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Abstract— We present formulae for the analysis of variance
of estimated transfer functions, which are valid for Box-Jenkins
(BJ) and Output Error (OE) model structures of finite order,
identified in either open-loop or closed-loop, using Prediction
Error (PE) Identification. The formulae are based on the
asymptotic (in number of data) expression of the parameter
covariance. They do not require special assumptions on the
generation of the external signals. One of the results of our
analysis is to show that, under reasonable assumptions on the
signal powers, the variance of the estimated input-output model
is smaller with closed-loop than with open-loop identification.

I. INTRODUCTION

We present expressions for the variance of estimated
transfer functions when these transfer functions are estimated
by Prediction Error (PE) Identification using a finite number
N of noisy input-output data, for the case where a parametric
Box-Jenkins model structure is used and where the true
system is contained in the model set. We consider both
the case of open-loop and of closed-loop identification. Our
formulae are of course also valid for an Output Error model
structure, a special case of BJ structure.

Thus, the model structure considered in this paper is

M =

{
G(z, θ) = G(z, ρ), H(z, θ) = H(z, η), θ =

(
ρ
η

)}
(1)

where G(z, ρ) and H(z, η) are independently parametrized
rational transfer functions1. The linear time-invariant single
input single output true system S is assumed to be described
in this model structure for a particular value θ0 ∈ Rk of the
parameter vector:

y(t) = G(z, ρ0)u(t) + H(z, η0)e(t) for some θ0 =

(
ρ0

η0

)
(2)

and e(t) is a zero mean white noise of variance σ2
e .

In open-loop identification, an input signal u(t) with
power spectrum Φu(ω) is applied to (2). In direct closed-
loop identification, the system (2) is operated in closed loop
with a controller Cid and an external signal r(t) is applied
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1The OE model structure is a special case with θ = ρ and H(z, η)
∆
= 1.

to the loop [Cid G0] such that the input signal u(t) is given
by:

u(t) = r(t) − Cid y(t) (3)

= Sidr(t)︸ ︷︷ ︸
ur(t)

−CidSidH(z, η0)e(t)︸ ︷︷ ︸
ue(t)

(4)

where Sid = 1/(1 + CidG(z, ρ0)). The input signal is thus
made of two uncorrelated components, ur(t) due to r(t),
and ue(t) due to the noise e(t). Thus u(t) = ur(t) + ue(t)
and Φu(ω) = Φur

(ω) + Φue
(ω).

The contribution of this paper is to compare the variance of
the estimated transfer functions G(ejω , ρ̂N ) and H(ejω , η̂N )
based on N input-output data, in open-loop and in closed-
loop identification. The computation of variance expressions
for estimated transfer functions using PE identification meth-
ods dates back to [9], where expressions were derived for
var(G(ejω , ρ̂N )) and var(H(ejω , η̂N )) obtained in open-
loop, under an assumption that not only the number of data,
but also the model order n was tending to infinity. These
formulae were later extended to closed-loop identification in
[7], again assuming that the model order tends to infinity. For
the input-output transfer functions, the following expressions
were obtained in [9], [7]:

var(GOL(ejω , ρ̂N )) �
n

N

Φv(ω)

Φu(ω)
(5)

var(GCL(ejω , ρ̂N )) �
n

N

Φv(ω)

Φur
(ω)

(6)

In these expressions, Φv(ω) is the power spectrum of the
noise v(t) = H(z, η0)e(t), while Φu(ω) and Φur

(ω) have
been defined above. According to the formula (6), only that
part ur(t) of the input signal contributes to the estimation
of ρ̂N in a closed-loop setup. However, numerous exam-
ples have shown that the estimate of the plant model is
more accurate in closed-loop identification than in open-
loop identification (see e.g. [5], [6]). In addition, recently
more accurate variance formulae have been developed, for
specific model structures and with some constraints on the
input signal properties, that are not asymptotic in model order
[13], [11], [12]. In the case of open-loop identification with
a BJ model structure, Ninness and Hjalmarsson have derived
the following variance expression in [11]:‘

var(GOL(ejω , θ̂N )) =
κol(ω)

N

Φv(ω)

Φu(ω)
(7)

where κol(ω) is a complicated function of the poles of
G(z, ρ0) and of the input spectrum Φu. In the case of direct
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closed-loop identification, the same authors have derived
a variance expression for GCL(ejω, θ̂N ) that is presently
restricted to an OE model structure and a white noise external
excitation r(t) [12]:

var(GCL(ejω, θ̂N )) =
κcl(ω)

N

σ2
e

Φu(ω)
(8)

with κcl(ω) a complicated function of the poles of G(z, ρ0)
and of the sensitivity function Sid. One important conclusion
from (8) is that the whole spectrum Φu(ω) = Φur

(ω) +
Φue

(ω) influences the variance of the closed-loop estimate,
and not just Φur

(ω) as suggested by (6).
Even though the expressions (7)-(8) are valid for finite

model order, they do not allow one to compare the accuracy
of open-loop and closed-loop estimates in a BJ model
structure for general classes of input signal spectra. Indeed,
the expression (8) is available only for an OE model structure
with a white noise reference excitation. The analysis of
var(G(ejω , ρ̂N )) and var(H(ejω , η̂N )) developed in this
paper is performed via expressions of the (inverse of the)
covariance matrices Pρ and Pη of the identified parameter
vectors ρ̂N and η̂N , under the standard assumption that the
data length N tends to infinity. They translate easily into
expressions for the variance of the estimated transfer func-
tions, using Gauss’ approximation formula: see Section II.
The main conclusions derived from our analysis are:

1) Pρ,CL ≺ Pρ,OL (and thus var(GCL(ejω , ρ̂N )) <
var(GOL(ejω , ρ̂N )) ∀ω) when the true system S is
excited with the same amount of external input energy
in open-loop as in direct closed-loop identification
(i.e. when the spectrum Φu(ω) used for the open-
loop identification is, at each ω, equal to the spectrum
Φur

(ω) in closed-loop identification). Our expressions
furthermore demonstrate that this improved accuracy in
closed-loop identification is due to the internal noise
excitation Φue

(ω).
2) Pη,CL � Pη,OL (and thus var(HCL(ejω , η̂N )) >

var(HOL(ejω , η̂N )) ∀ω) under any experimental con-
ditions.

The main contribution of this paper is the comparison
between the variances obtained in open-loop and closed-loop
identification using BJ model structures. The main progress
over the results of [9], [7] is that our formulae, just like those
of [11], [12], are asymptotic only in the number of data N ,
but not in the model order n. They lead to Statement 1 above.
It contradicts the conclusion that can be drawn from the
classical expression (6) presented above, which was derived
under an asymptotic assumption on the model order n.

The outline of the paper is as follows. In Section II we re-
call some general expressions for the asymptotic covariance
of identified parameters and transfer functions, which exhibit
their relation to the information matrix. In Section III we
derive the expressions of the submatrices of the information
matrix for a BJ model structure. These expressions are then
used for the computation of the variance of the input output
model in Section IV, and the noise model in Section V, in

each case comparing open-loop and closed-loop identifica-
tion. A simulation example is presented in Section VI which
also highlights the role of the controller on the precision of
the estimated transfer functions.

II. PE IDENTIFICATION ASPECTS

Consider the identification of the true system (2) using a
Box-Jenkins model from the set M defined in (1). Once the
true system has been excited, a set of input-output data of
length N i.e. {u(t); y(t) | t = 1...N} is collected and the
identified parameter vector θ̂N is computed via the classical
prediction error criterion [10]:

θ̂N =

(
ρ̂N

η̂N

)
∆
= arg min

θ

1

N

N∑
t=1

ε2(t, θ) (9)

with ε(t, θ)
∆
= H(z, θ)−1 (y(t) − G(z, θ)u(t)). In this paper,

we will assume that the excitation spectrum Φu(ω) (resp.
Φr(ω)) is nonzero at each frequency in order to avoid the
problems of multiple minima of the PE criterion (see [4]).

An important property of the identified parameter vector
θ̂N is that it is asymptotically normally distributed around
the unknown true parameter vector θ0: θ̂N ∼ N (θ0, Pθ).
Thus, for large enough N , the covariance matrix Pθ is
approximately given by

Pθ =
σ2

e

N

(
Ē

(
ψ(t, θ0)ψ(t, θ0)

T
))

−1
(10)

with ψ(t, θ) = −∂ε(t,θ)
∂θ

. The matrix

Mθ �
N

σ2
e

Ē
(
ψ(t, θ0)ψ(t, θ0)

T
)

(11)

is called the information matrix. If we now partition the co-
variance matrix Pθ according to the partition of the parameter

vector θ in (1) i.e. Pθ =

(
Pρ Pρη

PT
ρη Pη

)
, we obtain, for large

N , a distinct distribution for each of the identified parameter
vectors ρ̂N and η̂N :

ρ̂N ∼ N (ρ0, Pρ) η̂N ∼ N (η0, Pη). (12)

Based on these expressions, we can deduce uncertainty
regions for the unknown G(z, ρ0) and the unknown H(z, η0)
centered at the identified model G(z, ρ̂N) and H(z, η̂N )
(see e.g. [1]). The sizes of these uncertainty regions are
determined by the covariance matrices Pρ and Pη . Using
Gauss’ approximation formula [10], the variances of the
identified plant model G(z, ρ̂N) and the identified noise
model H(z, η̂N) are given, approximately for large N , by:

var(G(ejω , ρ̂N )) = Λ∗

ρ(e
jω , ρ0) Pρ Λρ(e

jω , ρ0)

var(H(ejω , η̂N )) = Λ∗

η(ejω , η0) Pη Λη(ejω, η0)(13)

where Λρ(z, ρ) = ∂G(z,ρ)
∂ρ

and Λη(z, η) = ∂H(z,η)
∂η

. The
covariance matrices Pρ and Pη are thus perfect tools to
compare the accuracy of an identification experiment under
different experimental conditions. In particular, in order to
compare the variances obtained by open-loop and direct
closed-loop identification, respectively, and to understand the
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role of the experimental conditions in these variances, we
shall derive appropriate expressions for Pρ and Pη for both
identification conditions.

III. INTEGRAL EXPRESSIONS FOR THE INVERSE OF Pθ

In this section we derive various expressions for the
information matrix, which reveal the precise way in which it
depends on the experimental conditions. Since the covariance
matrices Pρ and Pη are obtained as submatrices of the inverse
of the information matrix, these expressions will then enable
us to reveal the dependence of these covariances on the
excitation signals (u or r) and on the noise (H(z, η0)e).

We first rewrite ψ(t, θ0) in (10) as a function of the input
signal u(t) and of the noise e(t). It follows from the BJ
model structure (1) that

ψ(t, θ0) =

(
Λρ(z,ρ0)
H(z,η0)

0

)
u(t) +

(
0

Λη(z,η0)
H(z,η0)

)
e(t) (14)

In the case of open-loop identification, the input signal u(t)
is uncorrelated with e(t). Therefore, Mθ is given by (see (11)
and (14)):

Mθ,OL =

(
Pρ,OL Pρη,OL

PT
ρη,OL Pη,OL

)
−1

(15)

=
N

σ2
e

[(
Ru 0
0 0

)
+ σ2

e

(
0 0
0 Rv,22

)]
where the following notation is introduced:

Ru = I

(
Λρ(z, ρ0)

H(z, η0)
, Φu(ω)

)
(16)

Rv,22 = I

(
Λη(z, η0)

H(z, η0)
, 1

)
where

I(V (z), Φ(ω))
∆
=

1

2π

∫ π

−π

V (ejω)V (ejω)∗Φ(ω)dω

It follows directly from the block diagonal structure of
expression (15) that, in open-loop identification with BJ
model structures, the covariance of ρ, Pρ,OL, depends only
on the input signal u, while the covariance of η, Pη,OL,
depends only on the noise. Thus, Pρη,OL = 0 in open-loop
identification. In the case of direct closed-loop identifica-
tion, u(t) is correlated with e(t). Consequently, in order
to deduce an expression for P−1

θ,CL similar to (15), we first
use (4) to transform (14):

ψ(t, θ0)=

(
Sid

H(z,η0)Λρ(z, ρ0)

0

)
r(t)+

(
−CidSidΛρ(z, ρ0)

Λη(z,η0)
H(z,η0)

)
e(t)

(17)
Since r(t) is uncorrelated with e(t), this delivers:

Mθ,CL =

(
Pρ,CL Pρη,CL

PT
ρη,CL Pη,CL

)
−1

(18)

=
N

σ2
e

[(
Rr 0
0 0

)
+ σ2

e

(
Rv,11 Rv,12

RT
v,12 Rv,22

)]

with Rv,22 as in (16) and with the following additional
notations:

Rr = I

(
Sid

Λρ(z, ρ0)

H(z, η0)
, Φr(ω)

)
(19)

Rv,11 = I (CidSidΛρ(z, ρ0), 1)

Rv,12 =
1

2π

∫ π

−π

−CidSidΛρ(e
jω , ρ0)Λ

∗

η(ejω , η0)

H∗(z, η0)
dω

It follows that in closed-loop identification with BJ models,
unlike in open-loop identification, both the excitation signal
r and the noise e influence the quality of the estimate of ρ.

We observe that, for both open-loop and closed-loop
identification, the information matrix can be written as the
sum of two contributions: the first contribution is directly
related to the external excitation signal (u(t) or r(t)) and can
therefore be manipulated by the designer, while the second
contribution is due to the noise and is thus not under the
control of the designer, except of course by acting on the data
length. As stated above, in open-loop identification these two
contributions are decoupled, i.e. the information matrix is
block-diagonal (and of course so is its inverse, the covariance
matrix). In closed-loop identification, it can be seen from the
expression (17) that the noise contribution to the information
matrix in (18) is strictly positive-definite for an estimated
full-order BJ model structure:(

Rv,11 Rv,12

RT
v,12 Rv,22

)
� 0 (20)

This property has been used in [2] to perform so-called
“costless identification experiments”, i.e. experiments that do
not require any external excitation, which therefore do not
perturb the normal operating conditions of the closed-loop
system.

IV. VARIANCE OF THE IDENTIFIED PLANT MODEL

G(z, ρ̂N)

In the previous section, we have derived expressions for
the information matrices in the case of open-loop and closed-
loop identification with BJ models. A major benefit of these
expressions is that they are affine in the experimental design
variables Φu(ω) and Φr(ω). In this section, we compute
the covariance matrices Pρ and Pη of the parameters of
the input-output and noise model of a BJ model: these
are the block-diagonal submatrices of the inverses of the
matrices Mθ computed in Section III. We then use these
expressions to compute the variance of G(z, ρ̂N ) under
specific experimental conditions.

From the expressions (15) and (18) and the matrix in-
version Lemma (see e.g. [8]) we obtain immediately the
following result.

Theorem 4.1: For a Box Jenkins model structure, the
inverse covariance matrices of the parameter estimate ρ̂N

of the input-output model, in open-loop and in closed-loop
identification, are given, respectively, by

P−1
ρ,OL =

N

σ2
e

Ru = N I

(
Λρ(z, ρ0),

Φu(ω)

Φv(ω)

)
(21)

3119



P−1
ρ,CL =N

[
Rr

σ2
e

+ Rv,11 − Rv,12R
−1
v,22R

T
v,12

]
(22)

=N

[
I

(
Λρ(z, ρ0),

Φur
(ω)

Φv(ω)

)
+Rv,11−Rv,12R

−1
v,22R

T
v,12

]

=N

[
I

(
Λρ(z, ρ0),

Φu(ω)

Φv(ω)

)
− Rv,12R

−1
v,22R

T
v,12

]
where

I

(
Λρ(z, ρ0),

Φu(ω)

Φv(ω)

)
= I

(
Λρ(z, ρ0),

Φur
(ω)

Φv(ω)

)

+ I

(
Λρ(z, ρ0),

Φue
(ω)

Φv(ω)

)
(23)

Proof. The result (21) follows directly from (15) by noting
that Φv(ω) = |H(ejω , η0)|2σ2

e . In order to derive (22), we
apply the matrix inversion formula to (18), which delivers:

P−1
ρ,CL =

N

σ2
e

Rr + N
(
Rv,11 − Rv,12R

−1
v,22R

T
v,12

)
The other expressions of (22) then follow from the definition
(19) of Rr and Rv,11, and from the fact that Φur

(ω) =
|Sid(e

jω)|2Φr(ω) and Φue(ω) = |CidSid|
2Φv(ω). Expres-

sion (23) follows simply from Φu(ω) = Φur
(ω) + Φue

(ω).

We note that the first expression (22) can also be found
in [3]. The Output Error model structure is a special case of
the BJ structure in which H(z, η) = 1. The following result
follows immediately from the previous Theorem.

Corollary 4.1: For an OE model structure, the inverse
covariance matrices of the parameter estimate ρ̂N , in open-
loop and in closed-loop identification, are given by

P−1
ρ,OL =

N

σ2
e

Ru = N I

(
Λρ(z, ρ0),

Φu(ω)

σ2
e

)
(24)

P−1
ρ,CL = N

[
Rr

σ2
e

+ Rv,11

]
(25)

= N

[
I

(
Λρ(z, ρ0),

Φu(ω)

σ2
e

)]

where the quantity I
(
Λρ(z, ρ0),

Φu(ω)
σ2

e

)
can again be de-

composed as in (23) with the substitution Φv(ω) = σ2
e .

With the results of Theorem 4.1 and Corollary 4.1, we
can now make a number of observations concerning the role
of the excitation signals on the covariance of the estimated
input-output parameter vector ρ, and on the variance of
the corresponding transfer function estimates obtained via
(13). We can compare our variance expressions with the
approximate high order expressions; and we can compare
the covariance formulae obtained under open-loop and
closed-loop identification.

Remarks
1) In open-loop identification, the covariance of the es-

timate of ρ is a function of the signal-to-noise ra-
tio Φu(ω)

Φv(ω) , and of the structure of the input-output

model through Λρ(z, ρ0). This is consistent with the
formula (7); however, note that the integral expression
of P−1

ρ,OL shows that the variance var(GOL(ejω , ρ̂N))
at frequency ω depends on the signal-to-noise ratio
not just at frequency ω, but at all frequencies. In the
expression (7), this dependence is included through the
factor κol(ω). The same holds for κcl(ω) in (8).

2) Expressions (22) and (25) show that in closed-loop
identification the covariance of ρ̂N depends not only on
the part of the input signal power that comes from the
external excitation, but also on the part that comes from
the noise, i.e. not just on Φur (ω)

Φv(ω) , but also on Φue (ω)
Φv(ω) .

This is in contradiction with the formula (6) which
was derived under the assumptions of a model order
tending towards infinity. Thus, the contribution of the
noise increases the precision of the parameter estimate,
beyond that which is obtained from the reference
contribution. This is the object of the next Corollary.

Corollary 4.2: For both a BJ and an OE model structure,
the inverse covariance matrix of the parameter estimate ρ̂N

obtained in closed-loop identification obeys the following
inequality:

P−1
ρ,CL � N

[
I

(
Λρ(z, ρ0),

Φur
(ω)

Φv(ω)

)]
= N

Rr

σ2
e

(26)

Proof. The proof follows immediately from (22) and the fact
that Rv,11−Rv,12R

−1
v,22R

T
v,12 � 0, which itself follows from

(20). The result in the OE case follows from (25) and the
fact that Rv,11 � 0.

With the formulae above we can compare the precision of
the transfer function estimate of the input-output model, i.e.
var(G(ejω , ρ̂N )), under a variety of experimental conditions.
Here we consider just one situation that is representative of
a disturbance rejection problem. We consider a system that
operates in closed-loop with a controller Cid whose objective
is to reduce the effect of the disturbance v(t) on the output.
Thus, the normal operating condition is that the external
reference is zero, r(t) = 0, and hence Φur

(ω) = 0 ∀ω.
It is desired to estimate a model of the unknown G in
order to replace the present controller Cid by one that has
better performance. If the identification step is performed
in closed-loop with an external excitation signal r �= 0,
then this creates an additional component ur to the normal
operating signal ue; this signal ur is then a perturbation
with respect to the normal operating conditions, that is
applied for the purposes of identification. In order to compare
this closed-loop identification setup with the alternative of
open-loop identification, it then makes sense to compare
it with an open loop identification experiment in which
Φu,OL(ω) = Φur,CL(ω) ∀ω. The next Theorem compares
the corresponding variances of the estimated Ĝ for the same
number of data, N .

Theorem 4.2: Consider an open-loop and a direct closed-
loop identification experiment with the same data length
using either a full order OE or a full order BJ model
structure, with the true system and the controller described
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by (2) to (4). Let the experimental conditions be chosen such
that Φu,OL(ω) = Φur,CL(ω) ∀ω. Then for both the OE
and the BJ model structure, we have Pρ,OL � Pρ,CL and
var(GOL(ejω , ρ̂N )) > var(GCL(ejω , ρ̂N )) ∀ω.
Proof. The proof follows immediately from Corollary 4.2 by
noting that, with Φu,OL(ω) = Φur,CL(ω) ∀ω the quantity on
the right hand side of (26) is precisely P−1

ρ,OL: see (21).

Theorem 4.2 states that, under our assumption that the
same amount of external power is put into the input signal,
the uncertainty around G(z, ρ̂N ) is smaller when G(z, ρ̂N )
is determined via direct closed-loop identification than via
open-loop identification. This holds independently of the
choice of stabilizing controller Cid. However, the controller
Cid does play a role, as will be illustrated in Section VI. We
observe that, under these experimental conditions (Φu,OL =
Φur ,CL), the output power will be smaller under the closed-
loop experimental conditions than in open-loop. Other open-
loop versus closed-loop comparisons can of course be made
using the covariance formulae of Theorem 4.1 and Corol-
lary 4.1, based on other constraints on the input or output
power spectra.

V. VARIANCE OF THE IDENTIFIED NOISE MODEL

H(z, η̂N )

In the previous section, the variance of G(z, ρ̂N ) has been
analyzed for BJ and OE models. In this section, we analyze
the variance of the identified noise model H(z, η̂N) for BJ
models; they can be assessed by the covariance matrix Pη

of η̂N . From (15) and (18), we directly deduce:

P−1
η,OL = NRv,22 = N I

(
Λη(z, η0)

H(z, η0)
, 1

)
(27)

P−1
η,CL =N

[
Rv,22 − RT

v,12

(
Rr

σ2
e

+ Rv,11

)
−1

Rv,12

]
(28)

=N

[
I

(
Λη(z, η0)

H(z, η0)
, 1

)
−RT

v,12

(
Rr

σ2
e

+ Rv,11

)
−1

Rv,12

]

From those expressions, we observe that Pη,OL is indepen-
dent of the input spectrum Φu(ω) and of the noise level σ2

e ,
while Pη,CL depnds on Φur

(ω), Φue
(ω) and Φv(ω) via the

term Rr

σ2
e

+ Rv,11 = I
(
Λρ(z, ρ0),

Φu(ω)
Φv(ω)

)
. Furthermore, we

have the following result.
Theorem 5.1: Consider an open-loop and a direct closed-

loop identification experiment with the same data length N ,
using the full-order BJ model structure (1), with the true
system and the controller described by (2) to (4). Then,
independently of the spectra Φu(ω) and Φr(ω) used for the
external excitation signals and provided Φr remains bounded,
we have:

Pη,OL ≺ Pη,CL

and hence

var(HOL(ejω , η̂N )) < var(HCL(ejω , η̂N )) ∀ω.

Proof. The first inequality is a direct consequence of (27)-
(28). The second one then follows from (13).

Thus, unlike the uncertainty of the estimated plant model
G(z, ρ̂N ), the uncertainty of the noise model H(z, η̂N) is
always smaller when it has been identified via an open-
loop identification. Nevertheless, it follows from (27)-(28)
that the higher I

(
Λρ(z, ρ0),

Φu(ω)
Φv(ω)

)
, the closer the variance

of H(z, η̂N) in direct closed-loop identification will be to the
variance in open-loop identification. Note finally that, as far
as the variance of H(z, η̂N) is concerned, our analysis for
finite order model structures confirms the conclusions derived
in [7] under the “classical” assumption that the model order
tends to infinity.

VI. SIMULATION RESULTS

In order to illustrate the results of this paper, we consider
the following first-order true system:

S : y(t) =
boz

−1

1 + foz−1
u(t) +

1 + coz
−1

1 + doz−1
e(t) (29)

with b0 = 0.36, f0 = −0.7, c0 = 0.6, d0 = 0.1 and
σ2

e = 1. We compare the variance results of open-loop
and direct closed-loop identification on that true system.
The closed-loop experiment is performed with a white noise
excitation signal r(t) of variance 1 on the loop [Cid G0]
with Cid = k/(1 − z−1) (k is a scalar gain). In the open-
loop identification experiment the input signal u(t) is chosen
as u(t) = Sidr(t), so that the assumption Φu,OL(ω) =
Φur ,CL(ω) ∀ω of Theorem 4.2 is satisfied.

To illustrate the influence of the choice of Cid on our
results, we consider two different choices for the gain k of
the controller Cid: k = 0.1 and k = 3. Then, for both values
of k and for both identification experiments, we use the
expressions (21), (22), (27) and (28) to compute expressions
for Pρ and Pη . The results obtained for open-loop and for
closed-loop identification are compared in Figures 1 and 2. In
Figure 1, we compare the 95%-confidence region for ρ̂N−ρ0

and η̂N − η0, i.e. Uρ = {∆ρ | ∆ρT P−1
ρ ∆ρ ≤ 5.99} and

Uη = {∆η | ∆ηT P−1
η ∆η ≤ 5.99}. In Figure 2, we compare

the variances of G(z, ρ̂N) and H(z, η̂N), computed via (13).
The figures confirm the results of this paper. Indeed, they

show that the variance of G(z, ρ̂N ) is larger in open-loop
than in closed-loop while the variance of H(z, η̂N) is larger
in closed-loop than in open-loop identification. Moreover, we
observe that the differences between open and closed-loop
identification are more important when the gain of Cid is
equal to k = 3 than when k = 0.1, i.e. when the controller
has less roll-off in high frequencies. The larger difference
in variance for G(z, ρ̂N) can be explained, via (22), by the
fact that when k = 3 then Φue

(ω) is, at each ω, larger than
Φue

(ω) when k = 0.1: see Figure 3. The larger difference
in variance for H(z, ρ̂N ) can be explained, via (28), by the

fact that the quantity Rr

σ2
e

+ Rv,11 = I
(
Λρ(z, ρ0),

Φu(ω)
Φv(ω)

)
is smaller when k = 3 than when k = 0.1. Note also that
the results derived here with the formulae (21), (22), (27)
and (28), which are based on asymptotic distributions (i.e.
N → ∞), are confirmed by actual identification experiments
on the true system with N = 1000 data points.
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Fig. 1. Uρ (top) and Uη (bottom) for open-loop (solid) and for closed-loop
(dashdot). On the left side for k = 0.1 and on the right side for k = 3.
Figure scaled for N = 1
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Fig. 2. var(G(ejω , ρ̂N )) (top) and var(H(ejω , η̂N )) (bottom) for open-
loop (solid) and for closed-loop (dashdot). On the left side for k = 0.1 and
on the right side for k = 3. Figure scaled for N = 1
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Fig. 3. Φue(ω) when k = 0.1 (solid) and when k = 3 (dashdot)

VII. CONCLUSIONS

We have derived new formulae for the asymptotic (in data
length) variance of the parameters of a BJ model, identified
by Prediction Error identification, both in open and in closed
loop. These expressions are based on the standard asymptotic
Gaussian distribution of parameter estimates obtained by
Prediction Error identification methods. These can be used,
as is common practice, to derive approximate parameter
covariance estimates that are valid for a large number N
of data. We have exploited the particular structure of the
information matrix of BJ model structures (computed via in-
tegral expressions) to derive expressions for the submatrices
of the covariance matrix, that clearly exhibit the role of the
experimental conditions. This has enabled us to make useful
comparisons between the precision of BJ models obtained
by open-loop and closed-loop identification.
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