Having obtained the conditional expectation in Lemma 2,
we go back to the conditional probability πt as defined in
(7) for It > 0. Setting the second term on the right-hand
side of (7) equal to (8),

πt(x) = 1IIt−1=0

{
f(qt−1 − x)1Ix≤qt−1

F (qt−1)

}
+ 1IIt−1>0 ×{∫ ∞

(x−qt−1)+
f(y + qt−1 − x)πt−1(y)dy∫ ∞

0
F (y + qt−1)πt−1(y)dy

}
. (9)

This expression specializes to the conditional probabilities
stated in the next theorem.

Theorem 1. The conditional probability πt can be expressed
recursively as follows:

πt(x) =⎧⎪⎪⎨
⎪⎪⎩

1Ix≤qt−1

f(qt−1 − x)
F (qt−1)

if It−1 = 0∫ ∞
(x−qt−1)+

πt−1(y)f(y + qt−1 − x)dy∫ ∞
0

πt−1(y)F (y + qt−1)dy
if It−1 > 0
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The conditional probability evolves according to a highly
nonlinear equation

πt(x) = zt−1
f(qt−1 − x)1Ix<qt−1

F (qt−1)
+ (1 − zt−1) ×∫ ∞

(x−qt−1)+
f(y + qt−1 − x)πt−1(y)dy∫ ∞

0
F (qt−1 + y)πt−1(y)dy

t ≥ 2, (10)

π1(x) = π(x),

which corresponds to the Kushner equation [8] in our inven-
tory context.

We can linearize (10) as follows. Set

pt(x) := λtπt(x), (11)

where λt is a weighting factor to be defined shortly. On
account of this weighting, pt(x) can be viewed as unnor-
malized probability. Furthermore, it evolves according to the
linear equation

pt(x) = zt−1f(qt−1 − x)1Ix<qt−1 + (1 − zt−1) ×∫ ∞

(x−qt−1)+
f(y + qt−1 − x)pt−1(y)dy

p1(x) = π(x). (12)

This equation corresponds to the Zakai equation for systems
with diffusions in [9] and [1]. By integrating both sides of
(11),

λt =
∫ ∞

0

pt(x)dx

(12)
= zt−1F (qt−1)

+(1 − zt−1)
∫ ∞

0

F (qt−1 + y)pt−1(y)dy

(11)
= zt−1F (qt−1)

+(1 − zt−1)λt−1

∫ ∞

0

F (qt−1 + y)πt−1(y)dy.

The last equation defines λt recursively starting with λ1 = 1.
However, note that λt depends on πt−1 on the right-hand
side. The normalized probabilities can easily be computed
from the unnormalized probabilities as follows:

πt(x) =
pt(x)∫ ∞

0
pt(x)dx

. (13)

These equations can be written in the operator form in the
space

H :=
{

p ∈ L1(�+) :
∫ ∞

0

x|p(x)|dx < ∞
}

,

where L1(�+) is the space of integrable functions whose
domain is the set of nonnegative real numbers. If we define
regular addition and multiplication by a scalar on H and
include negative valued functions in H, then H becomes
a subspace of L1(�+). Working with the subspace H is
convenient for some of our arguments. However, we are

ultimately interested in unnormalized probabilities, which are
nonnegative. Let us equip the subspace H with the norm

||p|| =
∫ ∞

0

|p(x)|dx +
∫ ∞

0

x|p(x)|dx. (14)

The dual space of H is denoted by H∗, and it is the space
of functions φ with linear growth, i.e.,

H∗ =
{

φ : sup
x>0

|φ(x)|
1 + x

< ∞
}

.

Furthermore, we have the duality product

〈p, φ〉 =
∫ ∞

0

p(x)φ(x)dx for p ∈ H, φ ∈ H∗.

For any scalar q > 0, define the linear operator ρ from H
to H as

ρ(q, p)(x) =
∫ ∞

(x−q)+
f(y + q − x)p(y)dy.

Note that ρ(q, δ)(x) = f(q − x)1Ix<q so ρ(0, δ)(x) = 0 for
the Dirac delta function δ. Define the nonlinear operator θ
as

θ(q, p) =
ρ(q, p)

〈ρ(q, p), 1〉 . (15)

With these notations, we can write (10) and (12) in the
operator form:

πt = zt−1θ(qt, δ) + (1 − zt−1)θ(qt, πt−1) , (16)

pt = zt−1ρ(qt, δ) + (1 − zt−1)ρ(qt, pt−1) , (17)

with the initial conditions

π1 = p1 = π. (18)

Once again, we emphasize that (17) is a linear equation,
while (16) is nonlinear.

B. The Bellman Equation

We write pt(q̃) and πt(q̃) to emphasize the dependence
of the states pt or πt on the control policy. We assume
that c(It, qt) has linear growth in It for every fixed qt, i.e.,
c(., qt) ∈ H∗. The cost function can be written as follows:

J(ζ, π, q̃) =
∞∑

t=1

αtE[E[c(It, qt)|Zt]]

=
∞∑

t=1

αtE{ztc(0, qt)

+(1 − zt)〈c(It, qt), πt(q̃)〉}
where πt(q̃) is the solution of (10). Recall that the initial
conditions ζ1 = ζ ∈ {0, 1} and π1 = π are given. In the
sequel, we study only the discounted infinite horizon costs, so
the time index t is suppressed. We define the value function

V (ζ, π) := inf
q̃

J(ζ, π, q̃).
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If we write v := V (1, π) which, in fact, is not dependent
on π, and V (π) := V (0, π), then we obtain the following
system:

V (π) = inf
q

{
〈c(., q), π(.)〉 + αv

∫ ∞

0

F̄ (y + q)π(y)dy

+αV (θ(q, π))
∫ ∞

0

F (y + q)π(y)dy

}
, (19)

v = inf
q

{
c(0, q) + αvF̄ (q) + αV (θ(q, δ))F (q)

}
.(20)

All the remaining integrals in this paper are over [0,∞) so
we remove the limits from here on.

A direct study of the system in (19)-(20) is not very
easy. The matters simplify considerably when working with
the unnormalized probability p ∈ H+. The unnormalized
probability evolves in accordance with the linear operator ρ.
To make ideas concrete, we define a new value function Z(.)
as follows:

Z(p) := V
( p

λ

)
λ , λ :=

∫
p(x)dx.

Eventually, we obtain the following new system of equations:

Z(p) = inf
q

{
〈c(., q), p(.)〉 + αv

∫
F̄ (y + q)p(y)dy

+αZ(ρ(q, p))} , (21)

v = inf
q

{
c(0, q) + αvF̄ (q) + αZ(ρ(q, δ))

}
. (22)

The pair (v, Z(p)) is the solution of (21)-(22). Moreover,

Z(µp) = µZ(p) for every µ > 0.

Thus, Z(0) = 0.
Unlike the operator θ, ρ is a linear operator. Thus, it is

easier to study the system in (21)-(22) than that in (19)-
(20). The linearity facilitates our arguments dealing with the
existence of an optimal feedback control and our discussion
when it is finite. Furthermore, it helps in studying finite
approximations of the infinite dimensional state space as well
as in building associated approximate solutions to (21)-(22).

III. EXISTENCE OF A SOLUTION TO THE BELLMAN

EQUATION

A. Bounded Costs

For the existence results, we bound the single period cost.
Suppose that positive constants c, c0, c1, and h are such that

cq < c(x, q) ≤ c0 + c1q + hx for x ≥ 0, (23)

where c0 can be interpreted as the maximum expected lost
sales cost that can be incurred in a period. Indeed, we set
c0 = c(0, 0). Since there will be a positive order q when
there is a stock out, c0 will be bounded by the cost of losing
the sale of E(D) units. Let a0 := max{c0/(1 − α), h}.

To accommodate our unnormalized conditional probabili-
ties, we define the functional space

B :=

{
φ(p) : H+ → � : sup

p∈H+

|φ(p)|
||p|| < ∞

}
(24)

equipped with the norm

||φ||B := sup
p∈H+

|φ(p)|
||p|| , (25)

where ||p|| still refers to the norm that we initially defined
in H ⊇ H+. For any φ ∈ B, we must have φ(0) = 0. B
includes all Z functions that solve (21)-(22). This fact is
formalized in the next lemma.

Lemma 3. Each Z that solves (21)-(22) is in B.

We need some short-hand notation. Define the function
K : �×H → � as

K(q, p; v, Z) := 〈c(., q), p(.)〉 + αv

∫
F̄ (y + q)p(y)dy

+αZ(ρ(q, p)).

For p = δ, K(q, δ; v, Z) = c(0, q) + αvF̄ (q) + αZ(ρ(q, δ)).
Define the map T : �× B → �× B as

T

(
v
Z(p)

)
:=

(
infq K(q, δ; v, Z)
infq K(q, p; v, Z)

)
. (26)

Define Z0(p) as the value function that solves the Bellman
equations when q = 0. Then, it must solve

〈c(., 0), p(.)〉 + αv0

∫
F̄ (y)p(y)dy + αZ0(ρ(0, p))

= Z0(p). (27)

Also define v0 := Z0(p = δ). By (22) and Z(0) = 0, v0 =
c0 + αv0. Existence of Z0(p) is established with the next
lemma.

Lemma 4. Z0 exists and is uniquely defined.

If v ≤ v0, Z(p) ≤ Z0(p) and(
ṽ

Z̃(p)

)
:= T

(
v
Z(p)

)
,

then ṽ ≤ c(0, 0) + αv ≤ c0 + αv0 = v0. Also

T

(
v
Z(p)

)
≤

(
v
Z(p)

)
. (28)

This inspires the next result, where we prove the existence of
a solution of the system (21)- (22) by using a value iteration
scheme. The solution is named as (v̄, Z̄).

Theorem 2. A solution of (21)-(22) exists.

Proof: Let(
vn+1

Zn+1(p)

)
:= T

(
vn

Zn(p)

)
.

Starting with v0 and Z0 defined by (27), we first claim that(
vn+1

Zn+1(p)

)
≤

(
vn

Zn(p)

)
.

Since (vn, Zn) is a nonincreasing sequence with a lower
bound of (0, 0), it has a limit (v̄, Z̄): (vn, Zn) ↓ (v̄, Z̄),
and we establish that (v̄, Z̄) is a fixed point. The fixed point
is not necessarily unique, but it is the maximum solution
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in the following sense. Any solution (v, Z) that satisfies
(v, Z) ≤ (v0, Z0) also satisfies (v, Z) ≤ (v̄, Z̄). �

Bounding the optimal order quantity: Start by setting q =
0 in (21) we can check

q ≤ a0

c(1 − α)

{
1 +

∫
xp(x)dx∫
p(x)dx

}
. (29)

Note that the bound depends on the unnormalized probability
p and can be arbitrarily large as p → 0. Because of this
observation, we choose to assume a bound on the order
quantity in the next subsection.

B. Bounded Order Quantities

In this section we assume that there is a finite bound on the
order quantity q in addition to the cost bounds in the previous
section. The finite bound can be due to the supplier’s limited
production or transportation capacity, or the storage capacity
IM can use. Let the capacity be m and let the corresponding
Z and v be denoted by Zm and vm. Then (21)-(22) is written
as

Zm(p) = inf
q≤m

{〈c(., q), p(.)〉

+αvm

∫
F̄ (y + q)p(y)dy + αZm(ρ(q, p))

}
vm = inf

q≤m

{
c(0, q) + αvmF̄ (q) + αZm(ρ(q, δ))

}
.

(30)

We can check that constants Am and Bm exist such that

|Zm(p) − Zm(p′)| ≤ Am

∫
|p(y) − p′(y)|dy

+Bm

∫
y|p(y) − p′(y)|dy, (31)

for any two p, p′ ∈ H. Therefore, Zm is Lipschitz continuous
on H. This additional smoothness property allows us to
establish the uniqueness of a solution to the system in (30)

We next establish that (v̄m, Z̄m) converges to (v̄, Z̄),
which is the maximal solution of the system in (21)-(22).

So far, we studied the existence and the convergence of
(vm, Zm). The next theorem validates the monotone iterative
process, that is (vm, Zm) minimizes the total discounted
cost. As a side product of the theorem, vm and Zm turn
out to be unique because they are equal to the minimum
costs, which are unique by definition.

Theorem 3. The solution (vm, Zm) of (30) is the minimum
total discounted cost, i.e.,

Zm(π) = inf
q̃:qt≤m

J(0, π, q̃),

vm = inf
q̃:qt≤m

J(1, δ, q̃).

Since Zm(π) and vm are defined as a solution of (30) and
they are given by the infima in Theorem 3, both Zm(π) and
vm are unique. As m increases, we have

inf
q̃:qt≤m

J(0, π, q̃) ↓ inf
q̃

J(0, π, q̃),

inf
q̃:qt≤m

J(1, π, q̃) ↓ inf
q̃

J(1, π, q̃).

These imply
Z(π) = inf

q̃
J(0, π, q̃),

v = inf
q̃

J(1, π, q̃).

Thus, Z(π) and v are interpreted as the infima of the costs
even when m disappears. However, a corresponding feedback
solution that yields Z(π) and v may not exist unless m is
finite.

In this section, we establish that Zm(p) is continuous and
converges to Z(p). However, these results do not guarantee
the continuity of Z(p). Instead we have the weaker form of
continuity as presented in the next lemma.

Lemma 5. Z(p) is upper semicontinuous:

lim sup
pk→p

Z(pk) ≤ Z(p).

IV. A SUFFICIENTLY SMALL DISCOUNT RATE

We argue that T is a contraction map for a sufficiently
small α. Namely, we let M := 1+a0/(c(1−α)) and require
that α(1 + M) < 1. In this case, a solution to the system
(21)-(22) exists.

Consider the difference

K(q, p; v, Z) − K(q, p; v′, Z ′) =

α(v − v′)
∫

F̄ (y + q)p(y)dy

+α[Z(ρ(q, p)) − Z ′(ρ(q, p))].

Let

η := max

{
sup

p∈H+

Z(p) − Z ′(p)
||p|| , |v − v′|

}
.

we obtain

|K(q, p; v, Z) − K(q, p; v′, Z ′)| ≤ ηα(1 + M)||p||.
Hence, it follows that

| inf
q

K(q, p; v, Z) − inf
q

K(q, p; v′, Z ′)| ≤ ηα(1 + M)||p||.

Recalling ||δ|| = 1 and specializing to p = δ, we have

| inf
q

K(q, δ; v, Z) − inf
q

K(q, δ; v′, Z ′)| ≤ ηα(1 + M).

We can consider η as a distance d in the space � × B.
That is,

η = d

( (
v
Z(p)

)
,

(
v′

Z ′(p)

) )
.

In summary, we have proved

d

(
T

(
v

Z(p)

)
, T

(
v′

Z ′(p)

))
≤

α(1 + M)
( (

v
Z(p)

)
,

(
v′

Z ′(p)

) )
.

In addition, if α(1 + M) < 1 as required at the beginning
of this section, T is a contraction map on �×B. It is also a
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contraction on � × Bc, where Bc denotes the closed subset
containing the continuous functions in B. Therefore, when
α(1+m) < 1, (21)-(22) have a unique fixed point in �×Bc.

A. Relaxing the Condition on the Discount Rate

We relax the condition α(1 + M) < 1 to αM < 1 by
measuring the distance d in �×B for a fixed λ. Namely, we
consider the projection of � × B onto {λ} × B. For any λ,
we define the projected value function Zλ(p) as the solution
of

Zλ(p) := inf
q

{
〈c(., q), p(.)〉 + αλ

∫
F̄ (y + q)p(y)dy

+αZλ(ρ(q, p))
}

. (32)

then we check that that

||Tλ(Z1) − Tλ(Z2)||B ≤ αM ||Z1 − Z2||B.

If αM < 1, then Tλ(Z) is a contraction mapping. Thus,
Tλ(Z) has a fixed point in �×Bc. Consequently, Zλ(p) is
uniquely defined. It is shown to be nondecreasing in λ with
the next lemma.

Lemma 6. Zλ(p) is nondecreasing in λ.

Now consider the function g(λ) for λ ≥ 0 defined by

g(λ) := inf
q

{
c(0, q) + αλF̄ (q) + αZλ(ρ(q, δ))

}
, (33)

where Zλ is given by (32). By Lemma 6, the map g(λ) is
nondecreasing. It can be proved that it is concave with a rate
of increase of at most α .

Theorem 4. The system in (21)-(22) has a unique solution
if c(I, q) is nondecreasing in q.

It is worth noting that the condition in the statement of
Theorem 4 is very weak. Without loss of generality, we can
use the convention that the cost c(I, q) is charged at the
beginning of a period. In that case, holding and lost sales
costs depend on only I , while the ordering costs increase in
q as required by Theorem 4.

V. CONCLUDING REMARKS

This paper has provided a rigorous treatment of a class
of inventory problems with partial observations. The ob-
servation process is a binary valued Markov chain, which
arises from the “zero balance walk” approach to inventory
management. Since the inventory level is often not observed,
its conditional distribution given the observation represents
the state of the system. This approach immediately results
in a dynamic program in a functional space. The dynamic
programming equations are simplified by using unnormalized
probabilities. Doing so, a Zakai-type system of equations are
derived for our inventory problems. This simplification has
allowed us to prove the existence of a value function under
various assumptions. For small discount factor α, we show
the uniqueness of a solution to the system of equations in
(21)-(22). Then this solution must be the value function.

Unnormalized probabilities and the corresponding Zakai-
type system of equations can also be used to simplify the

analysis of other problems. A case in point is the partially
observed demands in the context of the newsvendor problem.
In this case, the demand is observed if it is less than the
inventory. Otherwise, only the event that it is larger than
or equal to the inventory is observed. These observations
are used to update the demand distribution. This gives rise
to a dynamic programming equation, whose state is the
current demand distribution, which is infinite dimensional.
An equivalent dynamic program, whose state is the un-
normalized demand distribution, can be constructed. The
equivalent dynamic program facilitates the existence and the
structural property arguments in Bensoussan et al. [2].

Information delays also lead to partially observed inven-
tory problems. When there is information delay, the current
inventory level is not observed by the IM. Instead, he ob-
serves the exact inventory level of a prior period. In this case,
the state of the system can be summarized by a sufficient
statistic (finite-dimensional vector). Bensoussan et al. [3]
and [4] suppose that the unmet demand is backordered. The
former paper establishes that a reference inventory position is
a sufficient statistic. The latter generalizes the former by al-
lowing for information delays given to be a Markov process.
In addition to the reference inventory position, [4] shows
that the value of the latest delay observation and the age of
this observation must be included in the sufficient statistic
vector. Our results on the partially observed inventories are
announced in Bensoussan et al. [5].
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