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Abstract— In this paper, we investigate the connections be-
tween controllability properties of distributed systems and
existence of non zero entire functions subject to restrictions
on their growth and on their sets of zeros. Exploiting these
connections, we first show that, for generic bounded open
domains in dimension n ≥ 2, the steady-state controllability
for the heat equation, with boundary controls dependent only
on time, does not hold. In a second step, we study a model
of water tank whose dynamics is given by a wave equation
on a two-dimensional bounded open domain. We provide an
obstruction for the steady-state controllability of such a system,
where the control acts on the boundary and is only dependent
on time, and using that obstruction, prove that the steady-state
controllability does not hold for generic tank shapes.

I. INTRODUCTION

We consider the steady-state controllability in finite time

for control systems given by some partial differential equa-

tions. In this paper (and as it will be clear from the statements

of the results), “steady-state” refers to independence with

respect to the state variable, i.e. steady-states are simply

constant functions (of the state variable). Moreover, the

control strategies considered here are only time dependent.
For certain control systems modeled by a partial differential

equation, we investigate whether, given two arbitrary steady

states of the control system, one can steer the first steady

state to the second one in finite time by means of a suitable

(only time-dependent) control. We refer to such property as

the steady-state controllability for the corresponding control

system. That class of problems has been introduced by

N. Petit and P. Rouchon in [19] for a control system modeling

a water tank. The control problem they addressed consists

of steering in finite time the tank from one steady state

to another one, using as a control the acceleration of the

tank (this leads to two boundary controls which are only

dependent on time). The dynamics is given by a linear wave

equation on a bounded open set of R
2, as detailed below.

They solved positively the problem in the case where the tank

is either a disc or a rectangle. For more general tank shapes,

they asserted that the problem of steady-state controllability

is open. In the same spirit, P. Rouchon, in [20], considered

the steady-state controllability for the heat equation on an

open, bounded and non empty subset Ω of R
n, where the
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control is only dependent on time and acts on the boundary,

i.e. y(t, x) = u(t) on ∂Ω with the usual notations. It is well-

known (see [2, Theorem IV.2.7, page 187] and [6, Theorem

2.2]) that there is a negative answer to the null controllability

in finite time of this control system, that is there are states

which cannot be steered to zero in finite time. Moreover,

stronger negative results, showing that, in fact, very few states

can be steered to zero in finite time for the heat equation

were obtained by S. Micu and E. Zuazua in [13], [14] for

the case where the domain Ω is a half-space (see also [15]

for a fractional order parabolic equation). In [20], P. Rouchon

raised the following question: is it possible to steer the special

initial data y0 ≡ 1 to zero in finite time? We use (R) to

denote that particular control problem. P. Rouchon shows

that (R) has a solution if n = 1 or if Ω is a ball in R
n and

asks what is the answer for general open subsets in R
n with

n � 2.

The first result of the present paper is the characterization

of a property on Ω, denoted (A), which is an obstruction

to the steady-state controllability for the heat equation with

boundary controls that depend only on time. Property (A) is

expressed in terms of the averages on Ω of the eigenfunctions

of the Laplace-Dirichlet operator. We show that property

(A) holds for generic open subsets Ω ∈ R
n, n ≥ 2, of

class C3. Therefore, for generic domains Ω, question (R)
has a negative answer. Finally, in the case where Ω is a

parallelepiped, we show that, again, property (A) holds, and

thus, even if the domain is not of class C3, y0 ≡ 1 cannot

be steered to zero in finite time.

The second result concerns the control problem for the

water tank. We again characterize a property (B) on the

shape of the tank, expressed in terms of averages on the

boundary of the tank of the eigenfunctions of the Laplace-

Neumann operator, which turns out to be an obstruction to the

steady-state controllability of the associated control system.

The shape of a tank is an open, bounded, connected and non

empty subset Ω of R
2. We also show that property (B) holds

for generic tank shapes of class C3.

The strategy we adopt consists in performing a Laplace

transform with respect to the time t. The steady-state con-

trollability issue in time T > 0 for both control systems is

now translated into a problem of complex analysis, namely,

the existence of a non-zero holomorphic function f : C → C

such that:

(a) |f(s)| ≤ C0e
T max{0,Re(s)};

(b) For every distinct eigenvalue λi of −∆, either

f(λi) = 0 (for the control of the heat equation) or
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f(λi) belongs to a special one dimensional linear

subspace of C
2 (for the water tank control system).

Here, C0 is a positive constant independent of s ∈ C and −∆
denotes either the Laplace-Dirichlet or the Laplace-Neumann

operator. Condition (a) is a consequence of the fact that

controllability must be achieved in finite time and, thus, it is

a simply result of the Paley-Wiener theorem. Condition (b) is

the “infinite-dimensional” version of a standard fact of linear

system theory: λi ∈ σ(−∆) is a pole of the transfer function

associated to the control system under consideration, which

is (almost) nothing else but the resolvent of −∆. For these

two control systems, it turns out that null-controllability in

finite time would imply the existence of a non-zero entire

function subject to restrictions so strong that only the zero

function would fulfill them. A contradiction is reached, and

so the conclusions.

Before closing the introduction, let us make one remark.

It would be interesting to use the link between controllability

and complex analysis to derive a constructive way for actual

synthesis of the motion. Indeed, as described below, it

amounts solving an interpolation problem in a restricted class

of entire functions.

II. HEAT EQUATION WITH PARTICULAR INITIAL

DATA

Let Ω be an open, bounded and non empty subset of R
n,

with n � 2. For y0 ∈ L2(Ω) and T > 0, consider the heat

equation⎧⎨
⎩

yt(t, x) − ∆y(t, x) = 0, if (t, x) ∈ (0, T ) × Ω,
y(0, x) = y0, if x ∈ Ω,
y(t, x) = u(t), if x ∈ ∂Ω,

(1)

where u ∈ L2(0, T ) is the control. Let us first recall classical

results about weak solutions to the Cauchy problem (1). Let

y0 ∈ L2(Ω), T > 0 and u ∈ L2(0, T ). A weak solution to the

Cauchy problem (1) is a function y ∈ C0([0, T ];L2(Ω)) such

that, for every τ ∈ [0, T ] and every θ ∈ C1([0, T ];L2(Ω)) ∩
C0([0, T ];H1

0 (Ω)) with

θt + ∆θ = 0 in C0([0, T ];H−1(Ω)), (2)

one has ∫
Ω

y(τ, x)θ(τ, x)dx −

∫
Ω

y0(x)θ(0, x)dx =

∫ τ

0

u(t)

(∫
Ω

θt(t, x)dx

)
dt. (3)

Of course, every y ∈ C1([0, T ];L2(Ω))∩C0([0, T ];H1(Ω)),
which is a classical solution to (1) is a weak solution to (1).

It is also well known that, for every y0 ∈ L2(Ω), T > 0 and

u ∈ L2(0, T ), there exists one and only one weak solution

y to (1). That unique y is called the solution to the Cauchy

problem (1).

The problem of null controllability associated to (1) goes

as follows. Given y0 ∈ L2(Ω), does there exist T > 0 and

u ∈ L2(0, T ) such that the solution of the Cauchy problem

(1) satisfies y(T, ·) = 0? The answer to that question is

negative, as shown by H. Fattorini in [6, Theorem 2.2] and by

S. Avdonin and S. Ivanov in [2, Theorem IV.2.7, page 187];

see also the papers [13], [14], [15] by S. Micu and E. Zuazua,

for even stronger negative results for similar questions.

In this section, we look at a particular y0, namely y0 ≡ 1,

and want to see if it is possible to steer that special y0 to 0
in finite time, that is, again, does there exists T > 0 and a

control u ∈ L2(0, T ) such that the solution y to the Cauchy

problem (1) satisfies y(T, ·) = 0? Of course, a positive

answer to that question is equivalent to the steady-state

controllability, i.e. given two constant functions y0 ≡ C0,

y1 ≡ C1, does there exist T > 0 and u ∈ L2(0, T ) such that

the solution y to (1) satisfies y(0, ·) = y0 and y(T, ·) = y1?

As mentioned in the introduction, P. Rouchon showed in [20]

that the steady-state controllability holds for n = 1 or if Ω
is a ball in R

n and asks what is the answer for general open

subsets of R
n, n � 2.

We use −∆D
Ω to denote the Laplace-Dirichlet operator

defined next,

D
(
−∆D

Ω

)
:= {v ∈ H1

0 (Ω);∆v ∈ L2(Ω)},

−∆D
Ω v := −∆v, ∀v ∈ D

(
−∆D

Ω

)
.

Let us introduce the definition of Property (A), which turns

out to be an obstruction for steering y0 ≡ 1 to 0 in finite

time.

Definition 1: The open set Ω has the property (A) if there

exists a sequence (rk)k∈N∗of distinct eigenvalues of −∆D
Ω

such that

(i) one has

∞∑
k=1

1

rk
= ∞; (4)

(ii) for every k ∈ N
∗, there exists an eigenfunction w of the

operator −∆D
Ω corresponding to the eigenvalue rk such

that ∫
Ω

wdx 	= 0. (5)

We are now able to state the main results of this section.

Theorem 2: Let Ω be a bounded, open and non empty

subset of R
n, n � 2. If Ω has the property (A), then one

cannot steer y0 ≡ 1 to 0 in finite time.

Proof. Assume that property (A) holds for a bounded,

open and non empty subset Ω ⊂ R
n, n ≥ 2. We suppose by

contradiction that there exist T > 0 and u ∈ L2(0, T ) such

that the solution y to the Cauchy problem (1) with

y0 ≡ 1, (6)

satisfies

y(T, ·) = 0. (7)
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Let λ be an eigenvalue of −∆D
Ω and w be an eigenfunction

associated to λ. Consider θ ∈ C∞([0, T ];H1
0 (Ω)) defined by

θ(t, x) := eλtw(x).

Then θ satisfies (2). Hence, using (3) with τ := T , (6) and

(7), one gets

B(λ)

∫
Ω

wdx = 0, (8)

where B : C → C is defined by

B(s) := 1 + s

∫ T

0

u(t)estdt. (9)

Since property (A) holds for Ω, it results that B vanishes

on a sequence (rk)k∈N∗ of distinct positive real numbers

satisfying (4). By the easy part of the Paley-Wiener theorem,

the function B is holomorphic on C and there exists C > 0
such that

|B(s)| � CeT max{0,Re(s)}, ∀s ∈ C. (10)

We then apply the following lemma.

Lemma 3: Let f : C → C be a holomorphic function such

that, for some C > 0,

|f(s)| � CeC|Re(s)|, ∀s ∈ C.

Let us assume that there exists a sequence (rk)k�1 of distinct

positive real numbers such that (4) holds and

f(rk) = 0,∀k � 1. (11)

Then, f is identically equal to 0.

Lemma 3 is a consequence of a much more general

theorem due to Cartwright and Levinson; see [10, Theorem 1,

p. 127]. Applying Lemma 3 with f := B, we conclude that

B is identically equal to zero. This contradicts the fact that

B(0) = 1. Theorem 2 is proved.

We use here notations and results of [1], [7], [24]. Let

R(Rn) be the set of all non empty bounded open subsets

Ω of class C3. To state the result, one needs to define a

topology on R(Rn). We follow a construction closely related

to that proposed by R. Hamilton in [7, pages 86-87]. For

Ω ∈ R(Rn), let ξ ∈ C3(∂Ω; Rn) be such that

ξ(x) · ν(x) > 0, ∀x ∈ ∂Ω, (12)

where ν ∈ C2(∂Ω, Rn) denotes the outward normal to Ω.

Let ε0 > 0 be small enough so that the two following

properties hold.

(i) For every x in R
n such that dist(x, ∂Ω) < ε0, there

exists a unique π(x) ∈ ∂Ω such that x−π(x) is parallel

to ξ(π(x)).
(ii) The map x �→ π(x) is of class C3 on the open set

{x ∈ R
n; dist(x, ∂Ω) < ε0}.

Let ε > 0 and η ∈ C3(∂Ω) be such that

|η|C3(∂Ω) < ε. (13)

Define

Ωη := {x ∈ Ω; dist(x, ∂Ω) � ε0} ∪ {x ∈ R
n;

dist(x, ∂Ω) < ε0 and (x − π(x)) · ξ(π(x)) < η(π(x))}.

There exists ε1 > 0 such that, for every η ∈ C3(∂Ω) with

|η|C3(∂Ω) < ε1, Ωη is a bounded subset of R
n of class C3.

Let V(ε) be the set of all the Ωη with η ∈ C3(∂Ω) satisfying

(13). We define a topology on R(Rn) by considering the

sets V(ε), with ε ∈ (0, ε1), as a base of neighborhoods of Ω,

i.e. every neighborhood of Ω in R(Rn) contains some V(ε)
for ε ∈ (0, ε1) small enough. (One easily checks that this

topology is independent of the choice of ξ and ε1.) Recall

that a topological space is a Baire space if any residual set,

i.e. any intersection of denumerable open dense subsets, is

dense. Since, for every Ω in R(Rn), C3(∂Ω) is a Baire space,

it follows from our definition of the topology on R(Rn) that

R(Rn) is also a Baire space. (Proceeding as in [7, 4.4.7],

one can also prove that R(Rn) with our topology is a C0-

manifold modeled on the Banach spaces C3(∂Ω) with Ω ∈
R(Rn). But we do not need that property.)

Let us recall that that a property (P ) holds for generic

Ω ∈ R(Rn) if there exists a residual subset D̃ ⊂ R(Rn)
such that property (P) holds for every Ω ∈ D̃.

Theorem 4: Condition (A) holds for generic Ω ∈ R(Rn).
Proof. The strategy of proof is standard and goes as follows

(cf. [1]). Let G ⊂ R(Rn) be the set of Ω ∈ R(Rn) such that

(a) all eigenvalues of −∆D
Ω are simple,

(b)
∫
Ω

wdx 	= 0, for every non zero eigenfunction w
of −∆D

Ω .

Similarly, for every positive integer l, the set Sl ⊂ R(Rn)
(respectively Gl ⊂ R(Rn)) of open sets Ω ∈ R(Rn) is

defined such that property (a) (respectively, and property (b))
holds at least for the first l eigenvalues of −∆D

Ω . Clearly, G
is the countable intersection of the Gl’s.

We show next that G is residual, which implies Theorem

4. Indeed, if property (a) holds for −∆D
Ω , then, by applying

the Weyl formula for −∆D
Ω (cf. [21, Theorem 15.2, p.124]),

one deduces that λk ∼k→∞ C(Ω)k2/n, where 0 < λ1 <
λ2 < · · · < λj < λj+1 < · · · is the ordered sequence

of the eigenvalues of the Laplace-Dirichlet operator −∆D
Ω .

Therefore, property (A) holds.

For l � 0, S0 = G0 := R(Rn), Gl ⊂ Sl, Sl+1 ⊂ Sl and

S := ∩l�0Sl and, similarly, Gl+1 ⊂ Gl and G = ∩l�0Gl.

Moreover, for l � 0, it is clear that the sets Sl and Gl are

open in R(Rn) (see [1]). To show that G is residual, amounts

to establish the next lemma.

Lemma 5: For every l � 0, Gl+1 is dense in Gl.

Proof of Lemma 5.
First, recall that, for every l � 0, Sl is dense in R(Rn)

(see [24]).

We follow the lines of the argument of Theorem 2 in [1].

Let Ω ∈ Gl. It is sufficient to exhibit Ω′ ∈ Gl+1, arbitrarily

close to Ω. Since Sl+1 is dense, it is enough to establish the
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previous fact for Ω ∈ Gl∩Sl+1. Let (µk)k∈N∗ be the ordered

sequence of the eigenvalues of the Laplace-Dirichlet operator

−∆D
Ω repeated according to their multiplicity. We have

µ1 < µ2 < · · ·µl < µl+1 < µl+2 � µl+3 � · · · .

Let wl+1 be an eigenfunction of −∆D
Ω for the eigenvalue

µl+1. If
∫
Ω

wl+1dx 	= 0, then Ω ∈ Gl+1. Otherwise, we may

assume that ∫
Ω

wl+1dx = 0, (14)

and we simply use µ and w to denote µl+1 and wl+1. Let

ξ ∈ C3(∂Ω; Rn) be such that (12) holds and let ε0 > 0 be

as above (see (i) and (ii) in this subsection). Set ε′0 as the

minimum of ξ(π(x)) ·(π(x)−x); x ∈ Ω with dist(x, ∂Ω) =
ε0/2 is positive. Let ρ ∈ C∞(R, [0, 1]) be such that

ρ = 1 on a neighborhood of (−∞, 0],

ρ = 0 on a neighborhood of [ε′0,+∞).

We use C3
ε (∂Ω) to denote the set of η ∈ C3(∂Ω) such that

|η|C3(∂Ω) < ε. For η ∈ C3
ε (∂Ω), we consider hη : Ω → R

n

defined by

hη(x) := x,

for every x ∈ Ω with dist(x, ∂Ω) � ε0/2 and

hη(x) := x + η(π(x))

(1 − ρ (ε′0 − ξ(π(x)) · (π(x) − x))) ξ(π(x)),

for every x ∈ Ω with dist(x, ∂Ω) � ε0/2. We now fix ε ∈
(0, ε0) small enough so that, for every η ∈ C3

ε (∂Ω), hη

is a diffeomorphism of class C3 from Ω into Ωη. Let P :
H2(Ω) → H2(Rn) be a linear continuous map such that

P (v) = v in Ω.

For η ∈ C3
ε (∂Ω), let Qη : H2(Rn) → H1

0 (Ωη) ∩ H2(Ωη),
φ �→ ψ, be defined by

−∆ψ = −∆φ in L2(Ωη),

ψ = 0 on ∂Ωη.

Consider the set E of pairs (v, η) ∈ H2(Ω) × C3
ε (∂Ω) with

v(x) + η(x)∂w
∂ξ (x) = 0 for every x ∈ ∂Ω, and the following

map Φ : E×R → L2(Ω)×R which associates to ((v, η), χ),(
((−∆ − χ)(Qη(P (v)))) ◦ hη,

∫
Ωη

Qη(P (v))dx
)
.

One has Φ((w, 0), µ) = (0, 0) and Lemma 5 holds if Φ is

locally onto at ((w, 0), µ). The map Φ is of class C1 and

one has

Φ′((w, 0), µ)((v, η), χ) = (−∆v − µv − χw,

∫
Ω

vdx),

for every (v, η) ∈ H2(Ω) × C3(∂Ω) such that

v(x) + η(x)
∂w

∂ξ
(x) = 0, ∀x ∈ ∂Ω.

Using the Fredholm alternative (recall that the eigenvalue µ
is assumed to be simple), one easily checks that, for every

f ∈ L2(Ω) and every η ∈ C3(∂Ω), there exists one and only

one (v, χ) ∈ H2(Ω) × R such that

−∆v − µv − χw = f, (15)∫
Ω

vwdx = 0, (16)

v(x) + η(x)
∂w

∂ξ
(x) = 0, ∀x ∈ ∂Ω. (17)

For f = 0, let us denote by (vη, χη) the corresponding

unique solution. We next prove that

there exists η0 ∈ C3(∂Ω) such that

∫
Ω

vη0
dx 	= 0. (18)

To compute
∫
Ω

vηdx in terms of η, we consider the unique

solution to the inhomogeneous Dirichlet problem given by

⎧⎨
⎩

(−∆ − µ)S = 1, in Ω,
S = 0, on ∂Ω,∫
Ω

Swdx = 0.
(19)

Since
∫
Ω

wdx = 0 and the eigenvalue µ is simple, the

Fredholm alternative tells us that such an S exists (and is

unique). By applying Stokes’ formula, one gets, using in

particular (15), (16), (17) and (19),

∫
Ω

vηdx =

∫
Ω

(
(−∆ − µ)S

)
vηdx =

∫
∂Ω

η
∂S

∂ν

∂w

∂ν
dσ.

(20)

Let us assume that (18) does not hold. Then, the right hand

side of (20) should be equal to zero for every η ∈ C3(∂Ω)
and, therefore,

∂S

∂ν

∂w

∂ν
≡ 0.

By the Holmgren uniqueness theorem (see e.g. [23, Propo-

sition 4.3, p. 433]), since w is a non zero eigenfunction of

−∆D
Ω , ∂w/∂ν cannot be equal to zero on any nonempty open

subset of ∂Ω. Therefore, for the previous equation to hold,

it results that

∂S

∂ν
= 0 on ∂Ω. (21)

The following lemma tells us that (21) cannot hold true (and,

therefore, yields (18)).

Lemma 6: With the notations above, there is no solution

to the following over determined eigenvalue problem

⎧⎨
⎩

(−∆ − µ)S = 1, in Ω,
S = 0, on ∂Ω,
∂S
∂ν = 0, on ∂Ω.

(22)

The result is classical and we will not provide here a proof.

Then, it is then easy to conclude the argument for Theorem 4.
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III. STEADY-STATE CONTROLLABILITY FOR A

WATER TANK

Let us consider the controllability problem for a tank

containing a fluid. As in [19], we consider an open, bounded

and connected subset Ω of R
2, which corresponds to the

shape of the tank. The mathematical description of this

problem is given by the position D in R
2 of the tank and by

the height h(t, x) of the fluid with respect to an equilibrium

position. The control system is modeled by⎧⎪⎨
⎪⎩

D̈(t) = u(t), if t ∈ (0, T ),
htt(t, x) = ∆h(t, x), if (t, x) ∈ (0, T ) × Ω,
∂h
∂ν (t, x) = −u(t) · ν(x), if (t, x) ∈ (0, T ) × ∂Ω.

(23)

where the control u(t) ∈ R
2. Here ν(x) denotes again the

outward unit normal vector at x ∈ ∂Ω. The steady-state

control problem is the following one. Let D0 and D1 be

two arbitrary points in R
2, does there exist T > 0 and

u : [0, T ] → R
2 such that the solution D : [0, T ] → R

2,

h : [0, T ] × Ω → R of (23) with

h(0, ·) = 0, ht(0, ·) = 0, D(0) = D0, Ḋ(0) = 0, (24)

satisfies

D(T ) = D1, Ḋ(T ) = 0, h(T, ·) = ht(T, ·) = 0? (25)

In [19], N. Petit and P. Rouchon proved that, if the shape Ω
of the tank is a rectangle or a circle, then there is a solution

to this controllability problem. When Ω has a general form,

they assert the problem is open. Here, in the spirit of the

first part of this paper, we propose a necessary condition for

that steady-state controllability concerning the behavior of

eigenvalues and eigenfunctions of a Neumann problem.

Let us fix Ω ⊆ R
2 a bounded, open and connected

subset of R
2 of class C2 or a convex polygon. Let us first

recall some classical results about the weak solution to the

following Cauchy problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̈(t) = u(t), if t ∈ (0, T ),

Ḋ(0) = s0,
D(0) = D0,
htt(t, x) = ∆h(t, x), if (t, x) ∈ (0, T ) × Ω,
∂h
∂ν (t, x) = −u(t) · ν(x), if (t, x) ∈ (0, T ) × ∂Ω,
h(0, x) = h0(x), if x ∈ Ω,
ht(0, x) = v0(x), if x ∈ Ω.

(26)

Define

H := {h ∈ L2(Ω);

∫
Ω

hdx = 0},

V := {h ∈ H1(Ω);

∫
Ω

hdx = 0},

and let V ′ be the dual space of V ⊂ H . Let D0 ∈ R
2,

s0 ∈ R
2, (h0, v0) ∈ H×V ′, T > 0 and u ∈ L2(0, T ; R2). A

weak solution to the Cauchy problem (26) is a couple (D,h)
such that

D ∈ H2(0, T ; R2), D(0) = D0, (27)

Ḋ(0) = s0, D̈ = u ∈ L2(0, T ), (28)

h ∈ C0([0, T ];H) ∩ C1([0, T ];V ′), (29)

and such that, for every τ ∈ [0, T ] and for every θ ∈
C0([0, T ];H2(Ω)) ∩ C1([0, T ];H1(Ω)) ∩ C2([0, T ];L2(Ω))
satisfying

θtt = ∆θ, in C0([0, T ];L2(Ω)), (30)

∂θ

∂ν
= 0, in C0([0, T ];H1/2(∂Ω)), (31)

one has

−

∫ τ

0

∫
∂Ω

θ(t, x)u(t) · ν(x)dσ(x)dt + 〈v0, θ(0, ·)〉V ′,V

−

∫
Ω

h0(x)θt(0, x)dx = 〈ht(τ, ·), θ(τ, ·)〉V ′,V

−

∫
Ω

h(τ, x)θt(τ, x)dx. (32)

Of course, for every D ∈ H2(0, T ) and every h ∈
C0([0, T ];H2(Ω))∩C1([0, T ];H1(Ω))∩C2([0, T ];L2(Ω)),
if (D,h) is a classical solution to (26), then it is also a

weak solution to (26). Moreover, it is well known that, for

every (D0, s0) ∈ R
2 × R

2, (h0, v0) ∈ H × V ′, T > 0
and u ∈ L2(0, T ; R2), there exists one and only one weak

solution (D,h) to (26). This unique (D,h) is called the

solution to the Cauchy problem (26).

We say that the control system (23) is steady-state con-

trollable if, for every (D0,D1) ∈ R
2×R

2, there exist T > 0
and u ∈ L2(0, T ; R2) with u(0) = 0 such that the solution

to the Cauchy problem (26), with h0 = v0 = 0, s0 = 0,

satisfies (25).

Consider the Laplace-Neumann operator −∆N
Ω defined as

follows:

D
(
−∆N

Ω

)
:=

{
v ∈ H2(Ω);

∂v

∂ν
= 0 on ∂Ω

}
,

−∆N
Ω v = −∆v, ∀v ∈ D

(
−∆N

Ω

)
.

A. A condition that prevents steady-state controllability
We next introduce property (B) which turns out to prevent

steady-state controllability in finite time.

Definition 7: The open set Ω has the property (B) if there

exists a sequence (λk)k∈N∗ of distinct eigenvalues of −∆N
Ω

such that

(i) there exist ρ ∈ (0, 2) and C > 0 such that

λk � Ckρ, ∀k � 1, (33)

(ii) for every k ∈ N
∗, there exists an eigenfunction wk for

the eigenvalue λk and the operator −∆N
Ω such that∫

∂Ω

wkνdσ 	= 0. (34)
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We are now able to state the following result.

Theorem 8: If Ω has property (B), then the control system

(23) is not steady-state controllable.

The proof is similar to that of Theorem 2.

B. Genericity of condition (B)

In this section, we prove that condition (B) holds gener-

ically for tank shapes of class C3, and therefore by Theo-

rem 8, for such generic tank shapes Ω, steady-state control-

lability for a water-tank does not hold.

We use here notations and results of [22]. Let S3 be the set

of all non empty open, bounded, connected subsets Ω ⊂ R
2

of class C3. The topology on S3 is defined as follows ([22,

p. 7]).

Let C3
b (R2, R2) be the space of functions u : R

2 → R
2

of class C3 such that

‖u‖3 := Sup{|∂αu(x)| ; x ∈ R
2, α = (α1, α2) ∈ N

2

with α1 + α2 � 3} < +∞.

Then C3
b (R2, R2) equipped with the norm ‖ · ‖3 is a Banach

space. For Ω ∈ S3 and u ∈ C3
b (R2, R2), let Ω + u := (Id +

u)(Ω) be the subset of points y ∈ R
2 such that y = x+u(x)

for some x ∈ Ω. By simple topological arguments, one easily

gets that, for u ∈ C3
b (R2, R2) small enough, Ω + u belongs

to S3.

For ε > 0, let V(ε) be the sets of all the Ω + u with u ∈
C3

b (R2, R2) and ‖u‖3 < ε. The topology on S3 is defined

by considering the sets V(ε) with ε small enough as a base

of neighborhoods of Ω. Then S3 is a Baire space.

Theorem 9: Condition (B) holds for generic Ω ∈ S3.

The proof follows the lines of that of Theorem 4 but is much

more involved.
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