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Abstract— An approach for the control of a class of under-
actuated mechanical systems on Lie groups, including many
systems previously studied in the control literature, like un-
deractuated planar manipulators and rigid bodies (spacecrafts,
hovercrafts, etc), is proposed. The main outcome of the paper
is the derivation, based on the transverse function approach
initially proposed by the authors for the control of non-
holonomic (driftless) mechanical systems, of smooth feedback
control laws which stabilize, in a practical sense, any (possibly
non-admissible) reference trajectory in the configuration space.

I. INTRODUCTION

This paper addresses the control of underactuated (me-

chanical) systems the dynamics of which can be modeled in

the form ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ġ = X(g)v :=
n∑

i=1

Xi(g)vi

v̇ = ϕ(v) +
m∑

i=1

eiui (m ≤ n)
(1)

with g the system’s configuration (e.g. position and orien-

tation) belonging to an n-dimensional connected Lie group

G, {X1, . . . , Xn} a left-invariant basis of the group’s Lie

algebra g, v ∈ R
n a vector of instantaneous velocities, ϕ a

smooth vector-valued function (typically containing terms as-

sociated with Coriolis and centrifugal forces), {e1, . . . , em}
independent vectors of R

n, and u = (u1, . . . , um) the vector

of control inputs produced by actuators. Such a system

is invariant on the Lie group G in the sense that, given

an initial velocity v(0) then, whatever the input function

t �→ u(t) (t ≥ 0) applied to the system, the associated

trajectory originated at some point g1 is the same as the one

originated at another point g2, modulo a fixed translation

on the group. This property is a consequence of the non-

dependence of the system’s dynamical equations (the second

set of equations) upon the system’s configuration g. When

m = n, the system is said to be completely, or fully, actuated.

In this case, it is conceptually possible to simplify the second

set of equations into v̇ = u. This corresponds to pre-

compensating the drift vector ϕ. Otherwise, when m < n,

the system is underactuated. In this latter case, some of the

coupling Coriolis forces cannot be directly compensated by

the actuators. The system’s state is the couple (g, v). It is

simple to verify that a fully actuated system is small-time

locally controllable (STLC) in the sense of Sussmann [1],

whereas an underactuated system may, or may not, possess

this property (see [2], [3] for more details).

A reference trajectory gr(t) (t ≥ 0) on G is said to be

admissible if it satisfies the system’s equations for some

velocity vr(t) and input ur(t). Traditionally, trajectory stabi-

lization for underactuated systems has focused on admissible

trajectories. A particular case of an admissible trajectory of

System (1) is a fixed configuration on G. By application of

Brockett’s theorem [4], it is well known that the asymptotic

stability of such a configuration cannot be achieved with a

continuous pure-state feedback when m < n. It can however

be obtained with a continuous time-varying feedback [5]

when classical sufficient conditions for the system to be

STLC are satisfied, and explicit feedback laws of this type

have been proposed for a certain number of mechanical sys-

tems (see e.g. [6], [7], [8], [9]). Hybrid (continuous/discrete)

feedback laws have also been considered [10], [3], [11]. The

asymptotic stabilization of specific non-constant admissible

trajectories has been addressed in several studies [12], [13],

[14], but it has been proven in [15], under mild assumptions,

that the property of admissibility is not by itself sufficient

to ensure the existence of a continuous (possibly time-

varying) asymptotical stabilizer. This result points out the

difficulty/impossibility to guarantee the convergence of the

tracking error to zero when other properties of the reference

trajectory (in terms of persistent excitation, for instance)

cannot be asserted in advance.

The difficulties evoked above, for the asymptotic stabi-

lization of admissible reference trajectories, are not specific

to underactuated mechanical systems. They are also encoun-

tered with non-holonomic (driftless) systems. In this latter

context, we have proposed in [16] a control approach which

circumvents them by slightly weakening the objective of

asymptotic stabilization. The smooth feedback control laws

derived with this approach yield the practical stability of

any (not necessarily admissible) reference trajectory, and

ensure the ultimate boundedness of the tracking error by a

pre-specified arbitrary small value. Note that, in the case

of a non-admissible trajectory, this is as good a result as

one can hope for. While underactuated mechanical systems

are significantly different from (and more difficult to control
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than) non-holonomic systems, we show in this paper that the

approach proposed in [16], based on the use of transverse

functions, can be adapted to them in order to practically

stabilize any trajectory on G with a smooth control law. The

property of smoothness is important because it is related

to the issue of good numerical conditioning and, more

generally, to the one of robustness with respect to a certain

number of adverse conditions (measurement noise, modeling

errors, etc...). To our knowledge, the published work closest

to the control approach and results described here is [17].

There are, however, important differences with what we have

done: in this reference, the concept of transverse function is

absent (a notion of a dynamic oscillator is used instead),

the properties of systems on Lie groups are not explicitely

exploited, and only the case of admissible trajectories is

considered.

II. NOTATION AND RECALLS

A. Systems on Lie groups
Let G denote a connected Lie group of dimension n, and •

the associated group operation. The neutral element for this

operation is denoted as e, i.e. ∀g ∈ G : g • e = e • g = g.

The inverse g−1 of g ∈ G is the (unique) element in G
such that g • g−1 = g−1 • g = e. The left (resp. right)

translation operator on G is denoted as l (resp. r), i.e.

∀(σ, τ) ∈ G2 : lσ(τ) = rτ (σ) = σ•τ . A v.f. X on G is left-

invariant iff ∀(σ, τ) ∈ G2, dlσ(τ)X(τ) = X(σ • τ), with df
denoting the differential of the function f . The Lie algebra

of the group G –of left-invariant v.f.– is denoted as g. The

adjoint representation of G equipped with • is denoted as Ad,

i.e. ∀σ ∈ G, Ad(σ) := dIσ(e), with Iσ : G → G defined by

Iσ(g) := σ•g•σ−1. By extension of the definition of Ad, we

define Ad(σ)X(g) := dlg(e)Ad(σ)X(e). If X ∈ g, exp(tX)
is the solution at time t of ġ = X(g) with the initial condition

g(0) = e. A driftless control system ġ =
∑m

i=1 Xi(g)vi on

G is said to be left-invariant on G if the control v.f. Xi are

left-invariant. Given a family Y := {Y1, . . . , Yp} of vector

fields on G and a vector v ∈ R
p, we denote by Y (g)v the

vector field
∑p

i=1 Yi(g)vi (this notation is already used in

Eq. (1)).

Let X = {X1, . . . , Xn} denote a basis of g. If

(g1(t), v1(t)) and (g2(t), v2(t)) (t ≥ 0) are two solutions

to ġ = X(g)v, then (by omitting the time index)

d

dt
(g1 • g−1

2 ) = X(g1 • g−1
2 )AdX(g2)(v1 − v2) (2)

with AdX the (invertible) matrix-valued function defined

by ∀σ ∈ G, ∀u ∈ R
n, Ad(σ)X(e)u = X(e)AdX(σ)u.

According to this definition, AdX(e) = In, with In the

identity matrix associated with R
n. We have also

d

dt
(g−1

1 • g2) = X(g−1
1 • g2)(u2 − AdX(g−1

2 • g1)u1) (3)

Let dG : (g1, g2) �→ dG(g1, g2) denote a distance on G, left-

invariant w.r.t. the group operation •, i.e. such that ∀g1 ∈
G, dG(g2, g3) = dG(g1 • g2, g1 • g3). Then, for any γ ≥ 0,

we denote by BG(γ) := {g ∈ G : dG(g, e) ≤ γ} the closed

ball of radius γ and center e in G.

B. Transverse Functions

Let

T
k denote the k-dimensional torus, with T = R/2πZ,

X = {X1, . . . , Xn} denote a basis of g,

f denote a smooth function from T
n−m (m < n) to a

neighbourhood U ⊂ G of e.

Then, there exists a matrix-valued function C such that,

along any differentiable path θ(t) on T
n−m, one has

ḟ(θ) = X(f(θ))C(θ)θ̇

= X1(f(θ))C1(θ)θ̇ + X2(f(θ))C2(θ)θ̇
(4)

with X1 = {X1, . . . , Xm} and X2 = {Xm+1, . . . , Xn}.

The function f is said to be transversal to the v.f.
X1, . . . , Xm iff C2(θ) is invertible ∀θ ∈ T

n−m. The trans-

verse function theorem given in [16] asserts the existence

of such functions, whatever the size of U , provided that the

Lie algebra generated by the family X1 is equal to g. It also

provides a general expression for a family of such functions.

III. CONTROL DESIGN

The control of fully-actuated mechanical systems has been

extensively studied in the past via various approaches (static

feedback linearization, passivity,...) and it is not the object of

the present study. However, we find it useful to give a control

design result in this case (with no claim of originality at

this level), prior to treating the more difficult underactuated

case, in order to progressively introduce the solution that we

propose for the latter case, and help the reader appreciate

the similarities and differences between the two control

solutions.

IV. ASYMPTOTIC STABILIZATION IN THE

FULL-ACTUATION CASE

The system’s equations are given by{
ġ = X(g)v
v̇ = u

(5)

Consider a trajectory of reference configurations gr(t), and

denote by vr(t) the associated velocity vector (assumed

differentiable), i.e. ∀t > 0, ġr(t) = X(gr(t))vr(t). The

element g̃(t) := gr(t)−1 • g(t) characterizes the tracking

error at time t. By using (3) one obtains the following error
system: { ˙̃g = X(g̃)(v − AdX(g̃−1)vr)

v̇ = u
(6)

and (g̃, v) = (e, vr) is a solution to this control system,

associated with the control input u = v̇r. The control

problem is now to stabilize this solution. Let V denote a

twice differentiable positive function on G, such that for

some constants γ, αm, αM , βm, βM > 0, and for any g ∈
BG(γ),

P1 : αmd2
G(g, e) ≤ V (g) ≤ αM d2

G(g, e)
P2 : βmV (g) ≤ ∑n

i=1(dV (g)Xi(g))2 ≤ βMV (g)
(7)
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Let us remark that such a function always exists, for instance

in the form of a quadratic function when working with a

system of coordinates.

Proposition 1 Let

u := − k(v − AdX(g̃−1)vr − v�(g̃)) + AdX(g̃−1)v̇r

+ d(Fvr
+ v�)(g̃)

(
X(g̃)(v − AdX(g̃−1)vr)

) (8)

with k > 0, Fvr
(g̃) := AdX(g̃−1)vr, and

v�
i (g̃) := −kidV (g̃)Xi(g̃) (ki > 0; i = 1, . . . , n) (9)

Then, the feedback control (8) applied to the system (6)
exponentially stabilizes the solution (g̃, v) = (e, vr).

Proof: The control (8) is built following a classical backstep-

ping procedure. More precisely,

ξ̃ := v − AdX(g̃−1)vr − v�(g̃) (10)

satisfies the equality
˙̃
ξ = −kξ̃ along any solution of the

controlled system. Therefore, ξ̃ exponentially converges to

zero and, in view of (6), ˙̃g ≈ X(g̃)v�(g̃), with v� itself

chosen in order to yield the exponential stabilization of g̃ = e
when this relation is a strict equality. A more complete and

rigorous proof consists in showing that the function defined

by Ṽ (g̃, ξ̃) := V (g̃) + µ‖ξ̃‖2, with µ > 0 large enough, is

a Lyapunov function for the controlled system, and that Ṽ
decreases uniformly exponentially to zero along the solutions

of this system.

V. PRACTICAL STABILIZATION OF A CLASS OF

UNDERACTUATED SYSTEMS

In what follows, G is a 3-dimensional Lie group (n = 3)

(like R
3, SE(2), and SO(3), for example) and we consider

systems with two control inputs such that, for some basis

X = {X1,X2,X3} of g (and some possible change of

control inputs) System (1) is given by⎧⎪⎪⎨
⎪⎪⎩

ġ = X(g)v
v̇1 = u1

v̇2 = u2

v̇3 = av1v2

(11)

with a 
= 0. It is not difficult to verify, by application of [1],

that these systems are STLC. We will show further, via a

selection of (classical) examples, that several underactuated

mechanical systems can be modeled by these equations. With

the notation of Section IV, the associated error system w.r.t.

a trajectory of reference configurations gr is⎧⎪⎪⎨
⎪⎪⎩

˙̃g = X(g̃)(v − AdX(g̃−1)vr)
v̇1 = u1

v̇2 = u2

v̇3 = av1v2

(12)

and the problem is to determine a feedback control law which

(practically) stabilizes the point g̃ = e for this system. Let us

first introduce two auxiliary equations whose solutions will

be used in the control design{
ṗ1 = ϑ1 (p1 ∈ R)
ḣ1 = X1(h1)ϑ1 (h1 ∈ G)

(13)

The solutions to these equations are given by

p1(t) = p1(0) +
∫ t

0
ϑ1(s) ds

h1(t) = h1(0) • exp ((p1(t) − p1(0))X1)
(14)

The last relation indicates that it suffices that h1(0) be

“close” to e and | ∫ t

0
ϑ1(s)ds| be uniformly bounded by a

small positive number for h1(t) to remain “close” to e (∀t).
Let us define ḡ := g̃ • h−1

1 . For g̃ to remain close to e, it

suffices that h1 and ḡ stay close to e. We show next how to

design a smooth feedback control law which achieves this,

whatever the reference trajectory. In view of (12), (13), and

(2), the time derivative of ḡ is given by

˙̄g = X(ḡ)AdX(h1)

⎛
⎝

⎛
⎝ v̄1

v2

v3

⎞
⎠ − AdX(g̃−1)vr

⎞
⎠ (15)

with v̄1 := v1 − ϑ1. Consider also the set of equations⎧⎨
⎩

ṗ1 = v1 − v̄1

v̇2 = u2

v̇3 = av1v2

(16)

By setting y := (p1, v2, v3)T , Y1(y) := (1, 0, ay2)T , and

Y2 := (0, 1, 0)T , these equations can also be written as

ẏ = Y1(y)v1 + Y2u2 + (−v̄1, 0, 0)T (17)

By noticing that Y1 and Y2 coincide with the control v.f.

of the 3-dimensional chained system with two inputs (up to

the parameter a which is not necessarily equal to one), and

by interpreting v1 and u2 as control inputs, the system (17)

may be seen as a chained system subjected to an additive

perturbation (the last term in the right-hand side of (17)). It

is also well known (and easy to verify) that these v.f. are

left-invariant w.r.t. the group operation ◦ on R
3 defined by

∀(x, y) ∈ R
3×R

3, x◦y :=

⎛
⎝ x1 + y1

x2 + y2

x3 + y3 + ay1x2

⎞
⎠ (18)

Moreover, the v.f. Y1, Y2, and Y3 = [Y2, Y1] = (0, 0, a)T

form a basis of the Lie algebra generated by Y1 and Y2.

By application of the transverse function theorem [16], there

exists a function f , from T to R
3, which is transversal to Y1

and Y2, i.e.

ḟ(θ) = Y (f(θ))c(θ)θ̇ =
3∑

i=1

Yi(f(θ))ci(θ)θ̇ (19)

with c3(θ) 
= 0, ∀θ ∈ T. Such a function is defined e.g. by

f(θ) = exp((ε1 sin θ)Y1 + (ε2 cos θ)Y2)
=

(
ε1 sin θ, ε2 cos θ, aε1ε2

4 sin 2θ
)T (20)

with ε1, ε2 > 0. Indeed, one easily verifies from this

expression that the relation (19) is satisfied with

c1(θ) = ε1 cos θ, c2(θ) = −ε2 sin θ, c3 = −(ε1ε2)/2
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The application, to the system (17), of the approach proposed

in [16] for the control of driftless systems invariant on Lie

groups then yields to define the new variable

z := y ◦ (f(θ))−1

=

⎛
⎝ y1 − f1(θ)

y2 − f2(θ)
y3 − f3(θ) − af1(θ)(y2 − f2(θ))

⎞
⎠ (21)

Either by application of the relation (18) in [16], or by direct

calculation, the time-derivative of z is given by

ż = ∆(f1(θ), z)Y (f(θ))

⎛
⎝ v1 − v̄1 − c1(θ)θ̇

u2 − c2(θ)θ̇
−c3θ̇ + v̄1v2

⎞
⎠ (22)

with

∆(f1, z) =

⎛
⎝ 1 0 0

0 1 0
az2 −af1 1

⎞
⎠

or, equivalently,⎧⎪⎪⎨
⎪⎪⎩

ż1 = v1 − v̄1 − c1(θ)θ̇
ż2 = u2 − c2(θ)θ̇
ż3 = −ac3θ̇ + av̄1v2 − af1(θ)(u2 − c2(θ)θ̇)

+ay2(v1 − v̄1 − c1(θ)θ̇)

(23)

Let us set p1 ≡ f1, then z1(t) = 0 (∀t) and the above set of

equations yields⎧⎨
⎩

˙̄v1 = d
dt (v1 − c1(θ)θ̇) = u1 − c′1(θ)θ̇

2 − c1(θ)θ̈
ż2 = u2 − c2(θ)θ̇
ż3 = −ac3θ̇ + av̄1v2 − af1(θ)(u2 − c2(θ)θ̇)

Once this choice is made, having in mind that (z2, z3) is

related to (v2, v3) via the relations z2 = v2 − f2 and z3 =
v3 − f3 − af1(v2 − f2), the control inputs u1, u2, and θ̇ can

be used to monitor the vector (v̄1, v2, v3)T appearing in the

right-hand side of (15). The control strategy that we propose

here is to exponentially stabilize

ξ̄ :=

⎛
⎝ v̄1

z2

z3

⎞
⎠ − AdX(ḡ−1)vr − v�(ḡ) (24)

to zero (compare with (10)), with v�, given by (9), the

function considered in the case of full actuation. One easily

verifies that the time-derivative of ξ̄ along the system’s

solutions has the following structure:⎧⎪⎨
⎪⎩

˙̄ξ1 = u1 + ε1θ̇
2 sin θ − ε1θ̈ cos θ + r1 + ξ̄1s1(

˙̄ξ2

˙̄ξ3

)
= M(θ)

(
u2

θ̇

)
+

(
r2

r3

)
+ ξ̄1

(
s2

s3

)
(25)

with M(θ) the invertible matrix defined by

M(θ) :=
(

1 ε2 sin θ
−aε1 sin θ aε1ε2

2 cos 2θ

)
and ri, si (i = 1, 2, 3), some functions depending upon

ḡ, ξ̄2, ξ̄3, θ, vr, and v̇r, but not upon ξ̄1. There are obviously

many ways to exploit this structure in order to stabilize ξ̄ to

zero. One of them is pointed out in the following lemma.

Lemma 1 Consider the smooth feedback control defined by⎧⎪⎪⎨
⎪⎪⎩

(
u2

θ̇

)
:= (M(θ))−1

(
−k

(
ξ̄2

ξ̄3

)
−

(
r2

r3

))
u1 := −ε1θ̇

2 sin θ + ε1θ
(2) cos θ − r1

−ξ̄1s1 − kξ̄1 − ξ̄2s2 − ξ̄3s3

(26)

with k > 0, θ(0) equal to any value, and θ(2) the function
depending upon ḡ, ξ̄, θ, vr, v̇r, and v̈r, whose value coincides
with the time-derivative of the control input θ̇ along any
solution of the controlled system.

Then, the application of this control to the system (11)
yields the following equality

1
2

d

dt
‖ξ̄‖2 = −k‖ξ̄‖2 (27)

and thus the exponential stabilization of ξ̄ = 0.

The proof is straightforward.

We now show that the feedback control law defined in

the previous lemma also ensures, under certain conditions,

the ultimate boundedness of the distance between g and the

reference situation gr. By using the definitions of y, z, and

ξ̄, the equation (15) can be rewritten as

˙̄g =X(ḡ)AdX(h1)
(

T (f1)(v�(ḡ) + ξ̄) + (0, f2, f3)T +

(
T (f1)AdX(ḡ−1) − AdX(g̃−1)

)
vr

)
(28)

with

T (f1) :=

⎛
⎝1 0 0

0 1 0
0 af1 1

⎞
⎠ (29)

By (14), and since p1 = f1, h1(t) = h1(0)•exp((f1(θ(t))−
f1(θ(0)))X1). Let us assume (for the sake of simplification)

that h1(0) is chosen equal to e. Then, when maxθ ‖f(θ)‖ is

small, System (28) may be seen as an “approximation” of

˙̃g = X(g̃)v�(g̃) (30)

for which the point g̃ = e is exponentially stable. One may

thus hope that it retains some of the stability properties of

(30). The following proposition, which is the main result of

this paper, gives concrete form to this hope.

Proposition 2 Let h1(0) := e, θ(0) = ±π/2, and let
η denote a class-K function such that maxθ(‖f(θ)‖ +
dG(h1, e) + ‖I3 − AdX(h1)‖) ≤ η(ε) with ε := ‖(ε1, ε2)‖.
Then, for any constant Kr, there exists ε0, γg, γv, β > 0 such
that, for any reference trajectory gr such that ‖vr‖ ≤ Kr,
and for any ε ∈ (0, ε0],

dG(g̃(0), e) ≤ γg

‖(v − vr)(0)‖ ≤ γv

}
⇒ dG(g̃, e) is u.b. by βη(ε) (31)

where “u.b.” means “ultimately bounded”. Moreover, if
‖v̇r(t)‖ and ‖v̈r(t)‖ are bounded, then ‖v(t)‖ and the
control inputs u1(t), u2(t), and θ̇(t), are bounded.
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The important points of this proposition are i) the existence

of an ultimate bound for the closed-loop tracking error, ii)
the (theoretical) possibility of reducing this bound as much

as desired by choosing ε1 and ε2 small enough, and iii) the

possibility of specifying an attraction domain uniform w.r.t.

the reference trajectory (for a given bound on ‖vr‖), and

w.r.t. ε ∈ (0, ε0].

Proof: From (28), ˙̄g = L1 + L2 + L3 + L4 with

L1 = X(ḡ)v�(ḡ)
L2 = X(ḡ)(AdX(h1)T (f1) − I3)v�(ḡ)
L3 = X(ḡ)AdX(h1)(T (f1)AdX(ḡ−1) − AdX(g̃−1))vr

+X(ḡ)AdX(h1)(0, f2, f3)T

L4 = X(ḡ)AdX(h1)T (f1)ξ̄

Let γ denote any constant such that the properties P1 and P2

in (7) are satisfied for g ∈ BG(γ). Then, for ḡ ∈ BG(γ), the

derivatives dV (ḡ)Li of V (ḡ) along Li (i = 1, . . . , 4) satisfy

the following relations:

dV (ḡ)L1 ≤ −βmkmV (ḡ)
dV (ḡ)L2 ≤ α2(η + η2)(ε)V (ḡ)
dV (ḡ)L3 ≤ α3(η + η2)(ε) (1 + Krζ(ḡ))V

1
2 (ḡ)

dV (ḡ)L4 ≤ α4(1 + η)2(ε)‖ξ̄(0)‖ exp(−kt)V
1
2 (ḡ)

(32)

with ζ a smooth function, and where α1, . . . , α4 denote

some constants. The first inequality in (32) follows from

(7) and (9). The second inequality follows from (7), (9),

the definition of η, and the definition (29) of T (f1). The

third inequality is also based on these relations, the fact that

‖vr‖ ≤ Kr, and the relation g̃ = ḡh1 which implies that

AdX(g̃−1) = AdX(h−1
1 )AdX(ḡ−1)

Finally, the last inequality follows from (7) and (27). By

using the assumption θ(0) = ±π/2, and the fact that

dG(ḡ, e) ≤ dG(g̃, e) + dG(h1, e) ≤ dG(g̃, e) + η(ε) (33)

one shows from (24) that, when g̃(0) and v(0) satisfy the

majorations in (31),

‖ξ̄(0)‖ ≤ α5 ((1 + Kr)γg + (1 + η)γv + (1 + Kr + η)η)

Since η vanishes at ε = 0, one deduces from the above

inequality, and in view of (32), that, for ε0, γg, γv small

enough, for any ε ∈ (0, ε0],

{ḡ ∈ BG(γ) and V (ḡ) = αmγ2} =⇒ V̇ (ḡ) < 0 (34)

with

V̇ (ḡ) :=
4∑

i=1

dV (ḡ)Li

By reducing ε0 and γg further, if necessary, one deduces

from (7) and (33) that

dG(g̃(0), e) ≤ γg =⇒ dG(ḡ(0), e) ≤ γ
√

αm/αM

=⇒ V (ḡ(0)) ≤ αmγ2 and ḡ(0) ∈ BG(γ)

so that, by (7) and (34), ḡ(t) ∈ BG(γ) for all t
and dG(ḡ(t), e) is bounded. Therefore dG(g̃(t), e) is also

bounded. The ultimate bound of dG(g̃, e) pointed out by

(31) is then obtained by using the fact that η(0) = 0 (so

that η2(ε) � η(ε) when ε is small), and by using (7), (32),

and the inequality

dG(g̃, e) ≤ dG(ḡ, e) + dG(h1, e) ≤ dG(ḡ, e) + η(ε)

The last part of the proposition is obvious. Indeed, the

boundedness of dG(ḡ, e), ‖ξ̄‖, ‖v�‖, and ‖vr‖ yields the

boundedness of v2 and v3. Since ‖v̇r‖ is bounded, u2, θ̇,

and v1 are also bounded. Finally, the boundedness of u1

follows from all these bounds and the boundedness of ‖v̈r‖.

VI. EXAMPLES

In this section, examples of systems that can be modeled

by (11) are pointed out. The control approach developed in

the previous section applies to them directly.

A. Second-order chained system
In the same way as first-order chained systems are used

to model the kinematic equations of various nonholonomic

mechanisms, the following second-order chained system⎧⎨
⎩

ẍ1 = u1

ẍ2 = u2

ẍ3 = u1x2

(35)

can be used to model the dynamics of a certain number

of underactuated mechanical systems, like planar PPR and

RRR manipulators, idealized surface vessels and underwater

vehicles [18], [19], [20], [21], [22]. It is simple to verify

that this second-order chained system belongs to the set of

systems (11), with G = R
3, g = x, X1(x) = (1, 0, x2)T ,

X2 = (0, 1, 0)T , X3 = (0, 0, 1)T , and a = −1. These

v.f. are left-invariant w.r.t. the group operation • defined by

x•y = (x1+y1, x2+y2, x3+y3+y1x2)T (i.e. the same as for

the first-order chained system). The next examples illustrate

that, as for nonholonomic systems, the transformation of

mechanical equations into the chained form is not necessary

for control design purposes.

B. Planar PPR manipulator
The system and the equations are those described in [18]:⎧⎨
⎩

mxẍ − m3lα̈ sin α − m3lα̇
2 cos α = τ1

my ÿ + m3lα̈ cos α − m3lα̇
2 sin α = τ2

Iα̈ − m3lẍ sin α + m3lÿ cos α = 0
(36)

with mx > my > m3, and I = I3 + m3l
2. One can verify

that the above system of equations is equivalent to⎧⎨
⎩

¨̄x = τ1
m3

− (mx

m3
− 1)ẍ

¨̄y = τ2
m3

− (my

m3
− 1)ÿ

α̈ = δ ¨̄x sin α − δ ¨̄y cos α

with δ = m3l
I3

, x̄ := x + l cos α, and ȳ := y + l sinα. From

there, it is not difficult to show that this system can also be

written as ⎛
⎝ ˙̄x

˙̄y
α̇

⎞
⎠ =

(
R(α) 02×1

01×2 1

)
v̄

˙̄v =

⎛
⎝ū1 + v̄2v̄3

ū2 − v̄1v̄3

−δū2

⎞
⎠

(37)
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with R(α) the rotation matrix in the plane of angle α, and

(ū1, ū2) new control variables such that (τ1, τ2) is equal to

some function (defined everywhere) of (ū1, ū2, α, α̇). This

system can in turn be rewritten as (11) with g1 := x̄+ cos α
δ =

x+(l+ 1
δ ) cos α, g2 := α, g3 := ȳ+ sin α

δ = y+(l+ 1
δ ) sin α,

u1 := ū1 + v̄2v̄3, u2 := −δū2, v1 := v̄1, v2 := v̄3, v3 =
v̄2 + v̄3/δ, a = −1, and

X(g) :=

⎛
⎝cos α 0 − sin α

0 1 0
sinα 0 cos α

⎞
⎠

The associated Lie group is G = SE(2) and the group

operation is defined (with a slight abuse of notation) by

g • g′ := g + X(g)g′.

C. Planar rigid body (hovercraft)

Consider a planar body with center of mass C capable

of gliding above the ground with no friction, and denote by

(x̄, ȳ) the coordinates of C w.r.t. a fixed frame. A force is

applied to this body at a point P located at a distance l

(
= 0) from C, and the direction of
−−→
PC characterizes the

body’s orientation α. The components of the force in the

body’s frame are (f1, f2), with f1 the projection of the force

on
−−→
PC. The asymptotic stabilization of the situation of this

system has been studied e.g. in [9] and [3]. One can verify

that the equations modeling the motion of this underactuated

system are the same as those of the planar PPR manipulator.

They are given by (37), with ū1 := f1
m , ū2 := f2

m , and

δ = lm
J (with m and J the body’s mass and inertia).

D. Underactuated satellite (with thrusters)

Let us assume that two (sets of) thrusters produce torques

to modify the orientation of a rigid body floating in space,

and, for the sake of simplification, that the directions of

these torques are aligned with the first two principal axes

of the satellite. The asymptotic stabilization of the satellite’s

attitude has previously been studied, for instance, in [6],[7],

[8], or [3]. The well-known equations of this system are{
Ṙ = RS(v)
Jv̇ = Jv × v + (τ1, τ2, 0)T (38)

with S(v) the matrix associated with the vector product in

R
3, i.e. such that S(v)x := v × x, J = Diag(j1, j2, j3).

We further assume that a := j1−j2
j3


= 0, so that the system

is STLC. A rewriting of this system in the form of (11) is

obtained by setting g = R, Xi(R) := RS(ei), {e1, e2, e3}
the canonical basis of R

3, u1 := 1
j1

(τ1 +(j2− j3)v2v3), and

u2 := 1
j2

(τ2 + (j3 − j1)v1v3). For this system, G = SO(3),
and the group operation is the classical matrix product.

VII. CONCLUDING REMARKS

A new control approach for a class of STLC underactuated

mechanical systems has been proposed. It is based on the

use of transverse functions, yields smooth feedback laws,

and allows to practically stabilize any (admissible or non-

admissible) reference trajectory of configurations with pre-

defined precision. Possible prolongations of this work are

multiple: extension to systems of higher dimensions, gen-

eralization of the approach to a larger class of systems (not

necessarily STLC), detailed study of the stabilization of fixed

situations and, more generally, of admissible trajectories,

robustness issues, etc.
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[11] D. Lizárraga, N. Aneke, and H. Nijmeijer, “Robust point stabilization
of underactuated mechanical systems via the extended chained form,”
SIAM Journal on Control and Optimization, vol. 42, pp. 2172–2199,
2004.

[12] C. Byrnes and A. Isidori, “On the attitude stabilization of rigid
spacecraft,” Automatica, vol. 27, pp. 87–95, 1991.

[13] K. Kobayashi, “Controllability analysis and control design of non-
holonomic systems,” Ph.D. dissertation, Department of Mechanical
Engineering, Kyoto University, Japan, 1999.

[14] N. Aneke, “Control of underactuated mechanical systems,” Ph.D.
dissertation, Department of Mechanical Engineering, Eindhoven Uni-
versity of Technology, The Netherlands, 2003.
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