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Abstract— In this paper the authors present a predictive
linear parameter varying (LPV) controller based on the GPC
controller [1]–[3], for nonlinear systems. The resulting con-
troller is denoted as GPC-LPV. This one has the same structure
as a general LPV controller [4]–[7], which has a lineal fractional
dependence on the process signal measurements. Therefore, this
controller has the ability of modifying its dynamics depending
on measurements leading to a possibly nonlinear controller.
That controller is designed in two steps. First, for a given
steady state point is obtained a linear GPC using a local
model of the nonlinear system around that operating point. And
second, using bilinear matrix inequalities (BMIs) the remaining
matrices of GPC-LPV are selected in order to achieve some
closed loop properties: stability in some operation zone, norm
bounding of some input/output channels, maximum settling
time, maximum overshoot, etc. This methodology of design can
be applied to nonlinear systems which can be embedded in a
LPV system using differential inclusion techniques. Finally, the
GPC-LPV is applied to the nonlinear model of a liquid-gas
separation process.

I. INTRODUCTION

The generalized predictive controller (GPC) originally was
developed by Clarke [1], [2]. This linear controller is a
particular case of model based predictive controllers, which
uses a CARIMA (controlled autoregressive integral moving
average) model for the process. GPC has some interesting
properties [3]:

• It can be applied to unstable and nonmininum-phase
processes.

• It can be used as and adaptive controller.
• It has a more complex noise model than dynamic

matrix control (DMC) [8] and Identification Command
controller (IDCOM) [9].

Moreover, it has been validated in a wide spectrum of real-
life applications [10].

Starting from this point, the authors have developed a
reformulation of this controller in state space [11], since the
GPC of Clarke was designed using transfer functions. The
result is a GPC composed by a full rank observer and a state
feedback controller, which gives an output feedback GPC
controller [12]:

xc(k + 1) = Acxc(k)+ Bc
rr(k)+ Bc

yy(k),

u(k) = Ccxc(k)+ Dc
rr(k)+ Dc

yy(k), (1)

† Partially supported by projects: CICYT DPI2004-08383-C03-02 and
AGL2002-04108-C02-01

*Dept. of Systems Engineering and Control. Universidad Politécnica
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being y the output vector of size n, r the reference vector,
u the control action vector of size m, and xc the controller
state vector of size nc.

A. Matrix inequalities

A linear matrix inequality (LMI) is an expression of the
form [13]:

F(x) � F0 +
m

∑
i=1

xiFi > 0, (2)

where x∈R
m is the unknowns vector and the symmetric ma-

trices Fi = FT
i ∈ R

n×n, i = 0, . . . ,m are given. The inequality
symbol > means that F(x) is a positive definite matrix. By
definition, the previous LMI is strict, although it is possible
to consider non-strict LMIs using ≥ instead of >.

A bilinear matrix inequality is a generalization of a LMI
incorporating products between unknowns:

F(x) � F0 +
m

∑
i=1

xiFi +
m

∑
i=1

m

∑
j=1

xix jFi, j > 0. (3)

Following these lines, a nonlinear matrix inequality (NMI)
is matrix inequality where the dependence with respect to
unknowns is a general nonlinear function. A special case that
frequently occurs in practice consists of a polynomial depen-
dence, which gives polynomial matrix inequalities (PMI).

B. LPV controllers

For last years many authors [4]–[7], [14]–[17] have been
developed linear parameter varying (LPV) controllers for
nonlinear systems. The key idea consists to to modify the
controller matrices to adapt the controller to the nonlinear
system depending on signal measurements. The most general
dependence of controller matrices with respect to measure-
ments is linear fractional (LFR) [4], and in particular for
discrete-time systems the controller structure is [18]:⎛
⎝xc(k + 1)

yc
∆(k)

u(k)

⎞
⎠ =

⎛
⎝ Ac Bc

∆ Bc
r Bc

y

Cc
∆ Dc

∆ Dc
∆,r Dc

∆,y
Cc Dc

u,∆ Dc
r Dc

y

⎞
⎠

︸ ︷︷ ︸
K(z)

⎛
⎜⎜⎝

xc(k)
uc

∆(k)
r(k)
y(k)

⎞
⎟⎟⎠ ,

uc
∆(k) = ∆c

m(k)yc
∆(k), (4)

∆c
m(k) is a matrix which affinely depends on signal mea-

surements. In Fig. 1 this structure is represented, which is
essentially composed of an upper linear fractional transfor-
mation between a linear time invariant controller and the
time varying matrix ∆c

m.
The synthesis of such controllers is based on solving a

feasibility problem with LMIs and/or BMIs [13], or based on
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Fig. 1. Structure of a general LPV controller.

solving a linear optimization subject to LMIs and/or BMIs.
The problems with LMIs are always convex and can be
efficiently solved in polynomial time using, for example,
interior points algorithms [13]. As opposite, the problems
with BMIs are nonconvex, and there do not exist algorithms
to solve them in polynomial time, and depending on the
particular structure problem neither in nonpolynomial time.

C. LPV models for nonlinear systems

All the references presented in the previous section require
a LPV model for the nonlinear system in order to design the
LPV controller. Usually the available information about a
certain nonlinear system is a nonlinear model. Therefore, the
first step for these methods is to obtain a LPV model whose
dynamical trajectories contain the nonlinear model ones,
using techniques of linear differential inclusion [13]. The
key idea used in differential inclusion consists on replacing
the nonlinear part of the system model by an expression
which has a linear fractional (LFR) dependence with respect
to the signals present in this nonlinear part [4], [13]. The
result of this operation is a linear time varying model which
depends LFR on that signals, as Fig. 2 shows. In particular,
its mathematical representation is:⎛

⎜⎜⎝
x(k + 1)

y∆(k)
e(k)
y(k)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A B∆ B Bu

C∆ D∆ D∆,p D∆,u

C De,∆ D De,u

Cy Dy,∆ Dy,p Dy,u

⎞
⎟⎟⎠

︸ ︷︷ ︸
M(z)

⎛
⎜⎜⎝

x(k)
u∆(k)
p(k)
u(k)

⎞
⎟⎟⎠ ,

u∆(k) = ∆(k)y∆(k), (5)

where ∆ depends affinely on some system signals, p is a
vector containing any input signal different from control
actions, and e is a vector containing all the output signals
which can give a system performance measure.

This linear time varying system can be viewed as a linear
parameter varying one since the signals present in ∆ can be
interpreted as parameters that are time varying. Therefore,
this is a LPV model for the nonlinear system.

In general, not all the signals present in ∆ will be mea-
surable, and so the LPV controllers designed for this LPV
model only will can use measured ones ∆m:

∆ =

(
∆m 0
0 ∆nm

)
, (6)

and so, ∆c
m only will depend on ∆m.

In these cases the designed LPV controllers are called
robust, since, at least, they must stabilize the LPV model
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Fig. 2. Structure of the linear time varying model.

with time varying parameters that cannot be measured on
line.

II. GPC-LPV

The GPC-LPV controller is a LPV controller based on the
linear state space GPC (1) presented in section 1. The key
idea consists of adding to a designed GPC a linear fractional
dependence with respect the signals present in the matrix ∆m,
and therefore, this gives the LPV controller (4) (Fig. 3), but
in this particular case the matrices Ac, Bc

r , Bc
y, Cc, Dc

r and Dc
y

are known since the linear GPC is designed in a first step.
The remaining matrices must be designed in a second step:
Bc

∆, Cc
∆, Dc

∆, Dc
∆,r, Dc

∆,y and Dc
u,∆, which can be referred as

delta matrices.
The initial linear GPC is designed by using a linear local

model of the LPV model around an operating point, which
belongs to the nonlinear system operation zone. This local
model is obtained from LPV model assuming the signals of
matrix ∆ a constant and equal to the signal values at that
operating point. The LTI GPC has a number of integrators
equal to the number of output controlled signals.

The second step of the design consists of obtaining the
delta matrices. However, there is a initial problem which
must be solved: the resulting GPC-LPV may not have, in
general, the integral behaviour of LTI GPC. The state matrix
of GPC-LPV (4) is:

Ac + Bc
∆∆c

m (I−Dc
∆∆c

m)−1 Cc
∆. (7)

It must be assured that this matrix has exactly a number of
eigenvalues at one equal to the number of controlled outputs.
By design, Ac satisfies this condition, and so there exists a
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Fig. 3. Structure of GPC-LPV
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linear state transformation T such that:

T−1AcT =

(
Ac′ Z
0 In

)
, (8)

using this transformation in (7) the number of integrators
will be exactly n if:(

Ac′ Z
0 In

)
+

(
Bc

∆
′

0n×n∆c
m

)
∆c

m (I−Dc
∆∆c

m)−1 Cc
∆
′, (9)

where n∆c
m

is the size of ∆c
m, and some of the delta matrices

have changed to new values as a result of this linear
transformation: Bc

∆
′ and Cc

∆
′. Besides, some matrices of LTI

GPC have also changed by this transformation: Bc
r
′, Bc

y
′ and

Cc′.
The design of delta matrices is done solving feasibility

problems with LMIs and/or BMIs, or optimizing linear func-
tions subject to LMIs and/or BMIs. These matrix inequalities
were obtained starting from previous results found in the
literature, usually for continuous-time systems, and adapting
them to the particular case of GPC-LPV.

A. Matrix inequalities conditions for robust stability

The main result which enables the most part of matrix
inequalities obtained in the last years is the Lyapunov con-
dition of stability. If it exists a positive definite matrix Q
such that:

AT QA−Q < 0, (10)

then the linear autonomous system x(k + 1) = Ax(k) is
asymptotically stable. This condition is used in [7], [13],
[19]–[22]. The main difference between these results consists
of the dependence with respect to matrix ∆: affine, quadratic
or LFR. In this work the authors have used the most general
dependence, that is to say, LFR.

Following, mainly, the ideas of [7], [22] it is possible to
obtain a set of LMIs and a PMI which provides a sufficient
condition for the robust stability of the closed loop formed
by GPC-LPV and the LPV model (5):⎛

⎜⎜⎝
∗

∗

∗

∗

⎞
⎟⎟⎠

T ⎛
⎝ −Q 0

0 Q
0

0 V

⎞
⎠

⎛
⎜⎜⎝

I 0
ACL BCL,∆

0 I
CCL,∆ DCL,∆

⎞
⎟⎟⎠ < 0, (11)

ACL =

⎛
⎝A+ ByDc

yCu BuCc′

Bc
y
′Cy

(
Ac′ Z
0 In

)⎞
⎠ ,

BCL,∆ =

⎛
⎝B∆ + BuDc

yDy,∆ BuDc
u,∆

Bc
y
′Dy,∆

(
Bc

∆
′

0n×n∆c
m

)⎞
⎠ ,

CCL,∆ =

(
C∆ + D∆,uDc

yCy D∆,uCc′

Dc
∆,yCy Cc

∆
′

)
,

DCL,∆ =

(
D∆ + D∆,uDc

yDy,∆ D∆,uDc
u,∆

Dc
∆,yDy,∆ Dc

∆

)
,(

∆
I

)T (
V11 V12

V21 V22

)(
∆
I

)
> 0, V =

(
V11 V12

V21 V22

)
, V11 < 0,

∀∆ , ∆ = diag(∆,∆c
m). (12)

Equation (11) is a PMI since there are products of three
variables. This condition is sufficient due to the characteristic
complexity of LFR dependence [22], and by the use of a
constant Lyapunov matrix Q, which does not depend on
matrix ∆. It is possible to override the second limitation by
using a parameter dependent Lyapunov matrix, although this
extreme provides a PMI much more complex, and so with
more computational complexity.

The selection of matrix ∆c
m in terms of ∆m can be made

arbitrarily complex by taking a LFR dependence:

∆c
m = ∆c

M + ∆c
L∆m (I−∆c

D∆m)∆c
R, (13)

where ∆c
M , ∆c

L, ∆c
D and ∆c

R are unknown matrices. As a
particular case, it is possible to take ∆c

m = ∆m providing a
simpler and more conservative condition.

PMI (11) can be recast as a BMI by using Schur comple-
ment lemma [13] and adding the condition V22 > 0:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

MT

⎛
⎝ −Q 0

0 Q
0

0 V

⎞
⎠M−

−MT
1

(
Q 0
0 V22

)
M1

MT
1

(
Q 0
0 V22

)

(
Q 0
0 V22

)
M1 −

(
Q 0
0 V22

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

M =

⎛
⎜⎜⎝

I 0
ACL BCL,∆

0 I
CCL,∆ DCL,∆

⎞
⎟⎟⎠ , M1 =

(
0 BCL,∆

CCL,∆ DCL,∆

)
. (14)

B. Matrix inequalities conditions for norm bounding

In the literature there are also conditions to ensure bounds
for different norms: ∞, 2 and 1. For ∞-norm it is applied,
for example, the real lemma [23], for 2-norm the grammians
can be used [24], and for 1-norm the star norm (*-norm)
which is an upper bound [25], [26] can be recast as matrix
inequalities.

Following the same lines as previous subsection the au-
thors have developed BMIs for these three norms by using
LFR dependence. For example, a sufficient condition that
ensures that ∞-norm of channel p/e is bounded by γ > 0 is:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

LT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Q 0

0 Q
0 0

0
−γ2Im 0

0 Ir
0

0 0 V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

LT −

−LT
1

⎛
⎜⎜⎜⎜⎝

Q 0 0

0 Ir 0

0 0 V22

⎞
⎟⎟⎟⎟⎠L1

LT
1

⎛
⎜⎜⎜⎜⎝

Q 0 0

0 Ir 0

0 0 V22

⎞
⎟⎟⎟⎟⎠

⎛
⎝ Q 0 0

0 Ir 0

0 0 V22

⎞
⎠L1 −

⎛
⎜⎜⎜⎜⎝

Q 0 0

0 Ir 0

0 0 V22

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,
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L=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0

ACL BCL,p BCL,∆

0 I 0

CCL,e DCL,pe DCL,e∆

0 0 I

CCL,∆ DCL,∆p DCL,∆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, L1=

⎛
⎜⎜⎜⎜⎝

0 0 BCL,∆

0 0 DCL,e∆

CCL,∆ DCL,∆p DCL,∆

⎞
⎟⎟⎟⎟⎠,

BCL,p=

⎛
⎜⎝B+BuDc

yDy,p

Bc
y
′Dy,p

⎞
⎟⎠ , CCL,e=

(
C+De,uDc

yCy De,uCc′
)

,

DCL,pe=D+De,uDc
yDy,p,

DCL,e∆=De,∆+De,uDc
yDy,∆ , DCL,∆p=

⎛
⎜⎝D∆,p+D∆,uDc

yDy,p

Dc
∆,yDy,p

⎞
⎟⎠. (15)

C. Matrix inequalities conditions for closed loop specifica-
tions

Specifications such as settling time, overshoot, etc, can be
guaranteed by using sufficient conditions based on BMIs and
LMIs [23], [27]. Basically, the procedure is the same as in
previous sections, although in this case the matrix inequali-
ties are developed by employing closed loop pole clustering
techniques. For example, Lyapunov stability condition for
discrete-time systems imposes pole clustering on the open
unit disk. Pole clustering in other complex plane subsets
guarantees other specifications, for example:

• Maximum settling time: disk centered at origin with
radius smaller than one.

• Maximum transient oscillation frequency wp: sector
with vertex at the origin and angle wp ·T , being T the
sampling period.

For these and other more complex subsets BMIs and/or
LMIs sufficient conditions for pole clustering of closed loop
poles are developed. They are omitted due to limited space.

D. Other matrix inequalities conditions

It is possible to obtain sufficient conditions in order to
guarantee other properties:

• Time domain constraint satisfaction: saturation of actu-
ators, safety limits in some signals, etc.

• Generalized 2-norm [24].
• etc.

E. Numerical resolution of problems with BMIs

As previously stated, for problems with LMIs there are
efficient algorithms that obtain the solution in polynomial
time. However, the problems with BMIs [28]:

• In the actual literature of robust control based on matrix
inequalities they have a great importance [29], [30].

• They can be NP-hard problems [31].
• They are nonconvex and so may be exist local solutions

that can be considered as suboptimal one.
• There do not exist, in general, algorithms which can

obtain in polynomial time their global solution.
• There exist algorithms based on branch and bound

techniques which can solve problems of small size (low
number of variables and small BMIs) in exponential
time [29], [30], [32], [33].

M,Ce

V, T, P, �

V , P ,v v v�

F , T ,o o o�

Fv

Wv

Q

gas

liquid

Fig. 4. Liquid-gas separation process.

• By other side, there exist algorithms that obtain only
local solutions but they can solve problems of medium
and large size [34]–[36].

The algorithm proposed in [36] has been implemented
in the commercial software PENBMI from PENOPT 1.
PENBMI has been used in this work to obtain local solutions
to the problems with BMIs. The main reason to use this
software is that the BMI problems presented in this work
have large size. In particular this software can be used in
Matlab through the free toolbox YALMIP2.

III. APPLICATION EXAMPLE

In this section the previous design methodology of GPC-
LPV controller will be applied to a liquid-gas separation
process (Fig. 4), extensively used in petrol engineering to
vaporize liquable gases, which in this example consists of
liquid propane. The system nonlinear model has been taken
from [37], [38]:

V̇L = Fo −
K
ρ

(
eA1/T+A2

T
·T −

RT
M

·ρv

)
,

Ṫ =
1

VL

[
Fo(To −T )+

Q
ρCp

−

−
Kλv

ρCp

(
eA1/T+A2

T
·T −

RT
M

·ρv

)]
,

ρ̇v =
1

V −VL
[ρv(Fo −Fv)+

+K(1−
ρv

ρ
)

(
eA1/T+A2

T
·T −

RT
M

·ρv

)]
, (16)

In this state space model the state variables are: T (oC)
gas temperature equal to liquid temperature, VL (m3) liquid
volume and ρv (Kg/m3) gas density. Input signals: Fo (m3/s)
liquid propane flow, Q (Kcal/s) heat power that provides the

1www.penopt.com
2http://control.ee.ethz.ch/ joloef/yalmip.php
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intercooler and Fv (m3/s) the upper extraction flow, which
is constant and equal to 0.105 m3/s. This model supposes
that liquid density is constant and equal to ρ = 500 Kg/m3.
The remaining signals are considered to be constant and their
values and the model constant values are shown in table I.

Next step is to sample this nonlinear model (16) by using
a ZOH (zero order hold) with sampling period Ts taking a
first order approximation of matrix exponential [39]:

Ad = eA·Ts ≈ I + A ·Ts, (17)

since with Ts = 0.5 s the approximate discrete matrix is a
good estimate of exact one. With such approximation the
discrete-time model is:⎛

⎝VL(k + 1)
T (k + 1)
ρv(k + 1)

⎞
⎠ = Ad

⎛
⎝VL(k)

T (k)
ρv(k)

⎞
⎠+ Bd

(
Fo(k)
Q(k)

)
,

Ad = Ts

⎛
⎜⎜⎜⎜⎜⎝

1

Ts
−

K

ρ

eA1/T+A2

T

KRT

ρM

0
1

Ts
−

Kλv

ρCp

eA1/T+A2

T

1

VL

KλvRT

ρCpM

1

VL

0 ψ
eA1/T+A2

T

1

Ts
−

1

V−VL
Fv−ψ

RT

M

⎞
⎟⎟⎟⎟⎟⎠ ,

ψ =
1

V −VL
K

(
1−

ρv

ρ

)
,

Bd =

⎛
⎜⎜⎜⎝

Ts 0
1

VL
(To −T ) ·Ts

1
ρCpVL

·Ts

ρv

V −VL
·Ts 0

⎞
⎟⎟⎟⎠ . (18)

As it can be seen, Ad and Bd matrices depend nonlinearly
on state variables, so all of them must be included in time
varying parameters such that a LPV model can be obtained:

δ1 = 1/VL, δ2 = T −To, δ3 = ρv. (19)

This selection of time varying parameters is justified by the
form how the LPV model is obtained [4], [40]. The obtaining
of this LPV model is omitted due to its large extension.
By other side, as it is present a exponential dependence with
respect temperature in Ad it is necessary to use a Taylor
series of degree 2 in order to obtain a LFR dependence:

eA1/T+A2 ≈ a0 + a1 · (T −To)+ a2 · (T −To)
2 (20)

TABLE I

LIQUID-GAS SEPARATOR PHYSICS PARAMETERS

Name Description Value

V Separator volume 3.14 m3

To input flow temperature 323 K
λv vaporization heat 75 Kcal/Kg

Cp
Liquid heat capacity at

constant pressure 0.6 Kcal/(Kg· K)

A1 -2359
A2 10.165
R Perfect gases constant 2 Kcal/(K· Kmol)
M Propane molecular mass 44 Kg/Kmol
K Vaporization constant 2.7554·10−5 Kg/(s· Pa)

with this series a good adjust is obtained along the temper-
ature operation range. Finally, taking VL and T as measured
output signals the resulting LPV model is:

⎛
⎝x(k + 1)

y∆
y

⎞
⎠=

⎛
⎝ A B∆ Bu

C∆ D∆ D∆,u

Cy Dy,∆ Dy,u

⎞
⎠

⎛
⎝x(k)

u∆
u(k)

⎞
⎠ , u∆ = ∆(k)y∆,

∆(k) = Diag(δ1(k)I2, δ2(k), δ3(k), δ2(k)I4) , (21)

A =

⎛
⎜⎝1 −

Ka0Ts

ρTo

KRTsTo

ρM
0 1 0
0 0 1

⎞
⎟⎠ ,

B∆ =

⎛
⎝0 0 0 0 KRTs

ρM
KTs
ρTo

−
Ka2Ts
ρTo

−
Ka1Ts
ρTo

1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

⎞
⎠ ,

Bu =

⎛
⎝Ts 0

0 0
0 0

⎞
⎠ , C∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
Kλva0Ts
ρCpTo

KλvRTsTo
ρCpM

0 Ka0Ts
To

−FvTs −
KRTsTo

M
0 0 0
0 −

Ka0Ts
ρTo

KRTsTo
ρM

0 0 1
0 a0/To 0
0 0 0
0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
KλvRTs
ρCpM

KTsλv
ρToCp

−
Kλva2Ts
ρCpTo

−
Kλva1Ts
ρCpTo

0 V 0 1 −
KRTs

M −
KTs
To

KTsa2
To

KTsa1
To

0 0 0 0 0 0 0 0

0 0 0 0 KRTs
ρM

KTs
ρTo

−
Ka2Ts

ρTo
−

Ka1Ts
ρTo

0 0 0 0 0 0 0 0

0 0 0 0 0 −1/To a2/To a1/To

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D∆,u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
Ts

ρCp
0 0

−Ts 0
Ts 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Cy =

(
1 0 0
0 1 0

)
,

Dy,∆ = 02×8, Dy,u = 02. (22)

The operating point for the liquid-gas separator is Teq =
To = 323 K and VL,eq = 1.57 m3. Following this specification
a GPC-LPV will be designed to ensure robust stability
around this operating point under the condition that tem-
perature, liquid volume and gas density lie in the ranges:
300K ≤ T ≤ 350K, 0.3V ≤VL ≤ 0.7V and 20Kg/m3 ≤ ρv ≤

30Kg/m3. The real system only has sensors to measure
temperature and liquid volume, and so the GPC-LPV only
will beadle to use both measures in ∆c

m:

∆c
m(k) = f (δ1(k),δ2(k)). (23)
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Fig. 5. Liquid volume. Continuous line: LTI GPC. Dashed line: GPC-LPV.

In particular, the easiest dependence was used:

∆c
m(k) =

(
δ1(k) 0

0 δ2(k)

)
. (24)

As it is known, in a first step a LTI GPC is designed by
using the linear local model corresponding to the operating
point of liquid-gas separator. In this design the selected
parameters were:

• N1 = 1, N2 = 120 Nu = 1.

• Qi =

(
1 0
0 2

)
, Ri =

(
1.5 0
0 0.01

)
∀ i.

• Observer poles. For first output: 0.4, 0.5, 0.7 and 0.8.
For second output: 0.2, 0.4 and 0.7.

These parameters were adjusted manually after different
experiments over the separator, which guarantee closed loop
stability inside the operating ranges, by using LMIs condi-
tions.

In Fig. 5, 6, 7 and 8 temperature, liquid volume, Fo flow
and heat power are represented when the LTI GPC controls
the separator, under the assumption that this one starts from
the equilibrium point given by T = 340 K and VL = 1.9 m3.

In a second step, the delta matrices of GPC-LPV are
designed under the condition that ∞-norm of channel r/u
is samller than LTI GPC one. This design is based on the
BMI (15). The optimization with PENBMI took around 30
minutes in a PENTIUM IV at 2.8 Ghz with 512 MB of
RAM under Windows XP. After the calculation, the LTI
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Fig. 6. Temperature. Continuous line: LTI GPC. Dashed line: GPC-LPV.
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Fig. 7. Liquid propane flow. Continuous line: LTI GPC. Dashed line:
GPC-LPV.

GPC provides a ∞-norm of 514.5597 whereas the GPC-
LPV 392.8146. Delta matrices corresponding to GPC-LPV
designed are:

Bc
∆
′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.7537 ·10−2 3.0914 ·10−3

1.6954 ·10−4 −6.6281 ·10−5

−1.8793 ·10−5 3.9026 ·10−6

−5.1626 ·10−5 4.7361 ·10−6

−1.2388 ·10−5 −7.6908 ·10−8

4.1258 ·10−7 −1.9465 ·10−7

−5.2850 ·10−7 6.9737 ·10−8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Cc
∆
′T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.5626 −0.5310
20.1832 −21.4447
−72.2428 −181.1467
118.1280 353.9015
−54.0962 −365.9777
−111.2757 −68.8352
−14.0149 −57.4931
−11.8806 −42.3621
211.3161 36.0944

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Dc
∆ =

(
−0.4583 0.0298
0.0573 0.0185

)
,

Dc
∆,y =

(
125.5063 −26.0878
300.6801 −3.8997

)
,

Dc
∆,r =

(
−55.2494 −11.6330
−3.1525 0.8039

)
; Dc

u,∆ = 02. (25)

In the aforementioned figures the results obtained with
GPC-LPV are also represented. Basically, the GPC-LPV pro-
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Fig. 8. Heat power. Continuous line: LTI GPC. Dashed line: GPC-LPV.
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vides a faster closed loop response and a bigger undershoot
in temperature.

IV. CONCLUSIONS

• The GPC-LPV controller is presented as a LPV con-
troller designed in two steps.

• In first step a LTI GPC is designed by using a local
model of the nonlinear system.

• In a second step delta matrices are selected in order to
satisfy a set of LMIs and/or BMIs, which guarantees:
robust stability, norm bounding, closed loop specifica-
tions, etc.

• The set of LMIs and/or BMIs is obtained starting from
the results of analyzed literature, and working with the
matrix inequalities in this particular case.

• Along this work the dependence with respect to ∆
matrix is always LFR.

• In most cases BMIs are obtained from PMIs by applying
schur lema.

• For the numerical computation of solutions, the com-
mercial software PENBMI is used to obtain local solu-
tions.

• The design methodology of GPC-LPV is applied to
a highly nonlinear model of a liquid-gas separator
process.
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[31] O. Toker and H. Özbay, “On the NP-hardness of solving bilinear
matrix inequalities and simultaneous stabilization with static output
feedback,” in Proceedings of the American Control Conference, 1995.

[32] K. C. Goh, “Robust Control Synthesis via Bilinear Matrix Inequali-
ties,” Ph.D. dissertation, University of Southern California, 1995.

[33] K. G. Goh, M. G. Safonov, and J. H. Ly, “Robust synthesis via bilinear
matrix inequalities,” International Journal of Robust and Nonlinear
Control, vol. 6, pp. 1079–1095, 1996.

[34] A. Hassibi, J. How, and S. Boyd, “A path-following method for
solving BMI problems in control,” in Proceedings of American Control
Conference, 1999.

[35] C. M. Fransson and B. Lennartson, “Low Order Multicriteria H∞
Design via Bilinear Matrix Inequalities,” in Proceedings of 42th
Conference on Decision and Control, 2003.

[36] M. Koc̆vara and S. M., “A code for convex nonlinear and semidefinite
programming,” Optmization Methods and Software, vol. 8, no. 3, pp.
317–333, 2003.
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