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Abstract— This paper presents an approach to the control
of continuous systems through the use of symbolic models
describing the system behavior only at a finite number of points
in the state space. These symbolic models can be seen as abstract
representations of the continuous dynamics enabling the use of
algorithmic controller design methods. We identify a class of
linear control systems for which the loss of information incurred
by working with symbolic sub-systems can be compensated by
feedback. We also show how to transform symbolic controllers
designed for a symbolic sub-system into controllers for the
original system. The resulting controllers combine symbolic
controller dynamics with continuous feedback control laws
and can thus be seen as hybrid systems. Furthermore, if the
symbolic controller already accounts for software/hardware
requirements, the hybrid controller is guaranteed to enforce
the desired specifications by construction thereby reducing the
need for formal verification.

I. INTRODUCTION

In this paper we propose an approach to the control of
linear systems based on symbolic models. In particular, we
are interested in finite state models capturing the essential
properties of linear control systems. The finite state nature of
these models is important for two main reasons. Firstly, finite
state models are especially well suited for automated analysis
and design which is becoming increasingly important given
the size of nowadays complex control systems. The use
of such models thus opens new algorithmic perspectives
for analysis and design. Secondly, finite state models offer
a common language to describe an abstract view of con-
tinuous dynamics as well as the software implementation
of control algorithms. It is therefore possible to formally
reason about the behavior of the interconnection between
continuous dynamics, control software and hardware, which
has been one of the main thrusts behind the research area
of hybrid systems. With the objective of strengthening this
connection between continuous models of dynamics and
finite state models of software we will focus, in this paper,
on a particular symbolic model for control systems: symbolic
sub-systems.

The success of a ”symbolic systems theory” based on sym-
bolic models of continuous systems relies on a satisfactory
answer to the following fundamental questions:

1) Which classes of control systems admit symbolic mod-
els?
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2) Can these symbolic models be efficiently computed?
3) How can we transfer properties to and from symbolic

models?

The objective of this paper is precisely to identify a class
of control systems admitting symbolic models in which the
loss of information incurred in the passage from an infinite
to finite number of states can be compensated by feedback.
In particular, we will show that:

1) The dynamics of a stabilizable linear system can be
recovered from its restriction, henceforth called ”sub-
system”, to a finite number of states up to a certain
resolution.

2) Symbolic controllers designed for a sub-system can
be transformed into controllers for the original system
enforcing specifications up to a certain resolution.

These are rewarding results since we can easily compute
restrictions of linear control systems to a finite number of
states resulting in finite models that can be integrated with
finite models of software and hardware. Furthermore, control
designs based on these models can then be converted into
controllers for the original system. This design approach, by
integrating continuous dynamics with software and hardware
at design time, results in controllers described by hybrid
systems formally describing embedded control software that
is correct by construction.

On the technical side this paper is strongly influenced by
the paper [KPS01] and draws inspiration from other symbolic
control models such as quantized control systems [BMP02]
and maneuver automata [FDF03]. Also related is the recent
work on approximate bisimulations for continuous systems
reported in [GP05]. This work contains two different ingre-
dients that distinguishes it from previous work by the author
on finite bisimulations based control [TP03], [TP04]:

• We consider sub-systems instead of quotient systems
for symbolic models and in particular our constructions
will not be based of partitions of the state space but will
rather require coverings of the state space.

• The symbolic models discussed in this paper are not
bisimulations. Even though symbolic sub-systems may
not capture all the behavior of the original system,
we can synthesize controllers based on very simple
and therefore very efficiently computable symbolic sub-
systems.
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II. NOTATION

We shall denote by N, R, and R
+
0 the Natural, Real, and

non-negative Real numbers, respectively. For any function
f : A → B and C ⊆ A, f |C : C → B will denote the
restriction of f to C while f(C) will denote the subset of
B defined by ∪c∈C{f(c)}. We will identify a relation R ⊆
A×B with the function R : A → 2B defined by b ∈ R(a) iff
(a, b) ∈ R. We will say that a relation R is surjective when
for every b ∈ B there exists a a ∈ A such that (a, b) ∈ R.
If π2 : A × B → B denotes the canonical projection on the
second factor then surjectivity of R is equivalent to π2(R) =
B. Given a relation R ⊆ A×B, R−1 will denote the inverse
relation defined by R−1 = {(b, a) ∈ B × A | (a, b) ∈ R}.

We now recall some formal language notions. Given a set
S we denote by S∗ the set of all finite strings obtained by
concatenating elements in S. An element of S is therefore
given by s1s2 . . . sn with si ∈ S for i = 1, . . . , n. Given a
string α belonging to S∗ we denote by α(i) the ith element
of s. The length of a string α ∈ S∗ is denoted by |α| and a
subset of S∗ is called a language. Given a map f : A → B
we shall use the same letter to denote the extension of f to
f : A∗ → B∗ defined by:

f
(
α(1)α(2) . . . α(n)

)
= f

(
α(1)

)
f
(
α(2)

)
. . . f

(
α(n)

)

III. TRANSITION SYSTEMS

Transition systems are the symbolic models considered
in this paper. Because of their simplicity, transition systems
model very general classes of dynamics including control
systems, software systems and even hardware systems.

Definition 3.1: A transition system T = (Q,Q0,−→
, O,H) consists of:

• A set of states Q;
• A set of initial states Q0 ⊆ Q;
• A transition relation −→⊆ Q × Q;
• An observation set O;
• An observation function H : Q → 2O.

We will follow standard practice and denote an element
(q, q′) ∈−→ by q −→ q′. We shall say that a transition
system T is finite when Q is finite. Transition systems
capture dynamics through the transition relation. For any
states q, q′ ∈ Q, q −→ q′ simply means that it is possible
to evolve or jump from state q to state q′. Note that we
cannot model −→ as a function since, in general, there may
be several states q′, q′′ ∈ Q such that q −→ q′ and q −→ q′′.
Transition systems can be graphically represented through a
directed graph having Q as vertex set and −→ as the set of
edges.

Transition systems define languages which we could re-
gard as the analogue of control systems’ trajectories:

Definition 3.2: Let T be a transition system. A run of T
is a string α ∈ Q∗ satisfying:

1) α(1) ∈ Q0;
2) α(i) −→ α(i + 1) for i = 1, 2, . . . , |α| − 1.

A string β ∈ O∗ is said to be an observed run of T if there
exists a run α ∈ Q∗ of T such that β ∈ H(α). The language

of T , denoted by L(T ), is defined as the set of all observed
runs of T .

Control systems can also be seen as transition systems.
Before discussing how we can embed the class of control
systems into the class of transition systems we introduce the
class of control systems considered in this paper.

Definition 3.3: A linear control system Σ = (A,B,U) is
defined a pair of matrices (A,B) ∈ R

n×n × R
n×m and a

family of admissible input trajectories U . A curve x : I →
R

n, defined on a open set I ⊆ R containing the origin, is a
trajectory of control system Σ if there exists an admissible
input trajectory U � u : I → R

m satisfying:

d

dt
x(t) = Ax(t) + Bu(t) (III.1)

for almost all t ∈ I .
We will frequently refer to trajectories x : [0, τ ] → R

n

of Σ defined on closed intervals with the understanding
of the existence of a trajectory x′ : I → R

n satisfying
Definition 3.3 with [0, τ ] ⊂ I and x′|[0,τ ] = x. The results
presented in this paper are independent of the chosen class
of admissible input trajectories U provided that for each
u ∈ U the solution of (III.1) exists and is unique. Examples
of admissible input trajectories include the class of piece-
wise constant, piece-wise continuous and piece-wise smooth
curves.

We now introduce the promised embedding of linear
control systems in the class of transition systems.

Definition 3.4: Let Σ be a linear control system. The tran-
sition system induced by Σ, denoted by TΣ = (Q,Q0,−→
, O,H), is defined by:

1) Q = R
n;

2) Q0 = Q;
3) x −→ x′ if there exists a trajectory x : [0, τ ] → R

n of
Σ satisfying x(0) = x and x(τ) = x′;

4) O = Q;
5) H(x) = {x}.

IV. SIMULATION AND BISIMULATION RELATIONS

The objective of this paper is to transfer control design
problems from a continuous model Σ to a symbolic model.
This transfer is only possible if the symbolic model captures
properties of Σ that are relevant for design. While the
standard notion of equivalence between transition systems
is bisimulation [Par81], [Mil89] we shall work with a one-
sided version termed simulation.

Definition 4.1: Let Ti = (Qi, Q
0
i ,−→i, O,Hi) with i =

1, 2 be transition systems and let R ⊆ Q1×Q2 be a relation.
Relation R is said to be a simulation relation from T1 to T2

if the following holds:

1) (R respects observations) (q1, q2) ∈ R implies
H1(q1) ⊆ H2(q2);

2) (R respects initial states) (q1, q2) ∈ R and q1 ∈ Q0
1

implies q2 ∈ Q0
2;

3) (R respects dynamics) (q1, q2) ∈ R and q1 −→1 q′1 in
T1 implies the existence of q′2 ∈ Q2 satisfying q2 −→2

q′2 in T2 and (q′1, q
′
2) ∈ R.

19



The existence of a simulation relation from T1 to T2 is
denoted by T1 ≺ T2. Relation R is said to be a bisimulation
relation between T1 and T2 if R is a simulation from T1 to
T2 and R−1 is a simulation from T2 to T1. The existence
of a bisimulation relation between T1 and T2 is denoted by
T1

∼= T2 and T1 and T2 are said to be bisimilar.
The symbolic models of linear control systems Σ we will
consider in this paper are related to TΣ through a simulation
relation which is in fact the graph of an inclusion.

Definition 4.2: Let Ti = (Qi, Q
0
i ,−→i, O,Hi) with i =

1, 2 be transition systems. Transition system T1 is said to
be a sub-system of T2 if Q1 ⊆ Q2 and the relation defined
by the graph of the natural inclusion ı : Q1 → Q2 sending
q ∈ Q1 to ı(q) = q ∈ Q2 is a simulation relation from T1 to
T2. Transition system is said to be a symbolic sub-system if
it is a finite sub-system.

Although there are many different ways to construct a
symbolic sub-system of TΣ we now illustrate one such possi-
bility based on quantization of inputs as studied in [BMP02].
For simplicity of presentation let us consider the double
integrator as our control system Σ which is described by
the following equations:

ẋ1 = x2

ẋ2 = u (IV.1)

We now chose a subset of admissible trajectories defined by
U = {u−, u0, u+}. Each u ∈ U is defined on the interval
I = [0, 1] by:

u−(t) = −1, u0(t) = 0, u+(t) = +1 (IV.2)

Since all the elements of U have unit duration we can
compute the discrete time model of Σ for a sampling period
of unit duration. The resulting discrete-time linear system is
given by:

x1(k + 1) = x1(k) + x2(k) +
1
2
u(k)

x2(k + 1) = x2(k) + u(k) (IV.3)

If we start at the origin, for example, an apply inputs (IV.2)
to (IV.1) we can compute with the help of (IV.3) the symbolic
sub-systems represented in Figure 1. These symbolic sub-
systems represent a very coarse description of the dynamics
of Σ which, nevertheless, can be used to synthesize con-
trollers for Σ. For example the sequence of inputs:

u−(u+u+u0u−u−u0)ω

where ω denotes infinite repetition, controls TΣ from the
origin to a closed orbit. But how can we control the behavior
of TΣ if the initial condition does not belong to the set of
states of T ? And what kind of control can we expect when
using a coarse model such as T ? Answers to these questions
will be provided in the remaining paper independently of
the process used to obtain sub-systems. Other possibilities
to compute symbolic sub-systems include numerical methods
or the use of feedback controllers leading to known motion
patterns.

u0

x2

x1

u0

u0 u0

u0 u0

u0

u+ u+

u- u-

u+ u+ u+

u+ u+

u-u-

u-u-u-

(0,0)(-1,0) (1,0)

(0.5,1)(-0.5,1)

(-0.5,-1) (0.5,-1)

Fig. 1. Two different symbolic sub-systems of system (IV.1). On the top
we label transitions with the corresponding input trajectory while on the
bottom we show the coordinates of each state.

V. SYMBOLIC CONTROL BASED ON SYMBOLIC

SUB-SYSTEMS

We start by reviewing the notion of parallel composition
that models synchronization of transition systems on the
common output space.

Definition 5.1: The parallel composition of transition sys-
tems Ti = (Qi, Q

0
i ,−→i, O,Hi), i = 1, 2, is denoted by

T1 ‖ T2 and defined as the transition system T1 ‖ T2 =
(Q12, Q

0
12,−→12, O,H12) consisting of:

• Q12 = {(q1, q2) ∈ Q1 × Q2 | H1(q1) ∩ H2(q2) �= ∅};
• Q0

12 = {(q1, q2) ∈ Q0
1 × Q0

2 | H1(q1) ∩ H2(q2) �= ∅};
• (q1, q2) −→12 (q′1, q

′
2) for (q1, q2), (q′1, q

′
2) ∈ Q12 if

q1 −→1 q′1 in T1 and q2 −→2 q′2 in T2;
• H12(q1, q2) = H1(q1) ∩ H2(q2).

The language of the parallel composition T1 ‖ T2 can be
expressed in terms of the languages of T1 and T2 by L(T1 ‖
T2) = L(T1) ∩ L(T2). Since composing T1 with T2 has the
effect of restricting the language of T2 we can thus think
of T1 as a controller for T2 which prevents the strings in
L(T2)\L(T1) from happening.
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The following observation is crucial for the results devel-
oped in this section:

Once a linear control system Σ is embedded in the class
of transition systems as TΣ, controller synthesis for Σ can
be identified with controller synthesis for TΣ.

At a transition system level there are essentially two
different types of control problems to be considered: linear
time control and branching time control.

Problem 5.2 (Linear Time Control): Given a transition
system T = (Q,Q0,−→, O,H) and a language specification
S ⊆ O∗, synthesize a controller Tc such that L(Tc ‖ T ) ⊆ S
or L(Tc ‖ T ) = S.

Problem 5.3 (Branching Time Control): Given a transi-
tion system T = (Q, Q0,−→, O,H) and transition system
specification TS = (QS , Q0

S ,−→S , O,HS), synthesize a
controller Tc such that Tc ‖ T ≺ TS or Tc ‖ T ∼= TS .
Both control problems can be made more realistic by adding
additional requirements and constraints such as non-blocking
controllers, partial observability, maximal permissivity, etc.
Nevertheless, the above described problems are sufficient to
illustrate the merit of a symbolic approach to the control of
continuous systems. The following result explains how we
can transfer the design of controllers solving Problems 5.2
and 5.3 from TΣ to a symbolic sub-system T .

Theorem 5.4: Let TΣ be the transition system induced by
a linear control system Σ and assume that transition system
T satisfies T ≺ TΣ. Then, for any specification transition
system TS with language S = L(TS) the following holds:

1) If there exists a controller Tc such that L(Tc ‖ T ) ⊆ S,
then controller T ′

c = Tc ‖ T satisfies L(T ′
c ‖ TΣ) ⊆ S.

2) If there exists a controller Tc such that L(Tc ‖ T ) = S,
then controller T ′

c = Tc ‖ T satisfies L(T ′
c ‖ TΣ) = S.

Furthermore, if T ‖ TΣ
∼= T also holds, then:

3) If there exists a controller Tc such that Tc ‖ T ≺ TS ,
then controller T ′

c = Tc ‖ T satisfies T ′
c ‖ TΣ ≺ TS .

4) If there exists a controller Tc such that Tc ‖ T ∼= TS ,
then controller T ′

c = Tc ‖ T satisfies T ′
c ‖ TΣ

∼= TS .
Theorem 5.4 shows that existence of a controller Tc for T

immediately leads to a controller for TΣ. Furthermore, when
T is finite existing supervisory control [KG95], [CL99] and
controller synthesis [Tab04], [AVW03], [MT02], [Tho95]
techniques can be immediately used for the construction of
Tc. In addition to provide a new computational approach to
controller synthesis problems for continuous control systems,
Theorem 5.4 also shows that it is now possible to design
controllers based on specifications that, traditionally, have
not been considered for continuous systems such as regular
languages, transitions systems, temporal logics, etc. Further-
more, by combining symbolic model T with a transition
system model of existing software and hardware it is possi-
ble to synthesize controllers enforcing control specifications
(describing the desired behavior of the continuous dynamics)
and software specifications (describing the desired behavior
of the control code). The resulting controller can then be
refined to a hybrid system model of control software that
is correct by construction. The construction of such hybrid
controllers is discussed in Section VII-B.

VI. SURJECTIVE SIMULATION RELATIONS

We have seen in the previous section that it is possible to
synthesize controllers for TΣ by working with the simpler
symbolic model T . However, such designs result in con-
trollers that can only be applied at states of TΣ that are also
states of T . To see this, note that (q′, r) is a state of T ′

c ‖ TΣ

only if H ′
c(q

′) ∩ HΣ(r) �= ∅ and q′ = (q, p) is a state of
Tc ‖ T only if Hc(q) ∩ H(p) �= ∅. Since H(p) = {p} and
HΣ(r) = {r}, Hc(q)∩H(p)∩HΣ(r) �= ∅ only if p = r ∈ Q
which shows that T ′

c is a controller that only works for states
of TΣ that are also states of T . In order to extend symbolic
controllers to controllers that can be used at any state of
TΣ we need to extend the simulation relation defined by the
graph of the inclusion ı : Q → QΣ to a surjective simulation
relation R ⊆ Q×QΣ. If such extension exists, then for any
point r ∈ QΣ we can obtain a point q ∈ Q which is R-related
to r and apply an input at r based on the input defined by
T ′

c at q. In this section we will show that such extension
is possible under a stabilizability assumption on Σ and by
restricting attention to a bounded region of the state space.
Recall that a linear control system is stabilizable if there
exists a linear feedback u = Kx making ẋ = (A + BK)x
stable and is asymptotically stabilizable if u = Kx makes
ẋ = (A + BK)x asymptotically stable.

Theorem 6.1: Let TΣ = (QΣ, Q0
Σ,−→Σ, OΣ,HΣ) be the

transition system associated with a linear control system Σ.
If Σ is stabilizable, then for any control Lyapunov function V
of Σ, for any symbolic sub-system T = (Q,Q0,−→, O,H)
of TΣ and for any bounded subset Q′

Σ of QΣ containing Q,
there exists a real number µ ∈ R such that:

1) R ⊆ Q×QΣ, defined by (q, x) ∈ R when V (x−q) ≤
µ, is a simulation relation from T to T ′

Σ satisfying
π2(R) = QΣ;

2) T ‖ T ′
Σ
∼= T ,

where T ′
Σ = (Q′

Σ, Q′
Σ,−→, O,H ′

Σ) with q ∈ H ′
Σ(x) when

V (x − q) ≤ µ.
Intuitively, Theorem 6.1 shows that we can use a stabiliz-

ing controller to robustify controller T ′
c. This is done by using

the input trajectory u associated with a transition q −→ q′

in T to compute a new input trajectory:

u− K(q− x) (VI.1)

to be applied at points x ∈ QΣ satisfying V (x − q) ≤ µ.
Input trajectory (VI.1) controls points x that are close to q
(points satisfying V (x − q) ≤ µ) to points x′ that are close
to q′ (points satisfying V (x′ − q′) ≤ µ).

We now revisit the double integrator example with the
purpose of illustrating Theorem 6.1. For symbolic sub-
system we consider the transition system displayed on the
bottom of Figure 1. We now chose Q′

Σ to be the closed ball
of radius 3/2 centered at the origin which is guaranteed to
contain all the points of Q. If we now use V = x2

1 + x2
2 as

a control Lyapunov function for the double integrator we
can take µ = 1 which results in each set V µ

q = {x ∈
R

2 | V (x − q) ≤ µ = 1} being a closed ball of radius 1
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x1

x2

Fig. 2. Covering of Q′
Σ by disks of radius 1. The set Q′

Σ is enclosed by
the dashed circle while the sets V µ

q = {x ∈ R
2 | V (x− q) ≤ µ = 1} are

enclosed by the solid circles.

centered at q. In Figure 2 we can see how this choice results
in a covering for Q′

Σ.
By analyzing Figure 2 we also see that Theorem 6.1

is not entirely satisfactory since we are only able to exert
very coarse control in the sense that we cannot distinguish
between points x, y ∈ Q′

Σ if V (x−q) ≤ µ and V (y−q) ≤ µ
for some q ∈ Q. In fact, the parameter µ provides a measure
of such coarseness. This difficulty can be addressed in two
different ways. We can construct a more detailed symbolic
sub-system T which would lead to a lower value for µ
resulting in less uncertainty in the position of the state. Or
we can use feedback to reduce the uncertainty associated
with the location of the state as discussed in detail in the
next section.

VII. FROM SYMBOLIC CONTROLLERS TO HYBRID

SYSTEMS CONTROLLERS

A. Reducing uncertainty

In this section we strengthen the stabilizability assumption
on Σ to asymptotic stabilizability. Based on this assumption
we will be able to use feedback to reduce the coarseness of
the exerted control.

Asymptotic stabilizability of Σ implies the existence of a
linear feedback u = Kx and of a Lyapunov function V :
R

n → R
+
0 satisfying:

∂V

∂x
(Ax + BKx) = V̇ = −αV (VII.1)

for some positive constant α that we will call rate of decay.
We will also say that V admits a rate of decay α if there
exists a linear feedback u = Kx such that (VII.1) holds.
Integrating (VII.1) we obtain:

V (t) = V (0)e−αt

which shows that the uncertainty in the location of the state is
reduced by the factor 0 < e−ατ < 1 every time that a control

command is executed. This suggests that we should use a
symbolic model T describing the number of implemented
control commands in addition to its effect on the states. For
simplicity of presentation we will assume throughout this
section that any q −→ q′ in T has been obtained through
an input trajectory of length τ and we will denote by σ the
number σ = e−ατ .

Definition 7.1: Let TΣ be the transition system induced
by a linear control system Σ. For any sub-system T =
(Q,Q0,−→, O,H) of TΣ, TN0 denotes the transition system
defined by TN0 = (Q × N0, Q

0 × N0,−→N0 , O × N0,HN0)
where (q, n) −→N0 (q′, n′) if q −→ q′ in T and n′ = n+1,
and HN0(q, n) = {(q, n)}.

Intuitively, a state (q, n) of TN0 counts the number n of
transitions required to reach that state from some state in
Q0 × {0}. Since each transition results in a better estimate
for the state location we can now synthesize controllers guar-
anteeing not only logic but also quantitative specifications.
We thus have the following ”graded” version of Theorem 6.1.

Theorem 7.2: Let TΣ = (QΣ, Q0
Σ,−→Σ, OΣ,HΣ) be the

transition system associated with a linear control system
Σ. If Σ is asymptotically stabilizable, then for any control
Lyapunov function V of Σ admitting rate of decay α, for any
symbolic sub-system T = (Q,Q0,−→, O,H) of TΣ and for
any bounded set Q′

Σ ⊆ QΣ containing Q, there exists a real
number µ ∈ R such that:

1) R ⊆ (Q×N0)×QΣ, defined by ((q, n), x) ∈ R when
V (x− q) ≤ µσn, is a simulation relation from TN0 to
T ′

Σ satisfying π2(R) = QΣ;
2) TN0 ‖ T ′

Σ
∼= TN0 .

where T ′
Σ = (Q′

Σ, Q′
Σ,−→Σ, O × N0,H

′
Σ) with (y, n) ∈

H ′
Σ(x) when V (x − y) ≤ µσn.
Consider again the double integrator and the following

control Lyapunov function:

V =
1
2
(
x2

1 + x1x2 + x2
2

)

admitting a rate of decay α = 1 for the linear feedback
u = −x1−x2. As symbolic sub-system T we consider again
the transition system represented on the bottom of Figure 1.
The sequence of inputs u−u+u+u0u−u−u+ guarantees that
any state x contained in the disk of radius 1 centered around
the origin and corresponding to observation {((0, 0), 0)} ∈
H ′

Σ(x) will be controlled to some point x′ in the disk of
radius σ7 ≈ 0.0009 centered at the origin and corresponding
to observation {((0, 0), 7)} ∈ H ′

Σ(x′). The result of this
sequence of inputs can be seen on the top of Figure 3 for
three different initial conditions. By inspecting T we see that
there are other sequences of inputs controlling observation
((0, 0), 0) to observation ((0, 0), 7). The result of one such
sequence, u−u+u0u+u−u0u0, is displayed on the bottom
of Figure 3 for the same initial conditions. Even though
the problem of transferring states corresponding to obser-
vation {((0, 0), 0)} to states corresponding to observation
{((0, 0), 7)} can be solved by inspection of T , more complex
specifications require a more systematic approach based on
supervisory control techniques.
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Fig. 3. Initial conditions (1/4, 1/4), (−1/5,−1/2) and (−1/6, 0)
corresponding to observation {((0, 0), 0)} and controlled to observation
{((0, 0), 7)}. On the left, control is enforced by the sequence of input
trajectories u−u+u+u0u−u−u+ while on the right by the sequence
u−u+u0u+u−u0u0.

B. Controllers as hybrid systems

Symbolic controllers Tc designed for symbolic model T
abstract representations that do not specify which control sig-
nals should be sent to the continuous plant in order to enforce
the desired behavior. These more detailed controllers can be
immediately obtained by associating to a symbolic state q the
feedback control laws enforcing transitions outgoing from q.
By repeating this process for every state we obtain a hybrid
system model of the desired controller. If we denote by Hc

the hybrid controller obtained from symbolic controller Tc

through this process and if Hc ‖ Σ represents the closed
loop system, then Hc can be seen as an implementation of
the abstract controller Tc in the sense that Tc ‖ TΣ

∼= THc‖Σ
where THc‖Σ is the transition system capturing the behavior
of the closed loop system Hc ‖ Σ.

VIII. DISCUSSION

In this paper we have shown that symbolic sub-systems
can be used as abstract models of stabilizable linear sys-
tems for control design. The loss of information incurred
in the passage from a model with an infinite number of
states to a model with a finite number of states can be
compensated by feedback. We have shown how to construct
feedback control laws providing such compensation which
combined with symbolic supervisors designed for symbolic
sub-systems results in hybrid systems models for controllers.
Furthermore, since we can combine symbolic sub-systems
with finite models of software and hardware, the synthesis

of symbolic supervisors can address in a integrated fashion
specifications stemming from the continuous dynamics, from
software and even from hardware. The proposed design
methodology is then guaranteed to produce hybrid controllers
which, if regarded as models for embedded control software,
require no further verification or validation as they satisfy the
desired specifications by construction.

It remains to be investigated how existing results on
the existence of finite bisimulations for discrete-time linear
control systems can be related to the results presented in this
paper. Of particular importance are methodologies for the
choice of symbolic sub-systems. Even though the presented
results are applicable to any symbolic sub-system, a criteria
to obtain complete (describing all the behavior of the original
system up to a certain resolution) and yet small sub-systems
would be extremely important in practice.
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