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Abstract— In the behavioral approach, the stabilization prob-
lem is to find, for a given plant behavior, a controller behavior
such that the manifest controlled behavior is stable. In this
paper we will establish, for a given plant behavior, a parame-
trization of all stabilizing controller behaviors.

I. INTRODUCTION

An important issue in control is the problem of parametriz-
ing, for a given plant, the space of all stabilizing controllers.
In the context of feedback control of linear systems, this
issue was treated in the seminal paper [8] by Youla, Jabr and
Bongiorno, that initiated a complete new line of research.
Since then, the well-known ‘Youla parametrization‘ of all
stabilizing controllers has become instrumental in feedback
control of linear systems.

More recently, in the context of the behavioral approach
to linear systems, in [2] the problem of stabilization by
interconnection has drawn attention. In this context, stabi-
lization is no longer restricted to feedback only, but can
take place through general interconnection, with feedback
as an important special case. Given is a plant behavior
with two types of system variables, the variable w to be
controlled and the variable c (the control variable) that we
are allowed to put constraints on. A controller for our plant is
an additional system behavior, called the controller behavior.
Interconnecting the plant with the controller simply means
requiring c to be an element of the controller behavior. The
space of w trajectories that are possible after interconnecting
the plant behavior and the controller behavior forms the
so called manifest controlled behavior. The interconnection
is called regular if no restrictions on c that were already
present in the laws on the plant behavior, are repeated in
the controller behavior. The stabilization problem is to find,
for the given plant behavior, a controller behavior such that
the interconnection is regular and the manifest controlled
behavior is stable, in the sense that every w converges to
zero as time tends to infinity.

For the special case of full interconnection (i.e. the case
that the to be controlled variable w and the control variable
c coincide) this problem was studied in [6]. For the general
case, in [2] (see also [1]) necessary and sufficient conditions
on the plant behavior were found for the existence of a
stabilizing controller. These conditions were formulated com-
pletely representation independent, i.e. they were formulated
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in terms of intrinsic properties of the plant behavior, and not
in terms of properties of the representation in terms of which
the plant behavior is given.

In the present paper we will address the problem of
finding, for a given plant behavior, a parametrization of all
stabilizing controller behaviors. This problem was studied
before in [3] for the special case of full interconnection.
Here we will derive a parametrization for the general, partial
interconnection case.

II. LINEAR DIFFERENTIAL SYSTEMS

In the behavioral approach to linear systems, a dynamical
system is given by a triple Σ = (R, Rq,B), where R is
the time axis, R

q is the signal space, and the behavior B is
a subset of Lloc

1 (R, Rq) (the space of all locally integrable
functions from R to R

q) consisting of all solutions of a set
of higher order, linear, constant coefficient differential equa-
tions. Such a set of differential equations can be represented
by a real polynomial matrix R with q columns, and then
B = {w ∈ Lloc

1 (R, Rq) | R( d
dt )w = 0}. Here R( d

dt )w = 0
is understood to hold in the distributional sense. Any such
dynamical system Σ is called a linear differential system.
The set of all linear differential systems with q variables is
denoted by Lq . Since the behavior B of the system Σ is the
central item, we will mostly speak about the system B ∈ Lq

(instead of Σ ∈ Lq).
In the behavioral approach a distinction is made between

the behavior as the space of all solutions to a set of
(differential) equations, and the set of equations itself. A
set of equations in terms of which the behavior is defined,
is called a representation of the behavior. If a behavior B
is represented by R( d

dt )w = 0 then we call this a kernel
representation of B, and we often write B = ker(R).

Whereas a linear differential systems is defined as the
solution space B of a differential equation of the form
R( d

dt ) = 0, such system can have other representations as
well. One of these is the image representation. Let M be a
real polynomial matrix with q rows and, say, l columns. If

B = {w ∈ Lloc
1 (R, Rq) | there exists

� ∈ Lloc
1 (R, Rl) such that w = M( d

dt )�}
then we call w = M( d

dt )� an image representation of the
system behavior B and we often write B = im(M)

Not all linear differential systems behaviors have an image
representation. In fact, the linear differential system B has
an image representation if and only if it is controllable. If
B = ker(R), then B is controllable if and only if the rank
of the complex matrix R(λ) is independent of λ for λ ∈ C.
If B is a linear differential system, then we denote by Bcont
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the largest controllable subbehavior of B. The system B is
stabilizable (see [7]) if and only if R(λ) is independent of
λ for λ ∈ C

+

Suppose R has p rows. Then the kernel representation
is said to be minimal if every other kernel representation
of B has at least p rows. A given kernel representation,
R( d

dt )w = 0 is minimal if and only if the polynomial matrix
R has full row rank. The number of rows in any minimal
kernel representation of B is denoted by p(B). This number
is called the output cardinality of B. It corresponds to the
number of outputs in any input/output representation of B
(see [7]).

We now recall the concept of minimal left annihilator, see
also [4]. If M is a polynomial matrix, then the polynomial
matrix R is called a minimal left annihilator (MLA) of M if
im(M) = ker(R). The following useful fact is well known:

Lemma 1: : Let R and M be polynomial matrices. R
is a MLA of M if and only if RM = 0, R(λ) has rank
independent of λ for λ ∈ C and rank(R) = rowdim(M) −
rank(M).

In this paper, often we will need, for a given M , a MLA of
R with full row rank. If the given M has full row rank, say
q, then for consistency we define such full row rank MLA
as the ‘void’ matrix R with 0 rows and q columns.

We will also need some facts on the representation of sums
of behaviors. It is well known that the space of all linear
differential systems Lq is closed under addition. Suppose that
B1,B2 ∈ Lq, where B1 and B2 have kernel representations
R1( d

dt )w = 0 and R2( d
dt )w = 0, respectively. The problem

to find a kernel representation of B1 + B2 was solved in
[4]:

Proposition 2: : Let (S1, S2) be a MLA of col(R1, R2).
Then the polynomial matrix S1R1 = −S2R2 yields a kernel
representation of B1 + B2

Next, we will review some facts on observability. Suppose
B ∈ Lq with system variable w = (w1, w2), where w1 and
w2 take values in R

q1 and R
q2 , respectively, q = q1 + q2.

Suppose w2 has the interpretation of variable to be deduced
from information on the variable w1. We call w2 observable
from w1 if (w1, w2), (w1, w

′
2) ∈ B implies w2 = w′

2.
We call w2 detectable from w1 if (w1, w2), (w1, w

′
2) ∈ B

implies limt→∞(w2(t)−w′
2(t)) = 0. If B is represented by

R1( d
dt )w1 + R2( d

dt )w2 = 0, then w2 is observable from w1

if and only if R2(λ) has full column rank for all λ ∈ C.
Also, w2 is detectable from w1 if and only if R2(λ) has full
column rank for all λ ∈ C

+.
We now review some facts on elimination. Again, let B ∈

Lq with system variable w = (w1, w2). Let Pw1 denote the
projection onto the w1-component. Then the set Pw1B of
all w1 for which there exists w2 such that (w1, w2) ∈ B
almost forms a linear differential system, in the sense that
the closure Pw1B in the topology of Lloc

1 is an element of
Lq1 (see [7]). In this paper we will denote Pw1B by Bw1 . We
will call Bw1 the system obtained by eliminating w2 from
B.

Sometimes, system behaviors are represented by latent
variable representations of the form R( d

dt )w = M( d
dt )�,

with latent variable �. Of course, this equation represents
the full behavior of all (w, �) that satisfy the differential
equation. The w-behavior B obtained by eliminating � from
this full behavior is called the manifest behavior associated
with this latent variable representation. On several occasions
in this paper we will need to compute the output cardinality
p(B) of this behavior in terms of the polynomial matrices
R and M . It was shown in [2] that p(B) = rank(R, M) −
rank(M).

Finally, we will recall some facts on autonomous systems.
If the behavior B has the property that p(B) = q, the
number of variables (so all variables are output), then we
call B autonomous. An autonomous system is called stable
if limt→∞ w(t) = 0 for all w ∈ B.

III. ALL STABILIZING CONTROLLERS

In this section we will introduce the main problem that
will be considered in this paper. Assume we have a linear
differential plant behavior Pfull ∈ Lq+k, with system variable
(w, c), where w takes its values in R

q and c in R
k. The

components of w should be interpreted as the variables to
be controlled, the components of c are those through which
we can interconnect the plant to a controller and are called
the control variables. Let C ∈ Lk be a controller behavior,
with system variable c. The interconnection of Pfull and C

through c is defined as the system behavior Kfull(C) ∈ Lq+k,
defined as

Kfull(C) = {(w, c) | (w, c) ∈ Pfull and c ∈ C},
which is called the full controlled behavior. The inter-
connection of Pfull and C through c is called regular if
p(Kfull(C)) = p(Pfull) + p(C). In addition to Kfull(C), we
have the behavior (Kfull(C))w ∈ Lq that is obtained by
eliminating c from Kfull(C). (Kfull(C))w will be called the
manifest controlled behavior.

Given Pfull as above, a controller C is said to stabilize Pfull

through c if the manifest controlled behavior (Kfull(C))w is
stable and the interconnection of Pfull and C is regular. The
controller C is then called a stabilizing controller. It was
shown in [2] that a stabilizing controller C exists if and only
if (Pfull)w is stabilizable and in Pfull w is detectable from
c.

Now, let Pfull be represented minimally by R1( d
dt )w +

R2( d
dt )c = 0. The main problem that we will consider in this

paper is to find a parametrization, in terms of the polynomial
matrices R1 and R2, of all polynomial matrices C such that
the controller C( d

dt )c = 0 is a stabilizing controller.
Example 3: : Consider the full plant behavior Pfull

represented by

w1 + ẇ2 + ċ1 + c2 = 0
w2 + c1 + c2 = 0

ċ1 + c1 + ċ2 + c2 = 0

A stabilizing controller is given by C = {(c1, c2) | ċ2+2c1+
c2 = 0. Indeed, by eliminating c from the full controlled
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behavior Kfull(C) we find that (Kfull(C))w is represented by
R( d

dt )w = 0, with

R(ξ) =
(

1
2 + 1

2ξ 1
2ξ2 + 1

2ξ − 1
0 −ξ − 1

)
,

which is Hurwitz. Yet another class of stabilizing controllers
is represented by C(ξ) = (ξ(ξ + 1) + k, ξ + 1 + k), k ∈ R.
We want to find a parametrization of all 1 × 2 polynomial
matrices C(ξ) such that C( d

dt )c = 0 is a stabilizing con-
troller.

We note that for the special case of full interconnection
(see section IV), the problem of parametrizing all stabilizing
controllers was considered before in [3]. Of course, in
the context of feedback stabilization this parametrization
problem dates back to the famous result of Youla ([8]), see
also [5].

IV. ALL STABILIZING CONTROLLERS: THE FULL

INTERCONNECTION CASE

In the previous section we reviewed stabilization by partial
interconnection. The problem of stabilization by full inter-
connection is formulated as follows. Let P ∈ Lq be a given
plant behavior. Find a controller behavior C such that the
controlled behavior K = P∩C is autonomous and stable, and
the interconnection is regular. It was proven in [6] that there
exists such stabilizing controller C if and only if the plant
behavior P is stabilizable. In this section we will solve the
problem of parametrizing all stabilizing controller behaviors
for P. Our result in this section generalizes the main result
from [3] that was obtained under the assumption that P can
be represented by an image representation, equivalently, that
P is controllable. Here, we only assume stabilizability.

Assume that P is represented by the minimal kernel
representation R( d

dt )w = 0. Assume that P is stabilizable,
equivalently that R(λ) has full row rank for all λ ∈ C

+ =
{λ ∈ C | Re(λ) ≥ 0}. The following theorem yields a para-
metrization of all stabilizing controllers for the stabilizable
plant P:

Theorem 4: : Let P ∈ Lq be stabilizable. Let R1( d
dt )w =

0 be a minimal kernel representation of the controllable part
Pcont. Let C0 be such that col(R1, C0) is unimodular. Then
for any C ∈ Lq represented by the kernel representation
C( d

dt )w = 0 the following statements are equivalent:

1) P∩C is autonomous and stable, the interconnection is
regular and the kernel representation C( d

dt )w = 0 is
minimal,

2) there exist a polynomial matrix F and a Hurwitz
polynomial matrix D such that C = FR1 + DC0.

Proof : The proof is omitted here. �

If, in the above, we assume that P is controllable, then we
can take R = R1, and we recover the parametrization of all
stabilizing controllers that was obtained in [3].

V. ALL STABILIZING CONTROLLERS: THE OBSERVABLE

CASE

In this section we return to the original problem of stabi-
lization by partial interconnection. We will solve the problem
of parametrizing, for a given plant Pfull, all stabilizing
controllers. To start with, in this section we will assume
that in the full plant behavior Pfull, c is observable from w.
Next, in the sections to follow, we will lift the observability
assumption and describe a parametrization for the general
case.

For the observable case the following lemma is instrumen-
tal:

Lemma 5: : Let Pfull ∈ Lq+k with system variable (w, c).
Assume that in Pfull, c is observable from w. Assume that
(Pfull)w is stabilizable and that in Pfull, w is detectable
from c. Let C ∈ Lk. Then the following two statements are
equivalent:

1) C stabilizes Pfull through c,
2) C stabilizes (Pfull)c by full interconnection.

Proof : The proof is omitted. �

The following theorem then gives a parametrization of all
stabilizing controllers for the observable case:

Theorem 6: : Let Pfull ∈ Lq+k satisfy the assumptions of
lemma 5. Let R1( d

dt )w + R2( d
dt )c = 0 be a minimal kernel

representation of Pfull. Construct polynomial matrices V , S
and C0 as follows:

1) let V be a full row rank MLA of R1,
2) factorize V R2 = TS with T square, nonsingular and

S(λ) full row rank for all λ ∈ C.
3) let C0 be such that col(S, C0) is unimodular

Then for any C ∈ Lk represented by the kernel representation
C( d

dt )c = 0 the following statements are equivalent:
1) C stabilizes Pfull through c and the kernel representa-

tion C( d
dt )c = 0 is minimal,

2) there exist a polynomial matrix F and a Hurwitz
polynomial matrix D such that C = FS + DC0.

Proof : This is an immediate corollary of theorem 4 and
lemma 5. �

Thus we have obtained a parametrization of all stabilizing
controllers for the observable case.

Example 7: : Consider the full plant behavior Pfull

represented by

w1 + ẇ2 + c1 = 0
w2 + c2 = 0
ċ2 + c2 = 0

We will parametrize all controllers C( d
dt )c = 0 that stabilize

Pfull through c = (c1, c2). We have

R1 =

⎛
⎝ 1 ξ

0 1
0 0

⎞
⎠ , R2 =

⎛
⎝ 1 0

0 1
0 ξ + 1

⎞
⎠ ,

It is easily seen that c is observable from w and w is
detectable from c. Furthermore, (Pfull)w is represented by
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ẇ2 + w2 = 0, so is stabilizable. Performing the steps of
theorem 6, we obtain V = (0, 0, 1), V R̃2 = TS with
T (ξ) = ξ + 1 and S = (0, 1) Choose C0 = (1, 0).
The required parametrization is then C(ξ) = (d(ξ), f(ξ))
with d an arbitrary Hurwitz polynomial, and f an arbitrary
polynomial.

VI. ALL STABILIZING CONTROLLERS: THE GENERAL

CASE

Again, let Pfull be represented minimally by R1( d
dt )w +

R2( d
dt )c = 0. In order to arrive at a parametrization for

the general case, we will show that the general case can be
reduced to the observable case. This reduction requires two
steps. First, we will reduce the general case to the case that
R2 has full column rank. Next we will reduce the latter to
the case that R2(λ) has full column rank for all λ, i.e. the
observable case.

1) Reduction to the case that R2 has full column rank.
Let V be a unimodular matrix such that

R2 =
(

R̃2 0
)
V,

with R̃2 full column rank k′. Define the new system
P′

full ∈ Lq+k′
as the system (with control variable c′)

represented by

R1( d
dt )w + R̃2( d

dt )c
′ = 0.

2) Reduction to the observable case. Assume now that
in Pfull the matrix R2 has full column rank. Let L
be a square, nonsingular polynomial matrix such that
R2 = R̃2L, with R̃2(λ) full column rank for all λ ∈ C.
Define the new system P′

full as the system (with control
variable c′) represented by

R1( d
dt )w + R̃2( d

dt )c
′ = 0.

In the system P′
full, c′ is observable from w.

It will turn out that every controller that stabilizes P′
full

leads to a set of controllers that stabilizes Pfull. In the
following two subsections we will treat the two reduction
steps seperately.

A. Reduction to the case that R2 has full column rank

The first step concerns the reduction of a general Pfull to
a full plant behavior P′

full with R2-matrix full column rank
as described in reduction step 1. above.

Theorem 8: : (Pfull)w is stabilizable if and only if
(P′

full)w is stabilizable, and in Pfull, w is detectable from
c if and only in P′

full, w is detectable from c′. Furthermore,
if C ∈ Lk is represented by the minimal kernel represen-
tation C( d

dt )c = 0 then the following two statements are
equivalent:

1) the controller C stabilizes Pfull through c,
2) there exist a polynomial matrix C11, polynomial ma-

trices C12 and C21 of full row rank, and a unimodular
matrix U such that

C = U

(
C11 C12

C21 0

)
V, (1)

and such that the controller C21 ∈ Lk′
represented by

C21( d
dt )c

′ = 0 stabilizes P′
full through c′.

Proof : The first statement follows from the obvious fact
that Pfull and P′

full share the same hidden behavior N and
the same manifest plant behavior (P′

full)w = (Pfull)w.
(1. ⇒ 2.) If C stabilizes Pfull then (omitting

the d
dt ’s) (Kfull(C))w with Kfull(C) = {(w, c) |

R1w + R2c = 0 and Cc = 0} is stable and(
R1 R2

0 C

)

has full row rank. Partition CV −1 = (C1, C2) with the
number of columns of C1 equal to k′ = rank(R2). Choose
a unimodular matrix U such that U−1C2 = col(C12, 0) with
C12 full row rank. Partition U−1C1 = col(C11, C21). Since
(C1, C2) has full row rank, also C21 has full row rank.
Moreover, (1) holds. Now we claim that the controller C21

represented by C21( d
dt )c

′ = 0 stabilizes P′
full. Indeed, denote

by

K′
full(C21) := {(w, c1) | R1w + R̃2c1 = 0 and C21c1 = 0}.

the full controlled behavior of P′
full using the controller C21.

Using the fact that C12 has full row rank it can be shown
that

K′
full(C21) =

{w | there exists c s.t. R1w + R2c = 0, Cc = 0 }.
Thus we obtain (K′

full(C21))w = (Kfull(C))w = K. Finally,
again since C12 has full row rank,(

R1 R2

0 C

)
(2)

has full row rank if and only if(
R1 R̃2

0 C21

)
(3)

has full row rank. Hence the interconnection of C12 and P′
full

is regular if and only if the interconnection of C and Pfull is
regular.

(2. ⇒ 1.) Conversely, if 1 holds then by reversing the
above argument we see that if the controller C21c

′ = 0
stabilizes P′

full, then Cc = 0 stabilizes Pfull. Again, (3) has
full row rank if and only if (2) has full row rank. �

B. Reduction to the observable case

In the previous subsection it was shown that our para-
metrization problem can be reduced to a problem for a
plant behavior with R2-matrix full column rank. In the
present subsection we will reduce the full column rank
case to the observable case. Let Pfull be represented by the
minimal kernel representation R1( d

dt )w + R2( d
dt )c = 0,

with R2 full column rank. Let L be square, nonsingular
such that R2 = R̃2L, with R̃2(λ) full column rank for
all λ. Let P′

full be the (observable) system represented by
R1( d

dt )w + R̃2( d
dt )c

′ = 0.
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Lemma 9: : (Pfull)w is stabilizable if and only if (P′
full)w

is stabilizable, and in Pfull, w is detectable from c if and only
in P′

full, w is detectable from c′. Furthermore, if C ∈ Lk is
represented by the minimal kernel representation C( d

dt )c = 0
then the following two statements are equivalent:

1) the controller C stabilizes Pfull through c
2) the controller C′ represented in latent variable repre-

sentation (with latent variable �) by(
I
0

)
c′ =

(
L( d

dt )
C( d

dt )

)
� (4)

stabilizes P′
full through c′.

Proof : Again, the hidden behavior and manifest plant
behavior of Pfull and P′

full coincide. This proves the first
statement.

Since L is nonsingular we clearly have

{w | there exists c s.t. R1w + R2c = 0, Cc = 0} =
{w | there exists c s.t. R1w + R̃2Lc = 0, Cc = 0} =
{w | there exists c, c′ s.t. R1w + R̃2c

′ = 0, c′ = Lc, Cc = 0}.
Thus we obtain (K′

full(C
′))w = (Kfull(C))w.

Next, we will prove that the interconnection of Pfull and C

is regular if and only if the interconnection of P′
full and C′ is

regular. Note that K′
full(C

′) has latent variable representation⎛
⎝ R1 R̃2

0 I
0 0

⎞
⎠ (

w
c′

)
=

⎛
⎝ 0

L
C

⎞
⎠ �.

Hence the output cardinality of K′
full(C

′) equals

p(K′
full(C

′)) = rank

⎛
⎝ R1 R̃2 0

0 I L
0 0 C

⎞
⎠ − rank

⎛
⎝ 0

L
C

⎞
⎠ .

Using elementary row and column operations and the fact
that L is nonsingular, this can be shown to be equal to

rank
(

R1 R2

0 C

)
= p(Kfull(C)).

Also,

p(C′) = rank
(

I L
0 C

)
−rank

(
L
C

)
= rank(C) = p(C).

Finally, p(Pfull) = rank(R1, R2) = rank(R1, R̃2) =
p(P′

full). This proves our claim. We conclude that C stabilizes
Pfull through c if and only if C′ stabilizes P′

full through c′.
�

According to this theorem, a controller represented by
C( d

dt )c = 0 works for Pfull if and only if the controller
c′ = L( d

dt )�, C( d
dt )� = 0 (with control variable c′) works

for the observable system P′
full. What we are looking for

here is a parametrization of all such polynomial matrices C.
Now, we do already have a parametrization of all controllers
C ′( d

dt )c
′ = 0 that work for P′

full. Indeed, this parametrization
was established in theorem 6. Hence the question arises
under what conditions the latent variable representation

c′ = L( d
dt )�, C( d

dt )� = 0 and the kernel representation
C ′( d

dt )c
′ = 0 represent the same behavior C′. The answer to

this is given in the following lemma:
Lemma 10: : Let L be a k × k, square, nonsingular

polynomial matrix. Let C and C ′ be polynomial matrices
with k columns. Then the latent variable representation
c′ = L( d

dt )�, C( d
dt )� = 0 and the kernel representation

C ′( d
dt )c

′ = 0 represent the same manifest behavior if and
only if ker(C ′L) = ker(L) + ker(C).

Proof : (⇒) Let C ′L� = 0. Then c′ := L� ∈ ker(C ′), so
there exists �′ such that c′ = L( d

dt )�
′, C( d

dt )�
′ = 0. Define

�′′ := �−�′ Then � = �′+�′′ ∈ ker(C)+ker(L). Conversely,
let C� = 0. Define c′ = L�. Then C ′c′ = 0 so C ′L� = 0.
(⇐) Assume C ′c′ = 0. Let � be such that c′ = L�. Then
C ′L� = 0 so there exists �1 ∈ ker(L) and �2 ∈ ker(C)
such that � = �1 + �2. This implies that c′ = L�2, while
C�2 = 0. Conversely, assume c′ = L� with C� = 0. Then
cleary C ′L� = 0 so C ′c′ = 0. �

Corollary 11: : The controller represented by C( d
dt )c =

0 stabilizes Pfull through c if and only if there exists a
polynomial matrix C ′ such that C ′( d

dt )c
′ = 0 stabilizes P′

full

through c′, and C satisfies ker(C) + ker(L) = ker(C ′L).
Since we already have a parametrization of all polynomial

matrices C ′ such that the controller C ′( d
dt )c

′ = 0 stabilizes
P′

full, a parametrization of all controllers that stabilize Pfull

can be obtained by parametrizing for fixed C ′ all polynomial
matrices C such that ker(C) + ker(L) = ker(C ′L). Such
parametrization can be derived from the following theorem:

Theorem 12: : Let L be a k×k, square, nonsingular poly-
nomial matrix. Let C and C ′ be a full row rank polynomial
matrices with k columns. Then ker(C ′L) = ker(L)+ker(C)
if and only if there exists a square, nonsingular polynomial
matrix X such that C ′L = XC and( −X(λ) C ′(λ)

)
has full row rank for all λ ∈ C.

Proof : (⇒) Let (−X, Y ) be a full row rank MLA of
col(C, L). Then by proposition 2, ker(XC) = ker(Y L) =
ker(C ′L). We claim that XC has full row rank. Indeed,
if p is a polynomial row vector such that pXC = 0 then
also pX = 0. Since XC = Y L and L is nonsingular,
also pY = 0. Since (−X, Y ) has full row rank this yields
p = 0. Thus XC and C ′L yield minimal representations
of the same behavior so there exists a unimodular U such
that C ′L = UXC. This implies Y L = U−1C ′L so, by the
nonsingularity of L, Y = U−1C ′. Define X̃ = UX . Then
(−X̃, C ′) is a full row rank MLA of col(C, L). This implies
C ′L = X̃C. Also, (−X̃(λ), C ′(λ)) has full row rank for all
λ. Finally, X̃ is square and nonsingular. Clearly, X has full
row rank. Also,

rowdim(X) = rowdim(C) + rowdim(L) − rank(C, L).

Since L is nonsingular, rank(C, L) = rank(L), so
rowdim(X) = rowdim(C). Of course, also coldim(X) =
rowdim(C), so X is square and nonsingular. The same then
holds for X̃ .
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(⇐) We have XC−C ′L = 0 and (−X(λ), C ′(λ)) has full
row rank for all λ. It is easily verified that rank(X, C ′) =
coldim(X,C ′) − rank(C, L), so (X, C ′) is a full row rank
MLA of col(C, L). By proposition 2, this implies that
ker(C) + ker(L) = ker(C ′L) as desired. �

Corollary 13: : Let C ∈ Lk be represented by the minimal
kernel representation C( d

dt )c = 0. Then the following two
statements are equivalent:

1) the controller C stabilizes Pfull through c,
2) there exists a square, nonsingular polynomial matrix

X and a full row rank polynomial matrix C ′ such that

C = X−1C ′L,

where (X(λ), C ′(λ)) has full row rank for all λ ∈
C and the controller C′ represented by C ′( d

dt )c
′ = 0

stabilizes P′
full through c′.

Thus, any stabilizing controller C( d
dt )c = 0 for Pfull

can be written as C = X−1C ′L for some nonsingular
polynomial matrix X with the property that (X(λ), C ′(λ))
has full row rank for all λ ∈ C, and where C ′ represents
a stabilizing controller for P′

full. Conversely, for any such
C ′, any nonsingular X such that (X(λ), C ′(λ)) has full row
rank for all λ ∈ C and such that X−1C ′L is a polynomial
matrix yields a stabilizng controller C = X−1C ′L.

Example 14: : We reexamine example 2. Again, consider
the full plant behavior Pfull represented by

w1 + ẇ2 + ċ1 + c2 = 0
w2 + c1 + c2 = 0

ċ1 + c1 + ċ2 + c2 = 0

We will parametrize all controllers C( d
dt )c = 0 that stabilize

Pfull through c. We have

R1 =

⎛
⎝ 1 ξ

0 1
0 0

⎞
⎠ , R2 =

⎛
⎝ ξ 1

1 1
ξ + 1 ξ + 1

⎞
⎠ ,

R̃2 =

⎛
⎝ 1 0

0 1
0 ξ + 1

⎞
⎠ , L =

(
ξ 1
1 1

)
.

In P′
full, represented by R1w + R̃2c

′, = 0, c′ is observable
from w. We first parametrize all controllers C ′( d

dt )c
′ = 0

that stabilize P′
full. Performing the steps of theorem 6, we

obtain V2 = (0, 0, 1), V2R̃2 = TS with T (ξ) = ξ + 1 and
S = (0, 1) Choose C0 = (1, 0). The required parametrization
is then C ′(ξ) = (d(ξ), f(ξ)) with d an arbitrary Hurwitz
polynomial, and f an arbitrary polynomial. We compute
C ′(ξ)L(ξ) = (ξd(ξ)+f(ξ), d(ξ)+f(ξ)). A parametrization
for the original plant Pfull is obtained by computing, for any
choice of d and f , all nonzero common factors x(ξ) of the
polynomials ξd(ξ)+ f(ξ) and d(ξ)+ f(ξ) with the property
that (x(λ), d(λ), f(λ)) �= 0 for all λ. Let d and f be given,
d Hurwitz. We distinguish the following cases:

1) x(ξ) = c, constant, unequal to zero. These x(ξ)’s
satisfy the requirements

2) x(ξ) has at least one zero λ �= 1. Then λd(λ)+f(λ) =
0 and d(λ)+f(λ) = 0. If d(λ) = 0 then also f(λ) = 0,
and this leads to (x(λ), d(λ), f(λ)) = 0, violating the
rank condition. If d(λ) �= 0 then a simple calculation
shows that λ = 1, which contradicts the assumption
that λ �= 1. Thus this case does not yield required
x(ξ)’s.

3) x(ξ) has only λ = 1 as zero, in other words, x(ξ) =
c(ξ−1)k for some c �= 0 and integer k ≥ 1. In this case
we distinguish further between the following cases:

a) k = 1. We have d(1)+f(1) = 0. Since d is Hur-
witz, d(1) �= 0, so we have (x(1), d(1), f(1)) �=
0, and the rank condition holds. We conclude
that x(ξ) = c(ξ − 1), with c �= 0, satisfies the
requirements.

b) k > 1. In this case λ = 1 is also a common
zero of the derivative polynomials d(ξ)+ξd′(ξ)+
f ′(ξ) and d′(ξ) + f ′(ξ). This implies d(1) = 0,
which contradicts the fact that d is Hurwitz. We
conclude that x(ξ) = c(ξ − 1)k for k > 2 does
not satisfy the requirements.

Our conclusion is that a parametrization of all stabilizing
controllers for Pfull is given by: C(ξ) = (ξd(ξ)+f(ξ), d(ξ)+
f(ξ)), d Hurwitz polynomial, f arbitrary polynomial, or
C(ξ) = 1

ξ−1 (ξd(ξ) + f(ξ), d(ξ) + f(ξ)), d Hurwitz poly-
nomial and f polynomial such that d(1) + f(1) = 0.
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