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Abstract— This paper presents a compact and complete
approach for realizing high performant control of fully parallel
manipulators with a computed-force control scheme (CFC).
The proposed method of dynamics computation is based on the
principal of virtual power and allows real-time implementation
without falling back on inaccurate model simplifications. The
efficiency and performance is demonstrated on a 6-dof complex
parallel manipulator within commercial control hardware
setup. Crucial points for the enhancement of tracking per-
formance are discussed in details.

I. INTRODUCTION

The majority of commercial robotic systems or machine
tools are controlled with simple and linear single-joint
feedback controller. The tracking performance is however
limited, especially for nonlinear systems in high speed
range. There is still a big gap between the sophisticated
control algorithms developed in research and the commer-
cial ones. Researcher have to assume though a part of re-
sponsibility on this issue, since sometimes the practicability
of their developed approaches is neglected. In this paper
a computed-force control algorithm (CFC) is carried out
for parallel robots from the theory until application on a
commercial control system.

It is commonly known that the inverse dynamics com-
putation for feedforward control of robotic manipulators
is crucial for high performance tracking [1], [2], [3].
This issue becomes delicate for parallel kinematic manip-
ulators (PKM) since the coupled structure and the high
nonlinearity make the dynamics complex to solve [4], [5],
[6]. Many approaches were proposed for a computational
efficient calculation of the dynamics. We think that there
are still different drawbacks. The proof of practicability for
control was not regarded in some theoretical works [4],
[5], [6], [7]. Besides, most of common approaches neglect
friction and joint losses. It was demonstrated in [1] that
for some systems, especially friction compensation yields
significant improvement of control performance. Success-
ful implementation in robotic systems was shown in [3]
and in [8], where friction was taken into account. In the
other way around, the rigid-link dynamics were strongly
simplified to reduce the computational cost and ensures the
real-time ability of the models. In this paper we contribute
to remove all these drawbacks by choosing an appropriate
approach for modelling and computing the inverse dynamics
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of parallel manipulators. The proposed model takes into
account all relevant dynamics, including inertial influences
of all bodies and friction losses in all passive and ac-
tive joints. The presented approach is kept general and
remains available for the major cases of PKM. To assure
the computational efficiency and real-time practicability
the JOURDAIN’s principle of virtual power was regarded
for formulating all effects in a uniform way (section II
and III). To make the model more powerful and useful for
further applications such adaptive control [3] or parameter
identification [1], [9], the equations of motion are expressed
in a parameter-linear form [6], [10], [11], [12]. The pro-
posed approach is valid and applicable for a wide range
of parallel manipulators [2]. The implementation in a real
test bed within a commercial control hardware is proved in
terms of computational cost and time (section IV) and in
terms of control performance (section V). The experimental
results are carried out with the innovative direct driven
parallel robot PaLiDA. The machine was developed by
the institute of production engineering of the university of
Hannover for high-speed manipulation and machining [2].
In every section, drawbacks and advantages of alternative
methodologies known from literature are critically discussed
and systematically compared with the approach proposed in
this paper.

II. KINEMATICS ANALYSIS

A general 6-DOF parallel manipulator is constituted of a
moving platform (end-effector platform) attached with six
serial actuated kinematic chains to the base platform [2], [4],
[5], [6], [7]. Figure 1 shows a general sketch of such robotic
manipulator. The goal of the kinematic analysis is the deter-
mination of the motions of all modelled bodies in respect
to the generalized coordinates. The vector of generalized
coordinates λ is composed of the cartesian coordinates of
the end-effector platform (0)r

0
E =

[
x, y, z

]
and the

tilting angles (α, β, γ) according to the cardan or the euler
formalism. Additionally, the vector of the generalized veloc-
ities is defined as θ̇ =

[
(0)vE

T, (0)ωE
T

]T
that includes

the translational and angular velocities with reference to a
cartesian frame. The algorithm efficiency proposed in this
paper is based on treating each leg as conventional serial
chain. Afterwards the constraints of the closed-loops are
taken into account. The vectors joining the fixed joints Aj

and the platform joints Bj are

(0)r
Aj

Bj
= [xj yj zj ]

T = −(0)r
0
Aj

+ (0)r
0
E + R0E

(E)r
E
Bj

,
(1)
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where R0E is the orientation matrix of the end-effector (See
the sketch in Fig. 1). The velocities and accelerations of Bj

are given by

vBj
= vE + ωE × rE

Bj
, (2)

aBj
= aE + ω̇E × rE

Bj
+ ωE × ωE × rE

Bj
. (3)

The single robot struts can be now considered as serial
chain robots with respective end-effector kinematics given
by r

Aj

Bj
, vBj

and aBj
. For each body, body-fixed co-

ordinate frames are defined by the modified DENAVIT-
HARTENBERG (MDH) notation [13]. This means that the
frame i is fixed to the limb i. The zi-axis is the axis of
joint i and the xi-axis is the normal of zi and zi+1. Frame
i is defined with respect to frame i− 1 by the homogenous
transformation matrix T i−1

i

T i−1
i =

[
Ri−1

i (i−1)r
i−1
i

0 0 0 1

]

=




cϑi sϑi 0 ai

sϑicαi cϑicαi −sαi −disαi

sϑisαi cϑisαi cαi dicαi

0 0 0 1


 (4)

which is a function of the MDH-parameters ϑi, di, αi and
ai [6], [12]. The abbreviations sx and cx denote sin(x)
and cos(x) respectively. The matrix Ri

i−1 and the vector

(i−1)r
i−1
i define orientation and position of frame i with

respect to frame i−1. The inverse kinematics of each chain
gives an analytic determination of the joint variables ϑi ( for
revolute joints) and di (for prismatic joints) as well as their
time derivatives. The velocity (i)vi and angular velocity
(i)ωi of each limb i and the corresponding accelerations
can be calculated recursively by the following equations:

(i)vi = (i)vi−1 + (i)ω̃i−1(i)r
i−1
i + ez ḋi (5)

(i)v̇i = (i)v̇i−1 + (i)
˙̃ωi−1(i)r

i−1
i +

(i)ω̃i−1(i)ω̃i−1(i)r
i−1
i + d̈iez +

2ḋi(i)ω̃i−1ez (6)

(i)ωi = (i)ωi−1 + ezϑ̇i (7)

(i)ω̇i = (i)ω̇i−1 + ϑ̇i(i)ω̃i−1ez + ϑ̈iez (8)

where ez = [0 0 1]T. The tilde-operator (̃) defines the
crossproduct ãb = a × b. The acceleration ai includes the
gravitational acceleration. Simultaneously the translational
and rotational Jacobians of each limb can be calculated

JTi
=

∂(i)vi

∂θ̇
= Ri

i−1

(
JTi−1 − (i−1)r̃

i−1
i JRi−1

)
+ez

∂ḋi

∂θ̇
(9)

JRi
=

∂(i)ωi

∂θ̇
= Ri

i−1JRi−1 + ez
∂ϑ̇i

∂θ̇
. (10)

with Ri−1
i = (Ri

i−1)
T. For the actuated joints characterized

by the vector of actuated variables qa, the inverse Jacobian
of the manipulator J−1 = ∂q̇a/∂θ̇ can be determined in

Fig. 1. Scheme of a general 6-DOF parallel manipulator.

the same sense. The use of the MDH-notation is advanta-
geous for the analysis of the forward and inverse kinematics.
It allows the application of reduction rules for dynamic
parameters and ensures the computational efficiency within
standard control and processors [12]. Similar conclusions
were also met recently for parallel manipulators [6]. Fur-
thermore, the real axis directions of the universal joints can
be easily taken into account. The conventional simplification
as ball-and-socket joint is not necessary [4], [5].

III. EFFICIENT DYNAMICS FORMULATION

The dynamics of parallel robots has been formulated
in literature mostly using the Newton-Euler formalism,
which is more efficient for such mechanisms. To avoid
the calculation of constraint forces like in [5] or [7], the
D’ALEMBERT principle of virtual work was used in [4],
[10]. This principle is based on virtual displacements and
virtual work. It is though not appropriate for modelling
friction forces that depends however on joint velocities.
To assure the integration of friction within the inverse
dynamics, the equivalent JOURDAIN’s principle of virtual
power is used. It considers virtual velocities and virtual
power and allows not only efficient calculation but also
provides the linear form of the dynamics, necessary for
accurate model identification [1], [9]. The power balance
equation is obtained as

δθ̇
T
τ = δq̇T

a Qa ⇔ τ =
(

∂q̇a

∂θ̇

)T

Qa, (11)

where τ is the vector of the generalized forces and Qa

is the vector of the actuator forces. Equation (11) means
that the virtual power resulting in the space of generalized
coordinates is equal to the actuation power. The power
balance can be applied for rigid-body forces:

Qa,rb =
(

∂q̇a

∂θ̇

)−T

τ rb = JTτ rb, (12)
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and for friction losses in all joints

Qa,f =
(

∂q̇

∂q̇a

)T

Qf = JT

(
∂q̇

∂θ̇

)T

Qf . (13)

It is important to notice that Qa,rb and Qa,f present ALL
rigid-body forces and ALL friction forces transformed into
the actuation space. The formulation of parameter-linear
dynamics is discussed in the following subsections.

A. Parameter-linear Form of Rigid-Body Dynamics

The generalized rigid-body forces for a manipulator with
N bodies are

τ rb =
N∑

i=1

[
JT

Ti

(
mi(i)v̇i + (i)

˙̃ωisi + (i)ω̃i(i)ω̃isi

)
+JT

Ri

(
(i)I

(i)
i (i)ω̇i + (i)ω̃i

(
(i)I

(i)
i (i)ωi

)
+ s̃i(i)v̇i

)]
. (14)

with dynamic parameters of each body i: its mass mi, its
first moment si := [six

siy
siz

]T = mi(i)r
i
Ci

(ri
Ci

: vector
from coordinate frame to centre of mass) and its inertia
tensor about the corresponding coordinate frame (i)I

(i)
i .

New operators ()∗ and ()� are defined:

ω∗
i I

�
i := (i)I

(i)
i (i)ωi, (15)

with ω∗
i :=


 ωix

ωiy
ωiz

0 0 0
0 ωix

0 ωiy
ωiz

0
0 0 ωix

0 ωiy
ωiz


 and

I�
i = [Iixx

Iixy
Iixz

Iiyy
Iiyz

Iizz
]T, (16)

which helps the simplification of the generalized rigid-body
dynamics [10], [12]:

τ rb =
N∑

i=1

[
JT

Ti
JT

Ri

]
Ωi︸ ︷︷ ︸

Hi


 I�

i

si

mi




︸ ︷︷ ︸
pi

(17)

= [H1 · · · HN ]
[
pT

1 · · · pT
N

]T
, (18)

with

Ωi =

[
0 (i)

˙̃ωi + (i)ω̃i (i)ω̃i (i)v̇i

(i)ω̇
∗
i + (i)ω̃i (i)ω

∗
i −(i)v̇i 0

]
.

(19)
Considering the power balance given by (11) the actuation
forces resulting from the rigid-body dynamics can be de-
rived in a linear form:

Qa,rb =
[
JT H

]
p∗

rb. (20)

The dimension of the parameter vector p∗
rb has to be

reduced for an efficient calculation and to assure the iden-
tifiability of the system [1], [2], [3]. Only few publications
treated the parameter reduction for PKM systematically [6],
[12], although this issue is crucial for identification or for
adaptive control algorithms [1], [3]. Some approaches were

presented and implemented successfully in practice, but the
considered models are significantly simplified [3], [8]. In the
recently published methodology [6], a very good systematic
study of parameter reduction of parallel robots is shown, but
unfortunately, no practical results were investigated. The
proposed algorithm in the following is based on former
works for serial and parallel manipulators [6], [11], [12],
[13]. The matrices Hi in eq. (17-20) can be grouped in
single serial kinematic chains (which are here the legs or
struts), such that a recursive calculation:

Hi = Hi−1Li + Ki (21)

can be achieved. The matrices Li and Ki are given in [12]
and derived in [13] for NEWTON-EULER equations. The
first step considers in eliminating all parameters p∗rb,j that
correspond to a zero column hj of H , since they do
not contribute to the dynamics. The remaining parameters
are then regrouped to eliminate all linear dependencies
by investigating H . If the contribution of a parameter
p∗rb,j depends linearly on the contributions of some other
parameters p∗rb,1j , . . . , p

∗
rb,kj , the following equation holds:

hj =
k∑

l=1

aljhlj . (22)

Then p∗rb,j can be set to zero and the regrouped parameters
p∗rb,lj,new can be obtained by

p∗rb,lj,new = p∗rb,lj + aljp
∗
rb,j . (23)

The recursive relationship given in (21) can be used for pa-
rameter reduction. If one column or a linear combination of
columns of Li is constant with respect to the joint variable
and the corresponding columns of Ki are zero columns, the
parameters can be regrouped. This leads to the rules which
are formulated in [11], [12] and in [13]. The rules can be
directly applied to the struts, since they are treated as serial
kinematic chains and their coordinate frames are defined
with respect to the MDH-convention (section II). For revo-
lute joints with variable ϑi, the other MDH-parameters are
constant. This means that the 9th , the 10th and the sum
of the 1st and 4th columns of Li and Ki comply with the
mentioned conditions. Thus, the corresponding parameters
Iiyy

, siz
and mi can be grouped with the parameters of

the antecedent joint i− 1. For prismatic joints however, the
moments of inertia can be added to the carrying antecedent
joint, because the orientation between both links remain
constant. For a detailed insight, it is recommended to
consider [6] and [13].

The end-effector platform closes the kinematic loop and
further parameter reduction is possible. The velocities of
the platform joint points Bj and those of the terminal
MDH-frames of the respective leg are the same. It results
therefore dependencies of energy-functions of the terminal
leg body with those of the platform [11]. Their masses
can be grouped to the inertial parameter of the platform
according to steiner’s laws (see section IV and table I).
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B. Parameter-linear Form of Friction Dynamics

Commonly friction in robotics is modelled as force
characteristics depending on joint velocities q̇i:

Qfi = [φ1(q̇i) . . . φm(q̇i)] [α1i . . . αmi]
T

, (24)

where φk are elemental functions which can be linear
(e.g. viscous damping) and nonlinear (e.g. coulomb or dry
friction). Regrouping friction losses in all n joints yields

Qf = [D1(q̇), . . . ,Dm(q̇)]︸ ︷︷ ︸
Df

[
αT

1 , . . . ,αT
m

]T︸ ︷︷ ︸
pf

, (25)

with
αT

k = [αkj , . . . , αkn] , (26)

and

Dk(q̇) = diag (φk(q̇1), φk(q̇2), . . . , φk(q̇n)) . (27)

Applying the JOURDAIN’s principle of virtual power as
given in eq. (13) leads to the linear form of the resulting
friction forces in the actuation space

Qa,f =

[
JT

(
∂q̇

∂θ̇

)T

Df

]
pf. (28)

The accurate analysis of friction for PKM is mostly not
regarded in most publications, especially in those interested
in the theoretical derivation of motion equations [4], [6], [7].
The practice reveals the necessity of friction compensation
for control improvement, which explains why its considera-
tion took mostly place in control applications [3], [8], rather
than in theoretical works. However, in such cases friction
is considered only for the drives, whereas losses in passive
joints are neglected. This work proposes the interface of
this issue by combining accurate modelling with control
application. The use of the JOURDAIN’s principle allows
a uniform derivation of the integral dynamics of parallel
manipulators. The practical application of the presented
theory is discussed in the following.

IV. APPLICATION ON THE INNOVATIVE HEXAPOD

PALIDA.

The considered hexapod PaLiDA is equipped with elec-
tromagnetic linear direct drives as actuators. The struts
are variable in length. PaLiDA is designed for high-speed
handling and machining tasks with low process forces,
like deburing. Direct linear drives have several advantages
compared to conventional ball screw drives, e.g. reduced
mechanical components, no backlash, low inertia with a
minimized number of wear parts. Furthermore, higher con-
trol bandwidth and extremely high accelerations can be
achieved. The linear direct drives were originally designed
for fast lifting movements. For use in robotic application,
they were enhanced by power (cooling), mechanical design
(reducing backlash and friction), position measuring and
control. The system was presented at the Hannover indus-
trial Fair in 2001 (Fig. 2).

Fig. 2. The hexapod PaLiDA. Left: presentation in the Hannover industrial
Fair, 2001. Right: CAD-Model

A. Kinematics and Dynamics of PaLiDA

The robot is composed of 6 struts and an end-effector
platform. Each strut of the hexapod is composed of three
bodies as depicted in Fig. 3. Thus, the whole system is
modelled with 19 bodies: the movable platform (index E),
6 identical movable cardan rings (index 1), 6 identical
stators (index 2) and 6 identical sliders (index 3). Starting
from the robot’s inverse kinematics given by (1, 2, 3), the
inverse kinematics of the single strut can be solved:

lj =
√

x2
j + y2

j + z2
j (29)

αj = arctan
(

xj

−zj

)
(30)

βj = arctan
(

yj

rj

)
. (31)

where rj =
√

x2
j + z2

j . The calculation of the velocities and
accelerations as well as the Jacobians of the different bodies
is achieved recursively according to (5-10). The necessary
definitions of the MDH-Parameters for the struts are given
in Fig. 4.

(0)

(1)

(2)

(3)

xe

ye

ze

jA

jB
jy

jx
jr

jl

jβ

jβ

jα

jα

jz−

Fig. 3. Kinematics of single strut

For the calculation of the dynamics, minimal base pa-
rameters are necessary. For the rigid-body model the rules
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i di θi ai αi

1 0 α − π
2 0 π

2

2 0 β − π
2 0 −π

2

3 li 0 0 −π
2

Fig. 4. MDH-frames and parameters of the struts

discussed in sections III-A are applied. It results a model
defined by 10 minimal parameters, which are given in
table I. A systematic method for the reduction of friction
parameters is not necessary. It is recommended though to
examine experimental investigations or system properties
to decide about optimal parametrization and modelling. For
PaLiDA friction forces in all joints are modelled as a sum
of viscous damping and dry friction:

Qfi
= r1i

sign(q̇i) + r2i
q̇i (32)

The actuated joints lj correspond 6 different dry friction
and also 6 different viscous damping coefficients. Friction
in the the passive joints is modelled only as dry friction with
a common parameter for all αj and another one for all βj-
joints. The friction model contains therefore 14 different
parameters. It is possible to keep the maximal number of
friction parameters but that would be disadvantageous in
terms of parameter identification [1].

TABLE I

BASIC RIGID-BODY MODEL PARAMETERS.

i prbi

1 Izz1 + Iyy2 + Izz3
2 Ixx2 + Ixx3 − Iyy2 − Izz3
3 Izz2 + Iyy3
4 sy2
5 sz3

6 IxxE + m3
∑6

j=1(r2
Byj

+ r2
Bzj

)

7 IyyE + m3
∑6

j=1(r2
Bxj

+ r2
Bzj

)

8 IzzE + m3
∑6

j=1(r2
Bxj

+ r2
Byj

)

9 szE + m3
∑6

j=1 rBzj

10 mE + 6 m3

B. Computational Cost and Model-Parameter Identification

The presented approach is implemented in the computer
algebra program MAPLETM. It allows an automatic gen-
eration of optimized C-code. The inverse Jacobian given
in (12,13) is inverted by Gaussian elimination. The number
of operations of the resulting code is given in Table II.
The total computational cost proves the efficiency of the
approach. As a comparison, the most efficient methodolo-
gies known from literature and presented in [6] and in [7]
require the total of 2078 and 2150 operations respectively.

Regarding that friction was not considered in those ap-
proaches, the here discussed algorithm with a total of 1987
operations and including friction can be considered as a
further improvement. It is not necessary to parallelize the
computation on several processors like suggested in [6], [7],
since this can not be fulfilled by commercial and standard
control systems. The implementation of the computed-
force control on PaLiDA required (including path-planning
and joint-control) less that 0.15 ms at a sample rate of
0.5 ms. This excellent real-time property was achieved on
a commercial dSPACE Power-PC 604e (333 MHz). The

TABLE II

COMPUTATIONAL COST FOR THE CALCULATION OF DYNAMICS.

+/− ×/÷
Single strut (6×) 88 151
End-effector 100 116
Inversion of J−1 137 110
Friction model 36 54
Total 801 1186

presentation of the dynamics in a minimal-parameter form
is not only computational efficient but allows also the use
of linear estimators for parameter identification [1], [3],
[9]. The identification of rigid-body and friction model
parameters is necessary for accurate parametrization of
the computed-force control. We presented two different
strategies for PKM. In [1] the identification of rigid-body
and friction models can be achieved separately by using
measurements at different configurations. In [9] an opti-
mized harmonic trajectory is used for optimal excitation and
identification of the model parameters. In both approaches
the motor currents are sufficient for the measurement of
the actuator forces. The kinematics are obtained from the
actuator lengths measured by internal hall sensors.

V. EXPERIMENTAL RESULTS AND CONTROL

IMPROVEMENT

In this section the results of the proposed dynamics
modelling methodology is illustrated in terms of control im-
provement. The concept was implemented on a commercial
control hardware with a single processor. First the accuracy
of the model prediction in respect to the measured output is
investigated. Subsequently the influence of the computed-
force in the control improvement is demonstrated. For
this purpose a benchmark trajectory is used. It is a circle
in the middle of the workspace with an inclination of
30◦ degrees in respect to the cartesian x-axis. The end-
effector velocity is 1 ms−1. It was shown in [3] that for
PKM, tracking errors already increase exponentially above
a velocity of ≈ 0.1ms−1. Figure 5 shows a comparison
between the measured and calculated actuator forces while
the benchmark motion for the first 4 - arbitrarily chosen
- actuators. Neglecting friction yields important deviation
of model-predicted dynamics from the real behavior. Cal-
culation of rigid-body forces is not sufficient. Friction is
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Fig. 5. Comparison between measured and calculated forces by regarding
only rigid-body dynamics (rb) and by additionally including friction.
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Fig. 6. Control errors of actuators while a circular motion. Comparison
between single-joint control (SJ), computed force (CF) using only rigid-
body dynamics (rb) and with additional friction compensation (rb+frict.).

crucial for model accuracy. This becomes clear by the
comparison of tracking errors when using different models
for the computed-force concept. Figure 6 shows control
errors for the same actuators by using simple single-joint
control (SJ) and computed-force (CF) with only rigid-body
dynamics and with additional friction compensation. The
experimental results demonstrate primarily, that SJ-control
is not appropriate for handling PKM in the range of high
speed and high dynamics. The compensation of rigid-body
forces yields fair improvement of control quality, mostly in
acceleration phases. Most important for the accuracy is the
compensation of friction which yields significant reduction
of the control errors. This demonstrates exemplarily the
decisive role of friction dynamics in control improvement in
practice. It is important to mention, that this issue is always
close-knit with reliable model identification [1], [9].

VI. CONCLUSIONS

The main idea of this paper is to present a high efficient
methodology for the calculation of complex dynamics of
parallel manipulators. The proposed approach is based on
the JOURDAIN’s principle of virtual power and allows a
uniform expression for rigid-body and friction dynamics.
The resulting computational cost is given and compared to
those known from other publications. The method enables
real-time calculation and implementation of computed-force
control without any model simplifications into standard and
commercial control systems. The success was substantiated
with experimental results that demonstrate the crucial role
of friction compensation for the significant enhancement of
control accuracy.
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