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Abstract— We consider the time-dependent nonlinear system
q̇(t) = u(t)X(q(t)) + (1 − u(t))Y (q(t)), where q ∈ R

2, X
and Y are two smooth vector fields, globally asymptotically
stable at the origin, and u : [0,∞) → {0, 1} is an arbitrary
measurable function. Analysing the topology of the set where X
and Y are parallel, we give some sufficient and some necessary
conditions for global asymptotic stability, uniform with respect
to u(.). Such conditions can be verified without any integration
or construction of a Lyapunov function, and they are robust
under small perturbations of the vector fields.

I. INTRODUCTION

A switched system is a family of continuous-time dynam-
ical systems endowed with a rule that determines, at every
time, which dynamical system is responsible for the time
evolution. More precisely let {fu | u ∈ U} be a (possibly
infinite) set of smooth vector fields on a manifold M , and
consider, as u varies in U , the family of dynamical systems

q̇ = fu(q) , q ∈ M . (1)

A non-autonomous dynamical system is obtained by assign-
ing a so-called switching function u : [0,∞) → U .

In this paper, the switching function models the behavior
of a parameter which cannot be predicted a priori. It rep-
resents some phenomena (e.g., a disturbance) that it is not
possible to control or include in the dynamical system model.

A typical problem related to switching systems is to ob-
tain, out of a property which is shared by all the autonomous
dynamical systems governed by the vector fields fu, some,
maybe weaker, property for the time-dependent system as-
sociated with an arbitrary switching function u(.). For a
discussion on various issues related to switched systems we
refer the reader to [12], [13].

In this paper, we consider a two-dimensional nonlinear
switched system of the type

q̇ = u X(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ {0, 1} , (2)

where the two vector fields X and Y are smooth (say, C∞)
on R2. In order to define a proper non-autonomous system,
we require the switching functions to be measurable.

Assume that X(0) = Y (0) = 0 and that the two
dynamical systems q̇ = X(q) and q̇ = Y (q) are
globally asymptotically stable at the origin. Our main aim
is to study under which conditions on X and Y the origin is

globally asymptotically stable for the system (2), uniformly
with respect to the switching functions (GUAS for short). For
the precise formulation of this and other stability properties,
see Definition 1.

In order to study the stability of (2) it is natural to consider
its convexification, i.e., the case in which u varies in the
whole interval [0, 1]. It turns out that the stability properties
of the two systems are equivalent (see Section II-B). The
linear version of the system introduced above, namely,

q̇ = u Aq + (1 − u)B q , q ∈ R
2 , u ∈ {0, 1} , (3)

where the 2 × 2 real matrices A and B have eigenvalues
with strictly negative real part, was studied in [6] (see also
[14]). More precisely, the results in [6] establish a necessary
and sufficient condition for GUAS in terms of three relevant
parameters, two depending on the eigenvalues of A and B
respectively, and the third one (namely, the cross ratio of the
four eigenvectors of A and B in the projective line CP 1)
accounting for the interrelations among the two systems. The
precise necessary and sufficient condition ensuring GUAS
of (3) is quite technical and can be found in [6] (see also
[14]). Notice that, in the linear case, asymptotic stability is
equivalent to GUAS, which, in turns, is equivalent to the
more often quoted GUES property, i.e., global exponential
stability, uniform with respect to the switching rule (see, for
example, [3] and references therein). For related results on
linear switched systems, see [2], [5], [9], [11], [14].

For nonlinear systems, the problem of characterizing
GUAS completely, without assuming the explicit knowledge
of the integral curves of X and Y , is hopeless.

The problem, however, admits some partial solution. The
purpose of this paper is to provide some sufficient and some
necessary conditions for stability which are robust (with
respect to small perturbations of the vector fields) and easily
verifiable, directly on the vector fields X and Y , without
requiring any integration or construction of a Lyapunov
function.

Denote by Z the set on which X and Y are parallel. One
of our main results is that, if Z reduces to the singleton
{0}, then (2) is GUAS (Theorem 6). The proofs works by
showing that an admissible trajectory starting from a point
p ∈ R

2 is forced to stay in a compact region bounded by the
integral curves of X and Y from p. The fact that X and Y

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB16.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 3285



are linearly independent outside the origin plays as a sort of
drift which guarantees that the only possible accumulation
point of an admissible trajectory is the origin.

When Z is just compact, we prove that (2) is at least
bounded (see Theorem 9). Roughly speaking, this means that
its trajectories do not escape to infinity. The idea of the proof
is that, if we modify X and Y only in a compact region
of the plane, then the boundedness properties of the system
are left unchanged. Taking advantage of the result obtained
in Theorem 6, we manage to prove the boundedness of (2)
by reducing, using compact perturbations, Z to {0}, while
preserving the global asymptotic stability of X and Y .

Other conditions can be formulated taking into account the
relative position of X and Y along Z . Assume that Z \ {0}
contains at least one point q0. Since both X(q0) and Y (q0)
are different from zero, the property of pointing in the same
or in the opposite versus can be stated unambiguously. If
X(q0) and Y (q0) have opposite versus, then there exists
a switching function, for the convexified system, whose
output is the constant trajectory which stays in q0. As a
consequence, the system (2) is not GUAS.

Additional results can be obtained under the assumption
that the pair of vector fields (X, Y ) is generic. (For the notion
of genericity appropriate to our aims, see Section II.) In
particular, the genericity assumption can be used to guarantee
that Z \ {0} is an embedded one-dimensional submanifold
of the plane. Clearly, Z needs not to be connected. If the
connected component of Z containing the origin reduces to
{0} and on all other components X and Y point in the same
versus, transversally to Z , then (2) is GUAS. This result is
formulated in Theorem 8, which follows the pattern of proof
of Theorem 6.

Conversely, Theorem 14 states that, if one connected
component of Z \{0} is unbounded and such that X and Y
have opposite versus on it, then (2) admits a trajectory going
to infinity. Intuitively, this happens because the orientation of
(X(p), Y (p)) changes while p crosses Z\{0}. If X(p) is not
tangent to Z at p and X(p) points in the opposite direction
with respect to Y (p), then one can embed Z , locally near p,
in a foliation made of admissible trajectories of (2), whose
running direction is reversed while crossing Z (see Figure 1).
Since, generically, the points where X is tangent to Z are

X

X

Z
Y

X

Y

Y

Fig. 1. A local foliation embedding Z

isolated, it turns out that there exists an admissible trajectory
which tracks globally the unbounded connected component
of Z \ {0} on which X and Y have opposite versus.

The paper is organized as follows. In Section II, we recall
the main definitions of stability in which we are interested,
we introduce the convexified system, and we describe the
topological structure of the set Z . The main results are
stated in Section III, where their robustness is also discussed.
Finally, the proofs are sketched in Section IV.

II. BASIC DEFINITIONS AND FACTS

A. Definitions of stability

Fix n, m ∈ N and consider the switched system

q̇ = fu(q) , q ∈ R
n , u ∈ U ⊂ R

m , (4)

where U is a compact subset of Rm and (q, u) �→ fu(q) is
a C∞ map from R

n × U to R
n. Assume that fu(0) = 0 for

every u ∈ U . For every δ > 0, denote by Bδ ⊂ Rn the ball
of radius δ, centered at the origin. Set

U = {u : [0,∞) → U | u(.) measurable} .

For every u(.) in U and every p ∈ R
n, denote by t �→

γ(p, u(.), t) the solution of (4) such that γ(p, u(.), 0) = p.
Notice that, in general, t �→ γ(p, u(.), t) needs not to be
defined for every t ≥ 0, since the non-autonomous vector
field fu(t) may not be complete. Denote by T (p, u(.)) the
maximal element of (0, +∞] such that t �→ γ(p, u(.), t) is
defined on [0, T (p, u(.))), and let

Supp(γ(p, u(.), .)) = γ(p, u(.), [0, T (p, u(.)))) .

If Supp(γ(p, u(.), .)) is bounded, then T (p, u(.)) = +∞.
Given p ∈ Rn, the accessible set from p, denoted by A(p),

is defined as

A(p) = ∪u(.)∈USupp(γ(p, u(.), .)) .

Several notions of stability for the switched system (4) can
be introduced.

Defi nition 1: We say that (4) is

• unbounded if there exist p ∈ R
n and u(.) ∈ U such

that γ(p, u(.), t) goes to infinity as t tends to T (p, u(.));
• bounded if, for every K1 ⊂ Rn compact, there exists

K2 ⊂ Rn compact such that γ(p, u(.), t) ∈ K2 for
every u(.) ∈ U , t ≥ 0 and p ∈ K1;

• uniformly stable at the origin if, for every δ > 0, there
exists ε > 0 such that A(p) ⊂ Bδ for every p ∈ Bε;

• locally attractive at the origin if there exists δ > 0 such
that, for every u(.) ∈ U and every p ∈ Bδ, γ(p, u(.), t)
converges to the origin as t goes to infinity;

• globally attractive at the origin if, for every u(.) ∈ U
and every p ∈ Rn, γ(p, u(.), t) converges to the origin
as t goes to infinity;

• globally uniformly attractive at the origin if, for every
δ1, δ2 > 0, there exists T > 0 such that γ(p, u(.), T ) ∈
Bδ1 for every u(.) ∈ U and every p ∈ Bδ2 ;

• globally uniformly stable at the origin if it is bounded
and uniformly stable at the origin;
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• locally asymptotically stable at the origin if it is
uniformly stable and locally attractive at the origin;

• globally asymptotically stable at the origin if it is
uniformly stable and globally attractive at the origin;

• globally uniformly asymptotically stable (GUAS) at
the origin if it is uniformly stable and globally uni-
formly attractive at the origin.

It has been showed by Angeli, Ingalls, Sontag, and Wang
[4] that, thanks to the compactness of U , global asymptotic
stability is equivalent to GUAS. Moreover, it is well known
that, in the case in which all the vector fields fu are linear,
local and global properties are equivalent.

B. The convexified system

In this paper, we focus on the planar switched system

q̇ = u X(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ {0, 1} , (5)

where X and Y denote two vector fields on R2, of class
C∞, such that X(0) = Y (0) = 0. We assume moreover
that X and Y are globally asymptotically stable. Notice, in
particular, that X and Y are forward complete.

A classical tool, in stability analysis, is the convexification
of the set of admissible velocities. Such transformation does
not change the closure of the accessible sets. Moreover, it
was proved in [10] (see also [4, Proposition 7.2]) that, for
every p′ ∈ R2, every switching function u′ : [0,∞) →
[0, 1] and every positive continuous function r defined on
[0, T (p′, u′(.))), there exist u(.) ∈ U and p ∈ R

2 such that

|γ(p, u(.), t) − γ(p′, u′(.), t)| ≤ r(t)

for every t ∈ [0, T (p′, u′(.))). As a consequence, each of the
notions introduced in Definition 1 holds for (5) if and only
if it holds for the same system where U = {0, 1} is replaced
by [0, 1].

In the following, to simplify proofs, we deal with the
convexified system

q̇ = u X(q) + (1 − u)Y (q) , q ∈ R
2 , u ∈ [0, 1] . (6)

Notations
When u(.) is constantly equal to zero (respectively, one), we
write γY (p, t) (respectively, γX(p, t)) for γ(p, u(.), t). Given
p, p′ ∈ R2 and u(.), u′(.) in U , we say that γ(p, u(.), .) and
γ(p′, u′(.), .) forwardly intersect if Supp(γ(p, u(.), .)) and
Supp(γ(p′, u′(.), .)) have nonempty intersection.

C. The collinearity set of X and Y

A key object in order to detect stability properties of (6)
turns out to be the set Z on which X and Y are parallel.
We have that Z = Q−1(0), where

Q(p) = det(X(p), Y (p)) , p ∈ R
2 . (7)

In [6], the stability of the linear switched system (3) was
studied by associating with every point of R2 a suitably
defined “worst” trajectory passing through it, whose con-
struction was based upon Z . The global asymptotic stability

of the linear switched system (3) was then proved to be
equivalent to the convergence to the origin of every such
worst trajectory. We recall that in the linear case, excepted
for some degenerate situations, Z is either equal to {0} or
is made of two straight lines passing through the origin.

In the nonlinear case, the situation is more complex. Let
us represent Z as

Z = {0} ∪
⋃
Γ∈G

Γ , (8)

where G is the set of all connected components of Z \ {0}.
Notice that G needs not, in general, to be countable. With a
slight abuse of notation, we will refer to the elements of G
as to the components of Z .

Defi nition 2: Let Γ be a component of Z and fix p ∈ Γ.
We say that Γ is direct (respectively, inverse) if X(p) and
Y (p) have the same (respectively, opposite) direction.

Remark 3: Notice that the definition is independent of the
choice of p, since neither X nor Y vanish along Γ.
An example of how Z can look like is represented in
Figure 2.

direct inverse

direct

inverse

y

x

Fig. 2. The set Z

Some of the results of this paper are obtained assuming
that the set Z has suitable regularity properties, which are
generic in the sense defined below.

A base to the Withney topology in C∞(R2, R2) (the set of
smooth vector fields on R2) can be defined, using the multi-
index notation, as the family of subsets of C∞(R2, R2) of
the type

V(k, f, r) =
{

g

∣∣∣∣
∥∥∥∥∂|I|(f − g)

∂xI
(x)

∥∥∥∥ < r(x) ∀x, |I| ≤ k

}
,

where k is a nonnegative integer, f belongs to C∞(R2, R2),
and r is a positive continuous function defined on R2. Denote
by GAS(R2) the set of smooth vector fields on R2 which
are globally asymptotically stable at the origin, and endow
it with the topology induced by Withney’s one. A generic
property for (6) is a property which holds for an open dense
subset of GAS(R2)×GAS(R2), endowed with the product
topology of GAS(R2).
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Lemma 4: For a generic pair of vector fields (X, Y ), Z\
{0} is an embedded one-dimensional submanifold of R2.
Moreover, Q(p) changes sign while p crosses Z \ {0}.
The lemma is a standard result in genericity theory. It follows
from the fact that the condition

(G1) If p 
= 0 and Q(p) = 0, then ∇Q(p) 
= 0,

is generic (see, for instance, [1]). When Z\{0} is a manifold,
we say that p ∈ Z\{0} is a tangency point if X(p) is tangent
to Z . Under condition (G1), p ∈ Z \ {0} is a tangency
point if and only if ∇Q(p) and X(p) (equivalently, Y (p))
are orthogonal.

Some of our results are obtained under additional generic
conditions. One of these, namely,

(G2) The Hessian matrix of Q at the origin is non-
degenerate,

ensures that Z , in a neighborhood of the origin, is given
either by {0} or by the union of two transversal one-
dimensional manifolds intersecting at the origin.

Under the generic conditions (G1) and (G2), the con-
nected component of Z containing the origin looks like one
of Figure 3.

A third generic condition which we will sometimes assume
to hold is

(G3) If p 
= 0, Q(p) = 0, and ∇Q(p) is orthogonal to
X(p), then the second derivative of Q at p along
X (equivalently, Y ) is different from zero,

which, together with (G1), guarantees that the tangency
points on Z are isolated.

origin
origin origin

origin

origin

Fig. 3. The connected component of Z containing the origin

III. STATEMENT OF THE RESULTS

We organize our results in sufficient and necessary condi-
tions with respect to the stability properties.

Notice that all such conditions are easily verified without
any integration or construction of a Lyapunov function.
Moreover, they are robust under small perturbations of the
vector fields, as explained in Section III-C. Let us recall that
X and Y are assumed to be globally asymptotically stable
at the origin and that all the results given below, although
stated for the case u ∈ [0, 1], are also valid for the system
where u varies in {0, 1}.

Before stating our main theorems, observe that classical
results on linearization clearly imply the following.

Proposition 5: Assume that the eigenvalues of A =
∇X |p=0 and B = ∇Y |p=0 have strictly negative real part.
Then (6) is locally asymptotically stable if and only if (3) is
GUAS.

A. Sufficient conditions

The following theorem gives a simple sufficient condition
for GUAS, which generalizes the analogous one already
known for the linear system (3) (see [6], [14]).

Theorem 6: Assume that Z = {0}. Then the switched
system (6) is GUAS at the origin.

Remark 7: The proof of Theorem 6 naturally extends to
the following case: if V is an open and simply connected
subset of R2, if X and Y point inside V along its boundary,
and if Z ∩ V = {0}, then (6) is uniformly asymptotically
stable on V .
Under the generic assumptions (G1) and (G2), Theorem 6
can be generalized as follows.

Theorem 8: Assume that the generic conditions (G1)
and (G2) hold. Assume, moreover, that the origin is isolated
in Z and that Z \ {0} contains no tangency point. Then the
switched system (6) is GUAS.
When Z is bounded, although different from {0}, some
weaker version of Theorem 6 still holds.

Theorem 9: Assume that Z is compact. Then the
switched system (6) is bounded.
As a direct consequence of Proposition 5 and Theorem 9,
we have the following sufficient condition for global uniform
stability.

Corollary 10: Let Z be compact, and the linearized
switched system be non-degenerate and GUAS. Then the
switched system (6) is globally uniformly stable.

Remark 11: The conclusion of Theorem 9 applies to the
more general case where the points at which X and Y are
globally asymptotically stable are allowed to be different.

Remark 12: The conclusion of Theorem 9 would not hold
under the weaker hypothesis that X and Y are globally
stable, instead of globally asymptotically stable.

B. Necessary conditions

The following proposition expresses the straightforward
remark that the inverse components of Z constitute obstruc-
tions to the stability of (6). The reason is clear: if Γ is inverse
and p belongs to Γ, then a constant switching function u(.)
exists such that γ(p, u(.), t) = p for every t ≥ 0.

Proposition 13: If Z has an inverse component, then the
switched system (6) is not globally attractive.
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The following theorem gives a necessary condition for
boundedness, under generic conditions.

Theorem 14: Assume that the generic conditions (G1)
and (G3) hold. If Z contains an unbounded inverse compo-
nent, then the switched system (6) is unbounded.

Remark 15: In the non-generic case the statement of
Theorem 14 is false. A counterexample can be found even
in the linear case (see [6]).

C. Robustness

We say that a property satisfied by (X, Y ) is robust if it
still holds for small perturbations of the pair (X, Y ), that
is, if it holds for all the elements of a neighborhood of
(X, Y ) in GAS(R2)×GAS(R2). Such notion of robustness
is also known as structural stability, an expression which we
prefer to avoid, in order to prevent confusion with the many
definitions of stability already introduced for (6).

Under the generic conditions (G1) and (G2), one can
easily verify that the topology of the set Z does not change
for small perturbations of X and Y . Moreover, fixed one
component Γ of Z , the fact that Γ is direct or inverse is
robust. Similarly, if Γ is a component of Z , which has not
the origin in its closure, the absence of tangency points along
Γ is robust. As a consequence, the conditions formulated by
the theorems above are robust. More precisely:

Theorem 16: Under generic assumptions, if any of The-
orems 6, 8, 9, 14, Corollary 10, or Proposition 13 applies to
the pair (X, Y ), then it applies in a neighborhood of (X, Y )
in GAS(R2)×GAS(R2).

IV. SKETCHES OF PROOFS

The complete proofs of the theorems stated in the previous
section are given in [7]. We give here only sketches of them.

A. Theorem 6

The main point to be proved is the global attractivity of
(2).

The first step, in order to prove global attractivity, is to
show that every accessible set A(q) is bounded. In order to
do this, let us consider two cases. If γX(q, .) and γY (q, .)
do not forwardly intersect, let us define

γX,Y (q, s) =

{
γX(q, tan(sπ)) if s ∈

[
0, 1

2

]
,

γY (q, tan((1 − s)π)) if s ∈
[

1
2 , 1

]
.

Otherwise, if γX(q, .) and γY (q, .) do forwardly intersect, let
denote t the first positive time such that γY (q, t) is a point
of the form γX(q, τ) (τ > 0) and define

γX,Y (q, s) =
{

γX(q, s) if s ∈ [0, τ ],
γY (q, t + τ − s) if s ∈ [τ, t + τ ].

In both cases, γX,Y is a simple closed piecewise smooth
curve. As a consequence, it separates the plane in two parts.
Denote by B the bounded one. Using index theory, one can
prove that A(q) ⊂ B̄ (see [7]).

The second step consists in proving (through additional
considerations on the structure of the accessible sets) that no

Y (q)
Y (q)

X(q)

q

0

0

X(q)

q

Fig. 4. The curve γX,Y in the two cases

admissible curve has an accumulation point different from
the origin. Together with the boundedness of the accessible
sets, this proves that (2) is globally attractive.

The uniform stability is a direct consequence of the
uniform stability of X and Y at the origin and of the
description given above of the accessible sets.

Finally, it has been proved in [4] that global asymptotic
stability implies global uniform asymptotic stability when
the control set is compact, which allows to conclude.

B. Theorem 8

X

Γ1

Γ2Γ3

q
0

X

X

X

X

Y

Y

Y

Y

Γ1

Γ2Γ3

q

X

X

X

Y

Y

Y

0

Y

Fig. 5. The new curve γX,Y in both cases

The proof of Theorem 8 is just an adaptation of the
one of Theorem 6. The major difference consists in the
characterization of the boundary of an accessible set A(q).
Such boundary, which is given by the support of γX,Y in the
case Z = {0}, is now obtained as the finite concatenation
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of pieces of curves γX(pi, .) and γY (qi, .), where pi and qi

are points of the plane belonging to Z (see Figure 5).This
allows to prove that the accessible sets are bounded. The rest
of the proof is almost unchanged.

C. Theorem 9

The main idea of the proof of Theorem 9 is to show that
we can modify the vector fields X and Y on a compact set in
such a way they satisfy the hypotheses of Theorem 6. The
transformed system being GUAS, it is also bounded. This
clearly implies that the original system is bounded.

D. Theorem 14

If (G1) holds, the components of Z are one-dimensional
manifolds. In [7] we show that, if (G1) and (G3) hold,
there exist admissible curves of (6) following the inverse
components of Z in both directions. The result is proved
using a local argument based on the normal forms for X
and Y given by A. Davydov in [8]. Hence, if there exists
at least one unbounded inverse component of Z , then (6)
admits a curve going to infinity.
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