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Abstract— We present a recursive algorithm for modeling
with bilinear differential forms. We discuss applications of this
algorithm for interpolation with symmetric bivariate polyno-
mials, and for computing storage functions for autonomous
systems.

I. INTRODUCTION

Modeling a system from its time series data is an important
problem. Obtaining a linear (ARMA) model that explains
the given data has been the preferred modeling approach,
primarily because of a good understanding of linear systems
and also because of the availability of efficient computational
algorithms for modeling. However, there are several systems
(econometric systems for example) and important applica-
tions (signal filtering,[6]) where it has been shown that going
beyond a linear model has advantages. A quadratic model
(or a filter) has been seen to be satisfactory in several cases.
It is worth emphasizing that though the quadratic model is
obviously nonlinear, determining its parameters from the data
is still a linear problem. This makes the model amenable
to several optimization procedures (like minimizing squared
error) and tractable design procedures. It is easily seen that
this linear dependence of model parameters on the data
makes the modeling problem equivalent to the solution of
a system of linear equations.

In this paper, the (nonlinear) modeling problem is con-
sidered in the behavioral theoretic framework [5]. Indeed,
it is not incorrect to say that linear time series modeling
has played a key role in the formulation and development
of the behavioral approach to systems theory. The three-
part seminal papers by Willems [7] put up a strong case
for a linear behavioral theoretic (as opposed to an input-
output) model that explains given time series data. General-
izing along similar lines as [7], the present work considers
modeling of quadratics which explain a given time series.
Modeling of a quadratic is made difficult because of the
so called “cross coupling” between various modes in the
time series: given trajectories with frequencies σ1 and σ2,
the image of these trajectories under a quadratic model will,
in general, contain components with frequencies 2σ1, 2σ2

and σ1 + σ2.
Most modeling schemes for quadratics can be considered

as (bilinear) interpolation problems. The problem is thus to
determine a bilinear form that takes prescribed values along
certain prescribed directions (often specified by the data).
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As has been already stated above, finding parameters of a
bilinear model from given data is a linear problem. This
makes the it equivalent to solution of a system of linear
equations. However, this brute-force way of solution pre-
sumes several things: for one, data is assumed to be known
a priori. Modifications in the data may often necessitate re-
computation of the whole solution. These and several other
limitations motivate the search for an algorithm that models
data iteratively, i.e. the bilinear form should be modeled
depending on the current and past available data– the current
model should be updated to explain future data as and when
such data are available.

In the behavioral framework, iterative modeling of lin-
ear systems is well understood. Iterative procedures are
known for computing a “most powerful” behavioral model
that explains the given data [1]. In this paper, a similar
behavioral theoretic scheme is developed for modeling of
bilinear forms using an interpolation approach. The bilinear
form in question is a Bilinear Differential Form, (BLDF).
BLDFs are bilinear functionals acting on some function
space, which we assume to be C∞, the space of infinitely
many times differentiable functions. Developed mainly by
Trentelman and Willems, [8], BLDFs have been found to
be extremely useful in several problems in systems theory,
especially dissipative systems [8], H∞ control, nonlinear
systems analysis [3], among others.

In this paper, the following exact modeling problem
is studied: Given k distinct trajectories indexed by i ∈
{1, 2, . . . k}, ciexpλit with ci ∈ R

q, λi ∈ R and distinct,
and expx ≡ ex, determine a BLDF LΦ that takes prescribed
values along these trajectories. A more precise statement
of the problem shall require a few preliminaries, including
definitions of all relevant terms. In the next section, some
of this background is covered. Particular emphasis is given
on the linear modeling problem, along with the notation and
preliminary results on BLDFs.

II. BACKGROUND AND PRELIMINARY RESULTS

It is assumed that the reader is familiar with the basic
philosophy and notation of behavioral systems theory. A
detailed exposition of some of the basic concepts in this
theory can be found in [5]. Linear behaviors are those that are
characterized by linear laws. Trajectories in a linear behavior
form a subspace of the ambient space and can be expressed
as the “kernel” of a differential operator. Depending on
the freedom associated with steering one trajectory of a
behavior to any other, behaviors are classified as control-
lable or uncontrollable. Autonomous behaviors represent the
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extreme form of uncontrollability in that there is no freedom
to switch from one trajectory to the other. Trajectories in
an autonomous behavior are completely determined by the
initial conditions. A linear autonomous behavior is a finite
dimensional subspace of the ambient space (which is of
course, infinite dimensional).

In the context of exact modeling, by “data” we mean a
finite set of measurements of a phenomenon. A model M for
the data is a subset of the ambient space containing the data.
M is often chosen from a “model class” M which presumes
certain features about the model like linearity, time invariance
etc. Clearly, in this framework, the data admit several models.
However, it is possible to order these models according to
their prohibitive power: given the data, a model class M, and
two models M1 and M2 for the data from the class M, M1

is said to be more powerful than M2 if M1 ⊂ M2. A model
M∗ from a model class M is said to be a Most Powerful
Unfalsified Model (MPUM) for the data if it contains the
data and if every other model M from M for the behavior
satisfies M∗ ⊆ M . In the sequel, we assume that the data is
given as

D = {ciexpλit, i = 1, 2 . . . , k, ci ∈ R
q, λi ∈ R}

Let us address the question of linear, time-invariant (LTI)
models for D. It has been shown in [1] that there exists a
unique LTI MPUM for D which can be expressed as the
kernel of a differential operator:

R(
d

dt
)ciexpλit = 0, i = 1, . . . , k (1)

Note that because of the assumption of linearity, the MPUM
also contains the linear span of ciexpλit, i = 1, . . . , k. R(ξ)
a q × q polynomial matrix which is full rank for almost
all ξ ∈ C. Since R( d

dt ) represents a MPUM, the points of
singularity of the polynomial matrix R(ξ) are precisely the
points {λi}. As has been mentioned before, algorithms are
known which compute a MPUM recursively, i.e. a MPUM
for the span of c1expλ1t, . . . ck+1expλk+1t can be computed
from a MPUM for the span of c1expλ1t, . . . ckexpλkt.

In systems theory, quadratic functionals of variables and
their derivatives are often encountered, for instance, the
Lyapunov function in stability theory, the Lagrangian of
a dynamical system, the Hamiltonian, various cost criteria
in optimal control, etc. In [8] a two variable polynomial
matrix was used to represent such quadratic functionals.
This notation has proved to be extremal handy. With this
notation, operations on (infinite dimensional) trajectories can
be conveniently represented as algebraic operations on (finite
dimensional) polynomial matrices, albeit in two variables.

Let R
q1×q2 [ζ, η] denote the set of real polynomial matrices

in the indeterminates ζ and η. An element Φ in this set is
given by

Φ(ζ, η) =
∑

k,l

Φklζ
kηl (2)

where the sum ranges over non-negative integers k, l and this
sum is assumed finite (i.e. only a finite number of Φkl are

nonzero). Such a Φ induces a bilinear differential form

LΦ : C∞(R, Rq1) × C∞(R, Rq2) → C∞(R, R) (3)

defined by

(LΦ(v, w))(t) =
∑

k,l

(
dkv(t)
dtk

)T Φkl(
dlw(t)

dtl
). (4)

Here, C∞(R, R•) denotes the space of C∞ functions from R

to R
•. For the special case when q1 = q2 = q, Φ induces a

quadratic differential form (QDF) which is a map

QΦ : C∞(R, Rq) → C∞(R, R) (5)

defined by
QΦ(w) = LΦ(w,w) (6)

Φ will be called symmetric if Φ(ζ, η) = ΦT (η, ζ). The set
of such symmetric two variable polynomial matrices will
be denoted by R

q×q
s [ζ, η]. It can be easily shown that it is

enough to consider just symmetric two variable polynomial
matrices and hence in this paper it will always be assumed
that Φ ∈ R

q×q
s [ζ, η].

Notice that if LΦ(w1, w2) is a BLDF, so is d
dtLΦ(w1, w2).

Moreover, if QΦ(w) is a QDF, so is d
dtQΦ(w). This operation

can be conveniently expressed in the notation of two variable
symmetric polynomial matrices as a multiplication by (ζ+η):
given a BLDF LΦ(w1, w2)

d

dt
LΦ(w1, w2) = LΘ(w1, w2)

with Θ(ζ, η) = (ζ + η)Φ(ζ, η)

Clearly, Θ(ζ, η) is symmetric if Φ(ζ, η) is symmetric. The
background developed here shall now be used to give a
precise problem statement. Also, the preliminary results
given above will be invoked time and again throughout this
paper.

III. THE PROBLEM STATEMENT

Given k distinct trajectories ciexpλit with ci ∈ R
q and

λi ∈ R and distinct, and i = 1, 2, . . . k, determine a BLDF
LΦ such that

LΦ(ciexpλit, cjexpλjt) = qijexp(λi+λj)t i, j = 1, 2, . . . k
(7)

with qij being given real constants. To simplify the treatment
presented in this paper we assume that cT

i cj �= 0 for all
i, j = 1, . . . , k.

Due to symmetry of Φ(ζ, η), conditions (7) automatically
fix values of LΦ(cjexpλjt, ciexpλit). Clearly, when i = j,
the problem reduces to determining a QDF which takes the
values qiiexp2λit. Since d

dt

n
expλt = λnexpλt, n = 1, 2, . . .,

conditions (7) reduce to the following: find a Φ(ζ, η) such
that

cT
i Φ(λi, λj)cj = qij (8)

Notice that now the problem has been re-formulated as an op-
eration on polynomial matrices and real (finite dimensional)

2894



vector spaces. However, as with all polynomial interpolation
problems, the following issues need to be addressed

• What is the “best” Φ(ζ, η) that interpolates the data
• What is the required computational effort
• Can the interpolation be done recursively with respect

to data

Indeed, often, what is a “best” interpolant is a question that
can only be answered depending on the application at hand.
The choice is made more complicated by the fact that there
is no natural ordering on polynomials in two variables. It
has often been thought advantageous to have a Φ(ζ, η) with
the least “effective size”, i.e. minimizing the degree of the
leading ζ•η• term. In some applications (like error correcting
codes), the criterion has been the least weighted degree [2].
In this paper, the focus is on the number of parameters. The
interpolation scheme suggested here depends linearly on the
number of data trajectories. The most interesting feature of
this scheme is that it is recursive. The required computational
effort is modest– one can write down the solution by hand
without much difficulty at least in the more simple cases.

IV. A RECURSIVE ALGORITHM FOR INTERPOLATING

WITH QDFS

Recall that the problem of interpolating BLDFs is the
following: given k distinct trajectories ciexpλit with ci ∈ R

q

and λi ∈ R and distinct, and i = 1, 2, . . . k, determine a
BLDF LΦ with Φ(ζ, η) ∈ R

q×q
s [ζ, η] such that

cT
i Φ(λi, λj)cj = qij (9)

where qij are given real constants.
Suppose l of the possible k trajectories ciexpλit with i ∈

{1, 2 . . . l} are given. Let KerMl( d
dt ) denote the MPUM for

these l trajectories. That is:

Ml(λi)ci = 0 i = 1, 2 . . . l (10)

Thus, the matrices Ml(λi) are necessarily singular (except
for the trivial case when ci = 0). The fact that Ml( d

dt ) is
a most powerful unfalsified model (as against any) model
implies that Ml(ξ) is full rank everywhere except the points
λ1, λ2 . . . λl. Now consider the q×q symmetric two variable
polynomial matrix

Υ(ζ, η) = F (ζ, η)Ml(η) + MT
l (ζ)FT (η, ζ) (11)

with F (ζ, η) an arbitrary two variable polynomial matrix.
Consider the action of the BLDF LΥ on the finite di-
mensional vector space S given by the span of ciexpλit,
i = 1, 2 . . . l. Since Ml( d

dt ) represents a MPUM:

LΥ(v, w) = 0 for every vector v, w ∈ S (12)

Conversely, it has been shown in [8] that every BLDF
LΥ such that LΥ(v, w) = 0 for every v, w ∈ S satis-
fies Υ(ζ, η) = F (ζ, η)Ml(η) + MT

l (ζ)FT (η, ζ) for some
F (ζ, η) ∈ R

q×q[ζ, η].
Thus, if Φ(ζ, η) is a solution to the interpolation problem

(9), every other solution can be written as Φ(ζ, η) + Υ(ζ, η)

with Υ(ζ, η) given as in equation (11). The symmetric
polynomial in equation (11) will be referred to as the “tail
polynomial”. It shall be suppressed in the actual statement
of the algorithm for reasons of brevity. However, it must
be emphasized that what is a “best” or “simplest” QDF will
often depend on the choice of an appropriate tail polynomial.
However, these issues will not be considered in this paper.

The interpolating BLDF for the first i given trajectories,
i = 1, 2 . . . k shall be denoted by LΦi . Let

Φ1(ζ, η) =
q11

cT
1 c1

I (13)

here I , as usual, denotes the q × q identity matrix. This is
the initialization step. In the next few lines the recursion
formulae will be developed. Assume that the matrix Φl(ζ, η)
is given such that the BLDF LΦl

interpolates the first l given
trajectories, i.e.

cT
i Φ(λi, λj)cj = qij i, j = 1, 2 . . . l (14)

The (l + 1) th update is carried with the following formula

Φl+1(ζ, η) = Φl(ζ, η) + ET
l+1(ζ)Ml(η) + MT

l (ζ)El+1(η)
(15)

Here, KerMl( d
dt ) is the MPUM for the first l trajectories.

Note that the procedure to compute this MPUM is itself
recursive, [1]. The matrix El+1(ζ) denotes the “error matrix”
due to reasons that will become clear in the sequel. Since
kerMl( d

dt ) is the MPUM for the first l trajectories,

cT
i Φl+1(λi, λj)cj = cT

i Φl(λi, λj)cj = qij i, j = 1, 2, . . .l
(16)

Thus, the updating of Φl(ζ, η) has been achieved without
disturbing the interpolation conditions satisfied by LΦl

. A
solution to the (l+1)th step interpolating problem is obtained
by constructing the univariate polynomial E(ξ) that satisfies
the conditions on Φl+1(λl+1, λl+1):

cT
l+1[Φl(λl+1, λl+1) + (17)

ET
l+1(λl+1)Ml(λl+1) + MT

l (λl+1)El+1(λl+1)]cl+1

= q(l+1)(l+1)

Since kerMl( d
dt ) is the MPUM for the first l trajectories,

and since all λis are assumed distinct, Ml(λl+1) is a con-
stant nonsingular matrix. Thus, El+1(ξ) has the following
interpolation condition:

El+1(λl+1) = (18)

M−T
l (λl+1)

q(l+1)(l+1) − cT
l+1Φl(λl+1, λl+1)cl+1

2cT
l+1cl+1

In addition, the choice of El+1(ξ) has to take into account
l cross coupling conditions between (λl+1, λl),
(λl+1, λl−1), . . . , (λl+1, λ1). Using the recursion (15) and
the property of a MPUM, (10), E(ξ) can be seen to satisfy
the following conditions:

El+1(λi) = M−T
l (λl+1)

q(l+1)i − cT
l+1Φl(λl+1, λi)ci

cT
l+1ci

i = 1, 2 . . . l (19)
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Notice that interpolation conditions for El+1(λi) are well
defined since cT

i cj �= 0 for all i, j = 1, . . . , k by assumption.
Notice that with the scheme suggested above, the interpola-
tion problem has reduced to one of univariate polynomial
interpolation of El+1(ξ), which is considerably easier. De-
note by A1, A2 . . . Al the l q × q matrices obtained on the
right hand sides of equations (19) and Al+1 the q× q matrix
obtained in the right hand side of equation (19). Determining
the q×q matrix E(ξ) from these l+1 interpolation conditions
is a straightforward problem in Lagrange interpolation:

El+1(ξ) =
l+1∑

j=1

∏l+1
i=1,i �=j(ξ − λi)

∏l+1
i=1,i �=j(λj − λi)

Aj (20)

This completes the development of the recursive
interpolation algorithm. The complete algorithm is
summarized below:
Input ciexpλit, ci ∈ R

q, λi ∈ R and distinct, and
real constants qij with i, j = 1, 2 . . . k
Output A BLDF LΦ such that
LΦ(ciexpλit, cjexpλjt) = qij and Φ(ζ, η) = ΦT (η, ζ)
Initialization: Φ1(ζ, η) = q11

cT
1 c1

I

for i = 1,2 . . . k − 1 do,
Compute a MPUM, Mi( d

dt ) for
c1expλ1t, c2expλ2t, . . . ciexpλit

Compute the ith stage error matrix Ei(ξ)
from
Ei(λj) = Aj j = 1, 2 . . . i as in (20)
Update the current Φi using the
recursion:
Φi+1(ζ, η) = Φi(ζ, η) + ET

i+1(ζ)Mi(η) + MT
i (ζ)ET

i+1(ζ)
end for
Φ(ζ, η) = Φk(ζ, η) and LΦ is the required
BLDF
end

In the remaining parts of this paper, various applications of
this algorithm will be explored. Since this algorithm has been
developed from a behavioral theoretic viewpoint, emphasis
is more on problems related to behavioral systems theory
– dissipative systems in particular. Other areas where this
algorithm finds use are being explored.

V. SCALAR BIVARIATE INTERPOLATION PROBLEM

An immediate application of this algorithm is a gen-
eral recursive scheme for interpolation by symmetric scalar
bivariate polynomials. Though this application is almost
immediate, it has been treated separately since it illustrates
several aspects of the algorithm presented above. Consider
the interpolation problem defined in (9) for the scalar case,
i.e. q = 1. Without loss of generality, the cis can now be
assumed to be unity. Hence, the interpolation problem simpli-
fies to the following: given k distinct real numbers λ1, . . . λk,
together with the real numbers qij , i, j = 1, 2 . . . k, determine
a scalar symmetric bivariate polynomial Φ(ζ, η) such that

Φ(λi, λj) = qij (21)

As in the previous case, the symmetry conditions dictate
that qij = qji so that only k(k + 1)/2 of these can be
specified independently. The fact that cis are unity makes the
computation of a MPUM almost trivial. Indeed, it can be seen
that a MPUM Ml( d

dt ) for the l trajectories expλ1t, . . . expλlt

is given by
l∏

i=1

(
d

dt
− λi)w = 0 (22)

where w(t) is any trajectory in the linear span of
expλ1t, . . . expλlt. Thus, the scalar symmetric bivariate
polynomial interpolation can be solved recursively as
follows:
Input: k distinct real numbers λ1, . . . λk,
together with k(k + 1)/2 real numbers
qij = qji i, j = 1, 2 . . . k
Output: Scalar symmetric bivariate
polynomial Φ(ζ, η) such that Φ(λi, λj) = qij

Initialize: Φ1(ζ, η) = q11

for i=1 to k-1 do,
Compute MPUM for expλ1t, . . . expλit:

Mi(ξ) =
i∏

j=1

(ξ − λj)

Compute i + 1th stage error matrix
satisfying:

Ei+1(λj) = α
qij − Φi(λi, λj)∏i

j=1(λi+1 − λj)
α = 1/2 if i = j else α = 1

Update Φi(ζ, η) using the recursion

Φi+1(ζ, η) = Φi(ζ, η) + ET
i+1(ζ)Mi(η) + MT

i (ζ)Ei+1(η)

end for
Φ(ζ, η) = Φk(ζ, η)
end
An interesting corollary of the above algorithm is that
given real and distinct λis, and arbitrary qij = qjis, there
exist infinitely many symmetric scalar bivariate polynomials
Φ(ζ, η) such that Φ(λi, λj) = qij .

VI. DISSIPATIVE SYSTEMS

In this section, autonomous dissipative systems are con-
sidered. It is shown that the BLDF interpolation approach
developed in this paper can be advantageously applied to
several system theoretic problems. Recall that an autonomous
behavior is one which has no free variables. Such a behavior
is necessarily finite dimensional. Consider the autonomous
behavior Ba defined by the following kernel representation:

R(
d

dt
)w = 0 (23)

with w ∈ C∞(R, Rq) and R(ξ) a nonsingular q × q poly-
nomial matrix. Further, assume that roots of detR(ξ) = 0
are real and distinct. Let λ1, λ2 . . . λk denote the k spectra
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of R(ξ). Then, R(λi) is singular for i = 1, 2 . . . k. Conse-
quently there exist nonzero vectors ci ∈ R

q such that

R(λi)ci = 0 (24)

Ba is said to be stable if ||w(t)|| → 0 as t → ∞. It
is well known that Ba is stable if and only if R(ξ) is a
Hurwitz matrix, i.e. λis lie in the open left half complex
plane. Consider the trajectories ciexpλit, i = 1, 2 . . . k. These
trajectories form a basis for Ba. Hence, it is enough to
consider just these trajectories in Ba.

Given the behavior Ba, and a supply rate QΦ, a QDF QΨ

is said to be a storage function for Ba with respect to QΦ

if the following “dissipation inequality” holds:

d

dt
QΨ(w) ≤ QΦ(w) ∀w ∈ Ba (25)

The following important issues will now be addressed:

1) How is a QΨ computed, given Ba and QΦ.
2) Can one find a QΨ even when Ba is not stable.

Computing a storage function for Ba has been addressed
in [8]. The suggested solution scheme has been through the
solution of a certain Polynomial Lyapunov Equation (PLE),
a solution scheme for which was subsequently reported in
[4]. In this paper, an alternate method is described.

It is easy to see that for the dissipation inequality to hold
along every trajectory in Ba, it is necessary and sufficient
that the k × k symmetric matrix D = [dij ]ki,j=1 be negative
semidefinite with:

dij = cT
i [(λi + λj)Ψ(λi, λj) − Φ(λi, λj)]cj (26)

It is now shown that the interpolation approach developed
in this paper can be used to compute a storage function in
an extremal simple manner. Most computations are trivial
and all of them are operations with constant matrices. Using
the interpolation formula results in a shift from handling
bivariate polynomial matrices to constant real matrices –
making it easy and numerically efficient to implement on
a computer. Translating the dissipation inequality (25) to
the realm of bivariate polynomial matrices, it is easy that
a solution to the problem of computing storage functions is
to stipulate that the dijs in (26) be zero, i.e.

(λi + λj)cT
i Ψ(λi, λj)cj = cT

i Φ(λi, λj)cj i, j = 1, 2 . . . k
(27)

If Ba is assumed to be stable, λi + λj is a negative real
number. Consequently, Ψ(ζ, η) can be seen to satisfy the
following k(k + 1)/2 distinct interpolation conditions:

cT
i Ψ(λi, λj)cj = cT

i

Φ(λi, λj)
(λi + λj)

cj (28)

This is the standard interpolation problem considered in
Section IV. It has already been shown that a solution can
be obtained recursively in k iterations.

The assumption of stability of Ba is sufficient for the
solvability of (27)– it is by no means necessary. Indeed, if
Ba is such that λi + λj �= 0, a storage function can always
be found for Ba, given any supply QΦ. Further, under this

assumption, every such Ba is actually Φ-lossless, i.e. given
any QΦ there exists a QDF QΨ such that d

dtQΨ exactly
equals QΦ along every trajectory in Ba.

Assume that λa +λb = 0 for some 1 ≤ a, b ≤ k, a �= b. It
is now shown that one can always find a Ψ(ζ, η) such that
D is negative definite. To start with, let

cT
i Ψ(λi, λj)cj = cT

i

Φ(λi, λj)
λi + λj

cj i �= j , λi + λj �= 0 (29)

cT
i Ψ(λi, λj)cj = arbitrary i �= j , λi + λj = 0 (30)

It is not difficult to see that D can now be written as the
sum of two matrices Λ and D′:

D = Λ + D′ (31)

with Λ = diag[2λic
T
i Ψ(λi, λi)ci]ki=1. D′ is a q × q matrix

which has zeros everywhere on the off-diagonal terms, except
the positions (a, b), (b, a) for all a, b, a �= b such that
λa + λb = 0. Denote by σ the maximum eigenvalue of
D′. Clearly, Λ can always be chosen such that Λ + D′ is
negative semidefinite. One possible solution is Λ = αIq×q

with α ≤ −σ. Thus, along with the conditions given in (30),

cT
i Ψ(λi, λi)ci = (cT

i Φ(λi, λi)ci + α)/2λi i = 1 . . . k (32)

where σ = max spec D′. The matrix Ψ(ζ, η) can now
be determined from these interpolation conditions using the
recursive algorithm outlines in Section IV. The QDF QΨ is
then a storage function for Ba since the matrix D (26) is
now negative semidefinite.

The above discussion has proved the following result about
autonomous behaviors:

Theorem 6.1: Consider a behavior Ba ≡ span{ciexpλit}
with ci ∈ R

q and λi ∈ R and distinct, and i = 1, 2 . . . k.
Let QΦ be any QDF that induces the supply rate QΦ(w)
trajectories w ∈ Ba. Then, Ba is Φ-dissipative, i.e. there
exists a QDF QΨ such that

d

dt
QΨ(w) ≤ QΦ(w) w ∈ Ba,

if λi /∈ iR, i = 1, . . . , k.

VII. CONCLUSION

In this paper, a recursive algorithm has been developed
for interpolation with symmetric bilinear differential forms.
A bivariate interpolation problem has first been converted
into univariate interpolation problems that can be solved
using known methods like Lagrange interpolation. The algo-
rithm works with constant (rather than polynomial) matrices
and hence can be easily and efficiently implemented on
any general purpose computational package. The algorithm
has been applied for interpolation with symmetric bivariate
polynomials and for computation of storage functions for
autonomous behaviors.
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