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Abstract— A variety of problems arising in communica-
tion networks, computer networks, automated manufacturing
plants, etc., can be described by min-max-plus system models.
This paper investigates the cycle time assignability of general
min-max-plus systems with min-max-plus input control func-
tions, which are nonlinear extensions of the systems studied in
recent years. The main results of the paper are the necessary
and sufficient criterion for the cycle time assignability and the
feedback design. The methods based on directed graph and
max-algebra are constructive, and a numerical example is given
to illustrate such methods.

I. INTRODUCTION

There exist many discrete event systems with minimum

and maximum constraints in real-world systems such as

communication networks, computer networks, automated

manufacturing plants, etc. (see, for example, [1], [2], [4],

[17], [19], [20], [23], [25]). Such systems can be described

by min-max-plus system models in which the operations

minimization, maximization and addition are used, and are

usually called min-max-plus systems, which are nonlinear

extensions of the well-known linear max-plus system mod-

els (or max-plus systems) where only maximization and

addition are used. Max-plus systems can be studied using

linear methods based on max-plus algebra (see [1], [3], [7]–

[9], [16]). There has been much research on min-max-plus

systems in recent years. Some significant results have been

obtained for autonomous systems, such as the existence and

the calculation of a fixed point and a cycle time (see [6],

[12]–[15], [20]–[22]; etc.). The control problems of min-

max-plus systems have been studied lately. De Schutter and

van den Boom investigated the model predictive control for

min-max-plus systems (see [10]); Chen and Tao investigated

the observability, reachability and cycle time assignment
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for min-max-plus systems with max-plus input and output

control functions (see [5], [26]).

The stability, equilibrium states, cyclical behavior and

asymptotic average delays of min-max-plus systems are of

vital importance to system designers (see [2], [6], [14], [19],

[20], etc.). The cycle time is the fundamental performance

metric of min-max-plus systems and is defined as the limit

vector limk→∞ F k(x)/k, where F (x) and x are the interior

function and the state vector of the systems, respectively. In

the applications of min-max-plus systems, the state vector x
is often interpreted as a vector of occurrence times of certain

events and the vector F (x) as the times of next occurrence.

Hence the limit vector above can be thought of as the vector

of asymptotic average times to the next occurrence of the

events:

(F k(x) − F k−1(x)) + · · · + (F (x) − x)
k

=
F k(x) − x

k
,

which tends to limk→∞ F k(x)/k as k → ∞. Cohen et

al. studied the pole (cycle time) assignment of max-plus

systems and established the assignment condition by an

output feedback (see [7]). Tao and Chen gave an account

of the cycle time assignment by a uniform state feedback

for min-max-plus systems with max-plus input control func-

tions (see [26]). The results obtained in the above works

were used to analyze the stability of the systems. In the

real-world non-autonomous min-max-plus systems, the input

events with only maximum constraints correspond to max-

plus input control functions. The input events, however,

are with mixed constraints in the general case. This paper

investigates general min-max-plus systems with min-max-

plus input control functions, which are nonlinear extensions

of the systems presented in [1], [5], [7] and [26], and focuses

on the cycle time assignability with respect to the state

feedback. The setting is chiefly the mathematics directed

graph and max-plus algebra. The basic idea is the familiar

system concept of reachability (see [7]), thought of as a

graph property of distinguished max-plus projections. The

directed graph setting rather quickly suggests new methods

of attacking synthesis which are proved to be intuitive and
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economical. The necessary and sufficient criterion for the

cycle time assignability with respect to the state feedback is

established, and the design of such feedback is derived. A

part of the results extends some work of [7] and [26].

The paper is organized as follows. Section 2 describes

general min-max-plus system models. Section 3 introduces

the reachability. Section 4 gives the max-plus projection

representation of the closed-loop system. Section 5 inves-

tigates the cycle time assignability and the design of state

feedback. Section 6 contains a numerical example. Finally,

some conclusions are drawn in Section 7.

II. MIN-MAX-PLUS SYSTEM MODELS

Let us begin with some notations which are used through

this paper. Let R be a set of all real numbers and R
n be

an n-dimensional column vector set over R. Vectors in R
n

are denoted by x,x1, etc. and xi denotes the ith component

of x. The notation x1 ≤ x2 denotes the usual partial order

on R
n : x1 ≤ x2 ⇐⇒ x1

i ≤ x2
i for 1 ≤ i ≤ n. It is

convenient to use the infix operators a∧b and a∨b to stand for

minimum and maximum, respectively, i.e., a∧b = min(a, b)
and a ∨ b = max(a, b). Note that + distributes over both ∧
and ∨: (a∧b)+c = a+c∧b+c, (a∨b)+c = a+c∨b+c. In

expressions like these it assumes that + always has higher

precedence than either ∧ or ∨. The same symbols are also

used for the corresponding operations on vectors. Since the

ordering is the product ordering, it is easy to see that (x1 ∧
x2)i = x1

i ∧ x2
i , (x

1 ∨ x2)i = x1
i ∨ x2

i for 1 ≤ i ≤ n.

A min-max-plus function of type (n, 1) is denoted by

f(x) : R
n → R

1 which can be written as a term in the

following grammar:

f := x1, · · · , xn|f + a|f ∧ f |f ∨ f, (1)

where x1, · · · , xn are variables and a ∈ R is referred to as

a parameter. The vertical bars separate the different ways

in which terms can recursively be constructed. The simplest

term is one of the n variables, xi, thought of as the i-th

component function. Given any term, a new one may be

constructed by adding a; given two terms, a new one may be

constructed by taking the minimum or the maximum. Only

these rules may be used to build terms. For example, (2 +
x3 ∧ x1) ∨ 1 + x3 is a min-max-plus function of type (3, 1)

but neither x2 ∧ 2 nor x2 ∨x1 +x3 can be generated by (1).

A min-max-plus function of type (n, m) is denoted by

F (x) : R
n → R

m, such that each component Fi(x) is a

min-max-plus function of type (n, 1). The set of min-max-

plus functions of type (n, m) is denoted by MM(n, m).
Let f(x) ∈ MM(n, 1). If f(x) can be represented by a

term which uses ∨ but not ∧, it is said to be max-plus.

If f(x) requires ∧ but not ∨, it is min-plus. The same

terminology extends to F (x) ∈ MM(n, m) by asking that

each component Fi(x) has the property in question.

Now, recall some basic properties of min-max-plus func-

tions. Let F (x) ∈ MM(n, m). First, F (x) is continuous.

Second, F (x) is monotone: x1 ≤ x2 =⇒ F (x1) ≤ F (x2).
Third, F (x) is homogeneous, in the sense that, for any

h ∈ R, F (x+h) = F (x)+h. Fourth, if U ∈ MM(n, m) and

V ∈ MM(m, l), it is easy to see that V U ∈ MM(n, l). Fifth,

let F (x) ∈ MM(n, n), then F (x) is non-expansive in the �∞

norm, i.e., ‖F (x1) − F (x2)‖ ≤ ‖x1 − x2‖,∀x1,x2 ∈ R
n,

where ‖x‖ = max1≤i≤n |xi|, |xi| is the usual absolute value

on real numbers.

A max-plus algebra is a structure consisting of the set

R∪{−∞} together with two operators ∨ and +, denoted by

D. Here, −∞ and 0 are the zero element and the identity

element of D, respectively. A detailed exposition can be

found in [1] and [9].

The min-max-plus system is described using the state

transition equation

x(k + 1) = F (x(k)) ∨ G(u(k)), k = 0, 1, · · · (2)

where x(0) = ζ ∈ R
n,u(0) = η ∈ R

p, F (x) ∈ MM(n, n)
and G(u) ∈ MM(p, n) are interior and input functions,

respectively, and x(k) = [x1(k) · · · xn(k)]τ ∈ R
n and

u(k) = [u1(k) · · · up(k)]τ ∈ R
p are state and input

vectors, respectively. The F (x) and G(u) above are general

min-max-plus functions. If F (x) and G(u) are max-plus

functions, (2) is the model in [1] and [7]. If F (x) is a min-

max-plus function and G(u) is a max-plus function, (2) is

the model in [5] and [26]. Theoretically, the model (2) is the

nonlinear extension of the models of [1], [5], [7] and [26].

Hence the results of this paper can be expected to include

some results in [1], [5], [7] and [26] as special cases. The

system described by model (2) is called the open-loop min-

max-plus system with min-max-plus input control function

and is denoted by S. In addition, the component Gi(u) =
−∞ is allowed for the system S. If Gi(u), 1 ≤ i ≤ n, are

all −∞, (2) is the autonomous min-max-plus system.

III. REACHABILITY

Let F (x) ∈ MM(n, m). F (x) can be placed in a conjunc-

tive normal form (see [14]):

Fi(x) = f1
i (x) ∧ · · · ∧ f

l(i)
i (x), 1 ≤ i ≤ m, (3)

where the max-plus functions fei
i (x) = aei

i1 + x1 ∨ · · · ∨
aei

in + xn, aei
ij ∈ D, 1 ≤ ei ≤ l(i), l(i) is the number of
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max-plus functions of type (n, 1) in the component Fi(x).
aei

ij = −∞ merely indicates the absence of the variable xj in

fei
i (x). [aei

i1 · · · aei
in] is said to be the coefficient row vector

of fei
i (x) over D and aei

ij is called the coefficient of the

jth variable xj of fei
i (x). For example, by the distributivity

of ∨ over ∧, (2 + x3 ∧ x1) ∨ 1 + x3 can be rewritten as

the conjunctive normal form (−∞ + x1 ∨ −∞ + x2 ∨ 2 +
x3) ∧ (x1 ∨ −∞ + x2 ∨ 1 + x3), and [−∞ − ∞ 2] is

the coefficient row vector corresponding to the preceding

max-plus function. An m×n max-plus matrix A associating

with F (x) is constructed by taking the coefficient row vector

of fei
i (x) as the ith row of A. The matrix A constructed

in this way is called a max-plus projection of F (x). The

set of max-plus projections is the collection of all such

matrices from a single conjunctive form for F (x) such

as (3) and is denoted by P (F ). P (F ) contains
∏m

i=1 l(i)
max-plus projections. Since the conjunctive normal form of

each component Fi(x) is unique up to re-ordering of the

conjunctions, the set of max-plus projections of F (x) is

uniquely defined. In practice it is often more convenient to

work with whatever set of projections is easiest to construct

instead of doing the additional work necessary to find the

set of normal projections.

Using (3) and the max-plus projections, F (x) can be

written as

F (x) = ∧r∈I Arx, (4)

where Ar ∈ D
m×n are max-plus projections of F (x), Arx is

the matrix product over D, I is the finite index set of P (F ).
(4) is called the max-plus projection representation of F (x)
and is used to calculate the cycle times and the globally

optimal solutions of min-max-plus systems (see [12], [27]).

By the method stated above, the min-max-plus functions

G(u) of type (p, n) can also be written as

G(u) = ∧s∈J Bsu, (5)

where Bs ∈ D
n×p, Bsu is the matrix product over D, J is

the finite index set of the max-plus projection set of G(u). If

Gi(u) = −∞, the ith rows of all Bs are a zero row vector

over D. Using (4) and (5), (2) can be rewritten as

x(k + 1) = ∧(r,s)∈I×J (Arx(k) ∨ Bsu(k)), k = 0, 1, · · ·
(6)

where I × J is the Cartesian product of I and J . Corre-

spondingly, S has the following open-loop max-plus projec-

tion systems x(k + 1) = Arx(k) ∨Bsu(k), (r, s) ∈ I ×J ,

and are denoted by S(r,s).

The system S(r,s) can be described by a directed graph.

ar
ij denotes the element of the matrix Ar in the ith row

and the jth column. The precedence graph of Ar, denoted

by G(Ar), is the directed graph with annotated edges which

has the state nodes x1, · · · , xn and there exists an edge from

xj to xi if and only if ar
ij �= −∞, which has the annotation

ar
ij . In order to express S(r,s), the input nodes u1, · · · , up to

G(Ar) are added and joined to x1, · · · , xn: there exists an

edge from uj to xi with the annotation bs
ij if and only if

bs
ij �= −∞, where bs

ij is the element of Bs in the ith row

and the jth column. The directed graph above is called the

directed graph of S(r,s) and is denoted by G(S(r,s)). A path

in this directed graph has the usual meaning of a chain of

directed edges and a circuit is a path which starts and ends

at the same node. A circuit is elementary if the nodes are all

distinct. The weight of a path is the sum of the annotations

on the edges in the path. The length of a path is the number

of edges in the path.

Definition 1: If there is a path from an input node to

the state node xi in G(S(r,s)), then xi is called the (r, s)-
reachable state component of the system S. xi is called

reachable if for all (r, s) ∈ I ×J , xi is (r, s)-reachable. S

is called reachable if all its state components are reachable.

The concept presented above includes the concepts of

reachability in [1], [5], [7] and [26] as special cases. Clearly,

Gi(u) = −∞ implies that there does not exist any edge from

an input node to the state node xi in every G(S(r,s)). When

Gi(u) �= −∞, the ith row of every max-plus projection of

G(u) is nonzero, i.e., there exist some edges from input

nodes to xi in every G(S(r,s)) and hence xi is reachable.

Such a state node is said to be directly reachable.

IV. DIRECT PRODUCTS OF MAX-PLUS PROJECTIONS

Suppose that the open-loop system (2) can freely be

modified by setting the state feedback

u(k) = K(x(k)), (7)

where K(x) ∈ MM(n, p) (here, Ki(x) = −∞ is allowed),

then (2) becomes the following closed-loop system

x(k + 1) = F (x(k)) ∨ G(K(x(k))), k = 0, 1, · · · (8)

where x(0) = ζ ∈ R
n. The state feedback function in (7) is

sometimes denoted by K, and (8) is denoted by S(K).
It is clear that the mathematical setting of (8) is the min-

max-plus function of type (n, n)

F (x) ∨ G(K(x)) = ∧(r,s)∈I×J (Arx ∨ BsK(x)). (9)

Let us give the max-plus projection representation of

BsK(x). Let Bs = [B1
s · · · Bn

s ]τ , where Bi
s, 1 ≤ i ≤ n are

the 1st, · · ·, nth row vectors of Bs, and K(x) = ∧d∈HK̄dx
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be a max-plus projection representation of K(x). Using

max-plus projections of K(x), it is constructed that Kt :=
[K̄d1 · · · K̄dn

]τ , and dj ∈ H, 1 ≤ j ≤ n. The matrix Kt

consists of some max-plus projections of K(x), and is called

the direct product of max-plus projections of K(x). It is

defined that the operation Bs
Kt = [B1
sK̄d1 · · · Bn

s K̄dn
]τ ,

where Bi
sK̄di

, 1 ≤ i ≤ n, are the matrix products over D.

Lemma 1: BsK(x) = ∧t∈L(Bs 
 Kt)x, where L is the

finite index set of the set of all direct products of max-plus

projections of K(x).
Proof: Let bs

ij denote the element of the matrix Bs in

the ith row and the jth column and let Ki(x) = k1
i (x) ∧

· · · ∧ k
l(i)
i (x), 1 ≤ i ≤ p be a conjunctive normal form

corresponding to a max-plus projection representation of

K(x). Using the mutual distributivity of ∨ and ∧,

[bs
i1 · · · bs

ip][K1(x) · · · Kp(x)]τ

= bs
i1 + K1(x) ∨ · · · ∨ bs

ip + Kp(x)

= (bs
i1 + k1

1(x) ∧ · · · ∧ bs
i1 + k

l(1)
1 (x)) ∨ · · ·

∨(bs
ip + k1

p(x) ∧ · · · ∧ bs
ip + kl(p)

p (x))

= (bs
i1 + k1

1(x) ∨ · · · ∨ bs
ip + k1

p(x)) ∧ · · ·
∧(bs

i1 + k
l(1)
1 (x) ∨ · · · ∨ bs

ip + kl(p)
p (x))

= [bs
i1 · · · bs

ip]

⎡
⎢⎢⎣

k1
11 · · · k1

1n

...
. . .

...

k1
p1 · · · k1

pn

⎤
⎥⎥⎦x ∧ · · ·

∧[bs
i1 · · · bs

ip]

⎡
⎢⎢⎣

k
l(1)
11 · · · k

l(1)
1n

...
. . .

...

k
l(p)
p1 · · · k

l(p)
pn

⎤
⎥⎥⎦x. (10)

The result follows by the definitions of max-plus projection

and its direct products. The proof is completed.

Using Lemma 1, (9) can be rewritten as

F (x) ∨ G(K(x)) = ∧(r,s,t)∈I×J×L (Ar ∨ (Bs 
 Kt))x,

(11)

where I × J × L is the Cartesian product of I, J and

L. Ar ∨ (Bs 
 Kt) is called the max-plus projection of

F (x) ∨ G(K(x)), and the corresponding system is called

the closed-loop max-plus projection system of S(K) and

denoted by S(r,s)(Kt). It merits attention that if K̄d1 = · · · =
K̄dn

= K̄d0 , Bs
Kt = BsK̄d0 , where BsK̄d0 is the matrix

product over D. Hence, (11) includes the closed-loop system

modified by means of a max-plus state feedback as a special

case. From (11), the following result is derived immediately.

Theorem 1: {Ar ∨ (Bs 
 Kt)|(r, s, t) ∈ I × J × L} is

the set of max-plus projections of F (x) ∨ G(K(x)).
Let us see the directed graph of the closed-loop max-plus

projection system S(r,s)(Kt). In G(S(r,s)), an edge from the

state node xj to the input node ui with the annotation kt
ij is

drawn if and only if kt
ij is a nonzero element at position (i, j)

of a direct product factor of Kt, and the edge xjui is called

the t-feedback edge. Such a graph is called the directed graph

of S(r,s)(Kt) and is denoted by G(S(r,s)(Kt)). In graph

theory, G(S(r,s)(Kt)) is a directed pseudograph without any

self-loop with feedback edges. The precedence graph of

Ar ∨ (Bs 
 Kt), denoted by G(Ar ∨ (Bs 
 Kt)), is the

directed graph with annotated edges which has the state

nodes x1, · · · , xn and an edge from xj to xi with the

annotation ar
ij if and only if ar

ij �= −∞, or an edge from

xj to xi with the annotation (Bs 
 Kt)ij if and only if

(Bs 
 Kt)ij �= −∞. It can be seen that the directed graph

G(Ar ∨ (Bs 
 Kt)) is different from the directed graph

G(S(r,s)(Kt)).

V. CYCLE TIME ASSIGNABILITY AND FEEDBACK

DESIGN

Let F (x) ∈ MM(n, n). F k(x) is defined as F 0(x) =
x, F k(x) = F (F k−1(x)). It is easy to see that F k(x) ∈
MM(n, n), for any k ≥ 0. The cycle time vector of the

function F (x), denoted by χ(F ), is defined as χ(F ) =
limk→∞ F k+1(x)/(k + 1). χ(F ) exists and is independent

of the initial vector x (see [12]). The cycle time vectors of

the systems S(r,s) and S are denoted by µ(S(r,s)) and χ(S),
respectively. Since the interior functions of S(r,s) and S are

Arx and F (x), respectively, µ(S(r,s))=µ(Ar) χ(S)=χ(F ).
It is clear that the performance metric of the closed-loop

system S(K) depends on the parameters of its state feedback

function. By Corollary 1 of [12], the cycle times χ(S(K))
exist and are equal to χ(F (x) ∨ G(K(x))) for all values

of K(x). Let k be the real vector consisting of all distinct

parameters of K(x) and Z(x,k) = F (x) ∨ G(K(x)). The

notation Z(x,k) is used to show the dependency of the value

of F (x) ∨ G(K(x)) on parameters of K(x). It can be seen

from non-expansiveness that χ(Z(x,k)) are independent of

the initial vector x.

Definition 2: If there exists a state feedback (7) such that

the tth component of χ(S(K)) does not have any upper

bound with respect to parameters of K(x), then the tth

component of the cycle time of S is said to be assignable by

a state feedback. The cycle time of S is said to be assignable

if all its cycle time components are assignable.

Theorem 2: The cycle time of the system S is assignable

if and only if S is reachable.

Before proceeding to the proof we separate off the follow-

ing lemmas which will serve as the steps of the proof.
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Lemma 2: χ(Z(x,k)) is a monotone increasing and con-

tinuous function with respect to k.

Proof: It is direct to verify that if k1 ≥ k2, then

K1(x) ≥ K2(x) for any x. It follows from monotonicity that

G(K1(x)) ≥ G(K2(x)). Hence F (x)∨G(K1(x)) ≥ F (x)∨
G(K2(x)), i.e., Z(x,k1) ≥ Z(x,k2). By monotonicity,

Z(Z(x,k1),k1) ≥ Z(Z(x,k2),k1) ≥ Z(Z(x,k2),k2). By

induction, Zk+1(x,k1) ≥ Zk+1(x,k2) for any k ≥ 0.

Dividing both sides with k + 1 and taking limits gives

χ(Z(x,k1)) ≥ χ(Z(x,k2)), i.e., χ(Z(x,k)) is monotone

increasing. It is clear that χ(Z(x,k)) is a continuous func-

tion with respect to k. The proof is completed.

Definition 3[15]: If A is an n×n matrix over D, let µ(A)
be the vector such that µi(A) = max{w(c)/l(c)|c is a circuit

in G(A) upstream from node i}, where w(c) and l(c) are the

weight and length of a circuit c, respectively. µ(A) is called

the vector of maximum cycle means of A.

Lemma 3[12]: Let F (x) ∈ MM(n, n) and be given by

(4). Then χ(F ) = ∧r∈Iµ(Ar).

Lemma 4: χ(S(K)) = ∧(r,s,t)∈I×J×L µ(Ar∨(Bs
Kt))
for all values of k.

Proof: The result follows immediately from Theorem 1

and Lemma 3. The proof is completed.

Let us now return to Theorem 2.

Proof of Theorem 2:

Necessity Assume that S is not reachable. Without loss of

generality, assume that the state node x1 is not reachable,

i.e., there exists at least an S(r0,s0) such that there does

not exist any path from an input node to x1 in G(S(r0,s0)).
Assume S(K) is a closed-loop system modified using any

state feedback function K(x). Since there must exist an

input node in any circuit with feedback edges, all circuits

in G(S(r0,s0)(Kt)) upstream from x1 do not contain any

feedback edge. Hence µ1(Ar0∨(Bs0
Kt)) is independent of

parameters of K(x) and is equal to µ1(Ar0). It follows from

Lemma 4 that χ1(S(K)) ≤ ∧t∈Lµ1(Ar0 ∨ (Bs0 
 Kt)) =
µ1(Ar0). Hence χ1(S(K)) has an upper bound for all values

of parameters of K(x). This contradicts the cycle time

assignability of S, and hence proves the necessity.

Sufficiency Since S is a reachable system, without loss

of generality, assume G1(u) �= −∞, i.e., x1 is a directly

reachable state note. By constructing the max-plus state

feedback u(k) = Kx(k), where K ∈ D
p×n in which all

elements of the 1st column are nonzero and the elements of

the other columns are all zero, the closed-loop system S(K)
is obtained. It can be said with certainty that the cycle time of

the system S is assignable by the K above. In fact, G1(u) �=

−∞ implies that the 1st rows of max-plus projections Bs

are all nonzero. Let us consider the closed-loop max-plus

projection S(r,s)(K). Assume that bs
1j �= −∞. Then there

exists the circuit x1ujx1 upstream from x1 in G(S(r,s)(K)).
The state node x1 may have the other upstream circuits with

the feedback edges x1uj , 1 ≤ j ≤ p. Hence µ1(Ar ∨ BsK)
is a non-constant function with respect to nonzero elements

of K. It follows from Lemma 2 that µ1(Ar ∨BsK) → +∞,

as kj1 → +∞ for 1 ≤ j ≤ p. Since χ1(S(K)) is built

from µ1(Ar ∨ BsK), where (r, s) ∈ I × J , by application

of finitely many ∧, χ1(S(K)) → +∞, as kj1 → +∞ for

1 ≤ j ≤ p, i.e., χ1(S(K)) does not have any upper bound

with respect to nonzero elements of K. On the other hand,

for all (r, s) ∈ I × J , it follows from the structure of K

and the reachability of S that any circuit upstream from x1

in G(S(r,s)(K)) is a circuit upstream from xi, 2 ≤ i ≤ n.

Hence, χi(S(K)) → +∞, 2 ≤ i ≤ n, as kj1 → +∞ for

1 ≤ j ≤ p. The proof is completed.

It can be seen from the proof of Theorem 2 that the cycle

time assignability of a reachable min-max-plus system can

be achieved by the max-plus state feedback. In fact, the proof

of sufficiency of Theorem 2 constructs such a feedback.

In general, such a feedback is not unique (see Example 1

in the next section). In addition, it should be pointed that

the constructed state feedback differs from one of [28] in

structure.

This definition of assignability is a weak one. The results

above can be applied to stabilize the systems. Because of

its complexity and the limitation of space for this paper the

corresponding results will be discussed in future papers.

VI. NUMERICAL EXAMPLE

The following example illustrates how the methods work

in practice.

Example 1: The non-autonomous dynamical min-max-

plus system Ŝ is determined by the interior function F̂ (x) :
F̂1(x) = 1+x1, F̂2(x) = 2+x3∧(x1∨1+x3), F̂3(x) = 3+
x2 and the input function Ĝ(u) : Ĝ1(u) = 3 + u2, Ĝ2(u) =
−∞, Ĝ3(u) = 1+u1∧4+u2. Here, both F̂ (x) and Ĝ(u) are

min-max-plus functions. F̂ (x) has two max-plus projections:

Â1 =

⎡
⎢⎣ 1 −∞ −∞

−∞ −∞ 2
−∞ 3 −∞

⎤
⎥⎦ , Â2 =

⎡
⎢⎣ 1 −∞ −∞

0 −∞ 1
−∞ 3 −∞

⎤
⎥⎦

Ĝ(u) has two max-plus projections:

B̂1 =

⎡
⎢⎣ −∞ 3

−∞ −∞
1 −∞

⎤
⎥⎦ , B̂2 =

⎡
⎢⎣ −∞ 3

−∞ −∞
−∞ 4

⎤
⎥⎦ .
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Constructing the state feedback matrix

K̂ =

[
−∞ −∞ k13

−∞ −∞ k23

]
,

obtains the closed-loop system Ŝ(K̂). By a direct calculation,

χi(Ŝ(K̂)) → +∞, 1 ≤ i ≤ 3, as kj3 → +∞ for j = 1, 2,

i.e., the cycle time of Ŝ is assignable by the state feedback

K̂. The state feedback used to the assignment is also

K̃ =

[
−∞ k12 −∞
−∞ k22 −∞

]
.

In addition, let us use the result of the paper to analyze

the stability of Ŝ. A min-max-plus system is said to be

stable if each component of its cycle time has the same

value (see [6], [15], [20]). By Definition 3 and Lemma 3,

the open-loop cycle time χ(Ŝ) = [1 2 2]τ (For min-max-

plus systems an efficient algorithm for computing cycle times

was presented in [12]). This means that Ŝ is not stable. By

a simple calculation, if k23 ≥ k13 ≥ 3, Ŝ(K̂) is stable.

VII. CONCLUSIONS

This paper has studied the cycle time assignability of min-

max-plus systems with min-max-plus input control functions.

The systems considered are more general than those consid-

ered earlier by Baccelli et al. (see [1], [5], [7], [26]). The

algebraic and graphic type necessary and sufficient criterion

for the cycle time assignability with respect to the state

feedback has been established, and the design for the state

feedback has been presented. It has also been pointed out

that the state feedback used to the cycle time assignment

can be set by the max-plus function. The max-plus projection

representation based on directed graph and max-algebra are

used to analyze the reachability and construct the state

feedback. The proposed methods are constructive in nature.
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