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Abstract— A positive-real like lemma for finite dimensional
linear time invariant uncertain systems with state multiplica-
tive noise is derived. The system uncertainties are assumed
to be of either polytopic or Markov jump type. Passivity
conditions for both cases are derived in terms of linear matrix
inequalities. The results are used to the design a direct adaptive
controller for a tracking system.

I. INTRODUCTION

Adaptive controllers provide a possible alternative to
fixed compensators when large parameter uncertainty is
encountered in the model that describes the system. Often,
the conditions for closed-loop stability when using adaptive
controllers include a strict passivity requirement of the con-
trolled plant. For example, when using the direct adaptive
control method [1], which is referred to as Simplified Adap-
tive Control (SAC), the passivity of the plant guarantees
the robust stability of the closed-loop. The SAC applies
a tracking error gain which is simply adapted by using
proportional and integral versions of the squared tracking
error. In fact, the relaxed condition of almost passivity,
requiring the plant to be stabilizable and passive via static
output-feedback gain, suffices in many cases. A similar
situation is encountered when controlling uncertain plants
with a class of neural network controllers (NNC) (see [2]
and [3]). Also there, the plant is required to be almost
passive to ensure closed loop stability. In some applications
the system uncertainties can be fixed but unknown but other
cases may as well involve stochastic uncertainties. Two such
cases of stochastic uncertainties are those described by state-
multiplicative noise (e.g. [4]) or Markov jump systems (e.g.
[5]). In the latter case, the system matrices are piecewise
constant in time and they jump according to system modes
that are determined by a Markov chain. In the former case,
the system matrices are corrupted by white noise while
their deterministic components lie in a convex polytope.
The case where these deterministic components do not
involve uncertainties has been considered in [6]. There, a
stochastic passivity definition, closely related to ours, has
been used to prove the closed-loop stochastic stability of
a static output-feedback controller for a class of nonlinear
plants. This class includes, as a special case, linear systems
with state-multiplicative noise. It should be noted that when
the system matrices do not involve uncertainties (besides the
multiplicative noise) constant gain controllers can be used
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as in [6]. However, when these uncertainties are significant,
direct adaptive controllers maybe useful.

In the present paper, the concept of stochastic passivity is,
therefore, generalized to the above mentioned two types of
stochastic systems, both including state multiplicative noise
and which differ in the uncertainty model of state space
matrices : one defined by a convex polytope and the other
described by Markov chains. The new stochastic passivity
conditions for the different cases that are considered are
expressed in form of Linear Matrix Inequalities (LMIs) in
Sections 2 - 4 to allow efficient solutions. In Section 5 it
is shown that these stochastic passivity conditions ensure
closed-loop stochastic stability when applying a class of
SAC. Section 6 brings a numerical example for the control
of a target tracking system with Markov jump uncertainties.

Notation: Throughout the paper the superscript ‘T ’
stands for matrix transposition, Rn denotes the n dimen-
sional Euclidean space, Rn×m is the set of all n × m real
matrices, and the notation P > 0, (respectively, P ≥ 0) for
P ∈ Rn×n means that P is symmetric and positive definite
(respectively, semi-definite). The entries of the vector h ∈
Rn are denoted by hi, i = 1, 2, ..., r, the inequality h < 0
is interpreted as h1 < 0, h2 < 0, ...hr < 0. Let η(t) be
a stochastic process defined on a given probability space
(Ω̄,F ,P). Expectation is denoted by E{·} and the condi-
tional expectation of x given the event η(t) = i is denoted
by E[x|η(t) = i]. We also say that w(t) ∈ L̃2([0,∞),Rq)
when a q-dimensional w(t) ∈ L2, t ≥ 0 is measurable
with respect to Ft, where Ft is defined to be the smallest
σ− algebra Ft ∈ F containing all sets M ∈ F with
respect to which all random vectors e.g. γ(s), s ∈ [0, t]
are measurable. Also, considering η(t) ∈ Ω̄, t ≥ 0 which
is independent of γ(t), where η(t) attains only values in
on D = {1, 2, ..., r}, then Ft will denote the smallest
σ− algebra Ft ∈ F containing all sets M ∈ F with
respect to which both γ(s), η(s), s ∈ [0, t] are measurable.
In such a case, we will still retain, for simplicity, the
notation w(t) ∈ L̃2([0,∞),Rq) when w(t) ∈ L2, t ≥ 0
is measurable on this new Ft.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following time-invariant linear system with
state-dependent noise:

dxt = (Axt + Bwt)dt + Dxtdβt + Gwtdσt,

dyt = (Cxt + D21wt)dt
(1)
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defined on the filtered probability space (Ω̄,F , {Ft}t≥0,P),
where {Ft}t≥0 is a family of σ-algebras generated by the
Wiener process:

γt = col{βt, σt} (2)

where xt is the Rn- valued solution to (1); x(0) = 0, yt

is the Rq-valued observation and w ∈ L̃2([0, ∞);Rq).
The stochastic processes βt and σt are zero-mean scalar
standard Wiener processes defined on the probability space
(Ω̄,F ,P).

It is desired to verify whether the the following passivity
like condition

J = E{
∫ ∞

0

yT
τ wτdτ} ≥ 0, ∀ wt ∈ L̃2([0, ∞)) over Ω̄

(3)
is satisfied for two types of uncertainties:

• Polytopic uncertainties (denoted by PU): The matrices
A, B, C, D21, D and G are unknown constant
matrices that lie in the following uncertainty polytope:

Ω Δ=
∑N

i=1τi(Ai, Bi, Ci, D21,i, Di, Gi); τi ≥ 0,∑N
i=1 τi = 1.

(4)
• Markov jump type uncertainties (denoted by MU):

The matrices A,B, C, D21, D and G are piecewise
constant matrices of appropriate dimensions whose
entries depend upon the mode η(t) ∈ [1, r] of the
system, where r is a positive integer denoting the
number of possible models between which the system
parameters can jump. It is assumed that η(t), t ≥ 0
is a right continuous homogeneous Markov chain on
D = {1, 2, ..., r}, independent of γ(t), t ≥ 0, with
a probability transition matrix Π (t) = eQt; Q =
[qij ]; qij ≥ 0 if i �= j;

∑r
j=1 qij = 0; i = 1, 2, .., r

consequently leading also to qii ≤ 0.
Given the initial condition η(0) = i, at each time
instant t, the mode may maintain its current state or
jump to another mode i �= j.

We denote by L the infinitesimal generator of the sto-
chastic differential equation (1). Choosing the Lyapunov
function and the supply rate to be, respectively,

V (xt) = xT
t Pxt, and S(xt, wt) = 2yT

t wt, (5a,b)

where P is a positive-definite constant matrix in Rn×n, in
the case of PU, and a function, V (x, η) = xT

t P (η(t))xt, of
η(t), in the case of MU, we find the following results:

Lemma 1: (Polytopic Uncertainties)
i. The system (1) is globally asymptotically stable in prob-
ability if for wt ≡ 0 and for all x ∈ Rn the following holds
over the polytope Ω.

LV (x) < 0. (6)

ii. If the system (1) is stable in probability over Ω, then a
sufficient condition for (3) to hold is:

LV (x)≤S(x,w) ∀x ∈ Rn, w ∈ L̃2([0, ∞),Rq) over Ω
(7)

Proof: Part i. is well known (see, e.g. [7], [6] and [8]). To
prove Part ii. (which has been adopted, in fact, as alternative
definition to passivity in [6]) we first realize that

dxt = f(x, t)dt + g(x, t)dγt (8)

where γt is the standard Wiener process of (2) and where
f(x, t) = Axt + Bwt, g(x, t) =

[
Dxt Gwt

]
and dγt =

col{dβt, dσt}. We then consider:

LV (xt)=fT ∂
∂xV (xt)+ 1

2 trace{ggT ∂2

∂2xV (xt)}
=Vx(xt)(Axt+Bwt)

+1
2{xT

t DT Vxx(xt)Dxt+wT
t GT Vxx(xt)Gwt}

By Ito formula

V (xt) = V (x0) +
∫ t

0
LV (xs)ds +

∫ t

0
Vx(xs)Dxsdβs

+
∫ t

0
Vx(xs)Gwsdσs

(9)
and since x(0) = 0 we find that

E{
∫ t

0

LV (xs)ds} = E{V (xt)} ≥ 0, ∀t ≥ 0.

If (7) is satisfied, the results of (3) readily follows. 	
In the case of Markov jumps in (8), f and g are given by

f(x, t) = A(η(t))xt +B(η(t))wt, g(x, t) =
[

Dxt Gwt

]
where, as described before, A(η(t)) attains the values of
A1, A2, ..., Ar and a generalized version of Lemma 1 can be
readily obtained for this case, by noting that the infinitesimal
generator M associated with V (x, η) is then given [9] by

MV(xt, η) = (Q + diag{(xT AT
1 + wT BT

1 ) ∂
∂x , (xT AT

2

+wTBT
2 ) ∂

∂x , ..., (xTAT
r+wTBT

r ) ∂
∂x}+ 1

2ggT ∂2

∂2x )V(xt, η)
(10)

where V(xt, η) Δ=
[
V (x, 1) V (x, 2) ... V (x, r)

]T
. We

have also used the notation:
MV(xt, η) Δ=

[
MV (x, 1) MV (x, 2) ... MV (x, r)

]T
.

Lemma 2: (Markov Jump Uncertainties)
i. The system (1) is globally asymptotically stable in prob-
ability if for wt ≡ 0 and for all x ∈ Rn the following
holds:

E{MV (x, η)|η(0)} < 0. (11)

ii. If the system (1) is stable in probability over Ω̄, then a
sufficient condition for (3) to hold is:

E{MV (x, η)|η(0)} ≤ E{S(x,w)|η(0)} ∀x ∈ Rn,

w ∈ Rq over Ω
(12)

Proof: Part i. is again well known (see, e.g. [9] and [5]).
Part ii. is proved by considering the stochastic Lyapunov
function

V (xt, ηt) = xT
t P (η(t))xt. (13)

Applying the infinitesimal generator M associated on
V (x, η) of (10) we obtain [9] that
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MV (xt, i) =
r∑

j=1

qijV (x, j) + (xT AT
i + wT BT

i )
∂V (x, i)

∂x

+
1
2
trace{xT

t DT
i Vxx(xt, i)Dixt + wT

t GT
i Vxx(xt, i)Giwt}

(14)
However, from the Ito type formula ([11] and [5]), we

have:

E{V (xt, η(t))|η(0)} = E{V (x0, η(0))|η(0)}
+E{∫ t

0
MV (xs, η(s))ds +

∫ t

0
Vx(xs, ηs)Dxsdβs

+
∫ t

0
Vx(xs, ηs)Gwsdσs|η(0)}

Since x(0) = 0 we then find that for all t ≥ 0

E{
∫ t

0

MV (xs, ηs)ds|η0} = E{V (xt, η(t))|η(0)} ≥ 0.

If (12) is satisfied the results of (3) readily follows. 	

III. LMI BASED RESULTS FOR POLYTOPIC TYPE

UNCERTAINTIES

For the case of polytopic type uncertainties we see that
for the specific choice of (5a)

LV (xt) = xT
t P (Axt + Bwt) + (Axt + Bwt)T Pxt

+xT
t DT PDxt + wT

t GT PGwt

(15)
and the condition of (7) is thus

[
xT

t wT
t

] [[
−PA − AT P − DT PD −PB

−BT P −GT PG

]

+
[

0 CT

C D21 + DT
21

]] [
xt

wt

]
≥ 0

(16)
The existence of 0 < P ∈ Rn×n that satisfies:[

PA + AT P + DT PD PB − CT

∗ −D21−DT
21 + GT PG

]
< 0 (17)

over Ω would thus ensure that (7) is satisfied. Since the
requirement of (6) is also satisfied by the first block on the
diagonal in (17), stability is also ensured.

Although (17) is also affine in the decision variable P , it
is not affine in the matrices D and G. Affinity is obtained
by applying Schur’s complements formula. The following
is then achieved.

Theorem 1: The system (1) is stable (in probability) over
Ω̄ and (3) is satisfied over the uncertainty polytope Ω, if
there exists 0 < P ∈ Rn×n that satisfies the following
LMIs.⎡

⎢⎣
PAi+AT

i P PBi−CT
i DT

i P 0
∗ −D21,i−DT

21,i 0 GT
i P

∗ ∗ −P 0
∗ ∗ ∗ −P

⎤
⎥⎦<0, i=1,..., N

(18)

The latter result may turn out to be conservative since it
applies the same decision variable P to all the vertices of
Ω. Realizing that (18) can be written as

P̄ Āi + ĀT
i P̄ < 0, i = 1, ..., N

where
P̄ = diag{P, Iq, P, P} and

Āi =

⎡
⎢⎣

Ai Bi 0 0
−Ci −D21,i 0 0
Di 0 − 1

2
In 0

0 Gi 0 − 1
2
In

⎤
⎥⎦

(19a-c)

Applying then the result of [10], and defining n̄ = 3n + q,
the following is obtained.

Corollary 1: The system (1) is stable (in probability)
over Ω and (3) is satisfied if there exist 0 < Pi ∈ Rn×n,
G and H in Rn̄×n̄ that satisfy the following LMIs.[

GT Āi + ĀT
i G GT − diag{Pi, I, Pi, Pi} − ĀT

i H
∗ −H−HT

]
< 0,

i = 1, ..., N.
(20)

The above produced conditions for the stability in proba-
bility of the system. We next inquire what are the conditions
for the exponential mean-square stability of the system. The
following result is standard:

Lemma 3: ([7])Assume there exists a positive function
V (x, t) ∈ C2,1, with V (0, t) = 0. Then the system (1) is
globally exponentially stable if for w = 0 there are positive
numbers k1, k2, k3 such that the following hold.

k1||x||2 ≤ V (x, t) ≤ k2||x||2
LV (x, t) ≤ −k3||x||2, ∀t ≥ 0 ∀x ∈ Rn

(21)

In our case, as V (x) = xT Px, the first condition is satisfied
as long as P > 0. To satisfy the second condition we require
LV (x) ≤ −ε||x||2 for some ε > 0 over Ω. Obviously, in
terms of LMI, this sufficient condition would be: The system
(1) (with w = 0) is exponentially stable in the mean square
sense if there is P > 0 and ε > 0 such that

PA + AT P + DT PD + εI < 0, over Ω. (22)

It is clear then that (22) is satisfied for small enough ε if
there exists a solution 0 < P ∈ Rn×n to (17).

IV. LMI BASED RESULTS FOR MARKOV JUMP TYPE

UNCERTAINTIES

For the case of polytopic type uncertainties we see that
for the specific choice of (13) we get from (14) that

MV (xt, i) = xT
t Pi(Aixt + Biwt) + (Aixt + Biwt)T Pixt

+xT
t DT

i PiDixt + wT
t GT

i PiGiwt +
∑r

j=1 qijx
T Pjx

(23)
following the lines of the derivation that led to (17) and
(18), MV (xt, i) < S and subsequently (12) read:[

PiAi+AT
i Pi+

r
j=1qijPj +DT

i PiDi PiBi−CT
i

∗ −D21,i−DT
21,i + GT

i PiGi

]
<0,

i = 1, 2, ..., r
(24)
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V. APPLICATION TO SIMPLIFIED ADAPTIVE CONTROL

Consider the following system

dxt = (Axt + But))dt + Dxtdβ, dyt = Cxtdt (25a,b)

where the matrices A, B, C, D are again unknown con-
stant matrices that lie in the following uncertainty polytope:

Ω̂ Δ=
N∑

i=1

τi(Ai, Bi, Ci, Di); τi ≥ 0,
N∑

i=1

τi = 1. (26)

This system should be regulated using a direct adaptive
controller [1] of the type:

ut = −Kyt where K̇ = yty
T
t (27a,b)

In the context of deterministic systems, such a controller
has been known to stabilize the plant and result in a finite
gain matrix K if the plant is Almost Passive (AP). In
our stochastic context we may conjecture that stochastic
stability of this direct adaptive controller (which usually
referred to as SAC) will be guaranteed by the stochastic
version of the AP property. Namely, the existence of a
constant output-feedback matrix Ke which using the control
signal

u = u′ − Kex (28)

makes the transference relating u′ and y stochastically
passive. To see that this conjecture is true, we first substitute
(27a,b) in (25) and get the following closed-loop system :

dxt = (Axt − BKCxt)dt + Dxtdβ (29)

Defining Ā = A−BKeC and K̄ = K−Ke the closed-loop
system equations are given by :

dxt = (Āxt − BK̄Cxt))dt + Dxtdβ (30)

and
˙̄K = Cxtx

T
t CT (31)

In the sequel, we choose for simplicity to deal with
Single-Input-Single-Output systems and define the aug-
mented state vector x̄ = col{x, K̄} Δ= col{x̄1, x̄2}, and
choose the Lyapunov function candidate (see [1]) V (x̄t) =
x̄T

t P̄ x̄t where P̄ = diag{P, 1}. We note that x̄ satisfies
(8) with x̄ replacing x and where:

f(x̄)=
[

Āx̄1 − Bx̄2Cx̄1

x̄T
1 CT Cx̄1

]
, g(x̄)=

[
Dx̄1

0

]
and dγt =dβt.

(32a-c)
By Lemma 1, the closed-loop system (30) will be sto-

chastically stable if LV < 0. However,

LV (x̄t) = fT ∂V (x̄t)
∂x̄

+
1
2
trace{ggT ∂2V (x̄t)

∂2x̄
} (33)

Substituting (32a,b) into the last equation, we readily find
that:

LV (x̄t) = x̄1
T [ĀT P + PĀ]x̄1 − ζT [BT P − C]x̄1

−x̄T
1 [PB − CT ]ζ + x̄1

T DT PDx̄1

where the last term is obtained from the second term in (33)
and where ζ

Δ= x̄2Cx̄1. Therefore, a sufficient condition for
LV < 0 is

ĀT P + PĀ + DT PD < 0, PB = CT (34)

which by a limiting argument shows that (17) is equivalent
to the requirement that (25) can be stabilized and made
stochastically passive using (28). Namely, that (25) is almost
stochastically passive.

A LMI version of (34), for the polytope Ω is then the
following.[

PĀi + ĀT
i P PBi − CT

i DT
i P

BT
i P − Ci −εI 0
PDi 0 −P

]
< 0, i = 1, ..., N

(35)
for small enough ε > 0, where Āi = Ai − BiKeCi. We
note that when the polytopic uncertainties are replaced by
Markov jump type uncertainties, the system of (25) now
reads:

dxt = (A(η(t))xt + B(η(t))ut)dt + Dxtdβ,

dyt = C(η(t))xt

(36)

In such a case, the derivations in the previous section are
repeated with MV < 0 replacing LV < 0. Following then
the lines of Section 2 above for calculating MV we readily
obtain the following.[

PiĀi+ĀT
i Pi+

r
j=1qijPj +DT

i PiDi PiBi−CT
i

∗ −εI

]
< 0,

i = 1, 2, ..., r
(37)

for small enough ε > 0.
Note that the system is strictly passive if (35) and (37)

hold for Ke = 0. If these inequalities hold only for Ke �= 0,
the system is AP.

In the above, the Ke was a constant gain matrix. How-
ever, the above arguments still hold if Ke is time-varying
gain that is independent of x.

VI. NUMERICAL EXAMPLE

We bring a numerical example from the field of motion
control. We consider the following system

dx1
dt = x2,

dx2
dt = 5(−x2 + u), z = x1 + x2

where it is desired to achieve a regulation of z(t) using a
RADAR measurement of the position x1 and the velocity
x2. A simplified adaptive control is suggested for this
control task. Note that while the transference relating u
and x1 is not passive, the one relating u and z is passive
(see [12] for a similar idea where the actual controlled
variable is chosen as close as possible to the desired
control variable under a passivity constraint). Motivated
by the fact that in many measurement systems, such as
RADAR, achieving good accuracy simultaneously in both
position and velocity are conflicting (see [13] for the so
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called ambiguity functions describing this phenomenon), we
suggest the following stochastic controller:

u(t) = −Ky

where

y(t)=z(t)+C(η(t))v(t), z=C(η(t))x and x=col{x1, x2}
and where v(t) is a first order Markov processes vector hav-
ing a covariance Rv = diag{ρ2

1, ρ
2
2} with a correlation time

of 1 second and where K obeys the simplified adaptation
law of (27). We consider four cases:

• Low Position Noise Controller (LPN) : ρ1 = 0.1, ρ2 =
10, C =

[
1 1

]
.

• Low Velocity Noise Controller (LVN): ρ1 = 10, ρ2 =
0.1, C =

[
1 1

]
.

• Low Position and Velocity Noise Controller (LPVN):
ρ1 = 0.1, ρ2 = 0.1 where C =

[
1 1

]
. Namely this

is an idealized controller which violates the condition
ρ1ρ2 = 1.

• Markov Jump Controller (MJC): C(η(t)) attains the
values of C1 =

[
1 0.2

]
, for ρ1(η) = 0.1,

and C2 =
[

0.2 1
]
, for ρ1(η) = 10, (ρ1ρ2 =

1, with Π(t) = eQt and where the correspond-

ing infinitesimal matrix is Q =
[

−α α
β −β

]
where α = β = 0.5. It follows that Π(t) =

eQt = (αt + βt)−1

[
βt + μ(t)αt αt − μ(t)αt
βt − μ(t)βt αt + μ(t)βt

]
where μ(t) = e−(α+β)t.

We note that the LPN and LVN correspond to two
extreme cases in which the RADAR is configured to low
position error at the expense of high velocity error and vice
versa. Note also that in these cases ρ1ρ2 is kept constant in
order to represent the ambiguity between accurate position
and velocity measurements. The LPVN case corresponds
to and idealized controller which violates the condition
ρ1ρ2 = 1 and assumes that both position and velocity can be
measured accurately and is considered to represent a desired
regulation. The MJC case, however, requires configuring the
RADAR so that it jumps between the low position error and
low velocity error modes according the transition matrix
Π and where during each mode the measurement with the
low error is utilized for feedback with higher gain (i.e. 1
comparing to 0.2). Note that the MJC does not violate the
ρ1ρ2 = 1 condition. By the results of Section 4, the closed-
loop stability is ensured if ẋ = Ax + Bu, y = C(η(t))x
is passive. For the deterministic cases of LPN, LVN and
LPVN the passivity condition can be verified by noting
that the phase of C(sI − A)−1B does not exceed 90
degrees or by solving (35). For the MJC case, although
both C1(sI − A)−1B and C2(sI − A)−1B are passive by
their phase, the passivity of the Markov Jump System due
to switchings between C1 and C2 should be verified using
the above LMIs. Indeed, invoking the results of (24), we
obtain the following positive definite matrices:

P1 =
[

4.9997 0.1877
0.1877 0.0456

]
and P2 =

[
9.871 0.0408
0.0408 0.2041

]
.

The simulation results are depicted in Fig. 1-4 : The
position x1 and velocity x2 are depicted in Fig. 1 and Fig.
2, respectively, whereas the control signal is depicted in Fig.
3. The adaptive gain K is depicted in Fig. 4. The results
in Fig. 1-2 show that in terms of regulation quality of x1

and x2 the MJC using switched controls (see Fig. 3) nearly
recovers the idealized results of LPVN. The adaptive gain
of MJC is larger than that of the LPVN but is still smaller
than those of LPN and LVN (see Fig. 4).

VII. CONCLUSIONS

The concept of passivity has been generalized for a class
of stochastic systems of practical significance. The passivity
conditions in the form of Linear Matrix Inequalities can be
efficiently solved using state of the art LMI solvers (e.g.
[14]). It was shown that a relaxed version of the stochastic
passivity conditions, namely the almost stochastic passivity,
guarantees closed-loop stochastic stability.

A numerical example from the field of target tracking was
considered. By alternately measuring position and velocity,
a Markov jump controller was applied to a fixed tracking
system to alleviate the ambiguity restrictions which apply
to simultaneous and accurate measurement of both position
and velocity. The results show that such a Markov controller
is closer to the ideal controller neglecting the ambiguity
problem.

The case of controlling stochastic plants which are not
stochastically passive but are instead almost stochastically
passive, requires finding a static output feedback controller
which can not be purely expressed by LMIs. This topic is
left for a future research.
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