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Abstract— In this paper, we investigate the underlying funda-
mental relation between switched controllability and switched
stabilization for switched linear control systems. It is shown
by a counterexample that switched controllability does not
imply switched stabilization by means of piecewise linear
state feedback controllers. In addition, piecewise linear state
feedback stabilizable and controllable switched systems may
not be quadratic stabilizable. To illustrate, we take third-order
systems as a case study and identify conditions for quadratic
stabilizability and non-quadratic stabilizability.

I. Introduction

Switched linear systems, which consist of sets of linear time-
invariant subsystems and switching signals that coordinate
the switching among the subsystems, provide an attractive
framework for modelling, analysis and design of complex
dynamical systems. First, the switching structure represent
a wide class of real-world systems with both continuous
dynamics and discrete elements, such as power electron-
ics, networks and digital control systems. Second switched
linear systems can approximate nonlinear dynamics with
arbitrary accuracy via linearizations at different operating
points. Third, the intelligent structure of the two-level system
representation is expected to enhance the robustness and
adaptation to the changing and/or unknown parameters and
uncertainties. Finally, the linearity of the subsystems enables
us to analyze and design using tools from linear and mul-
tilinear theories. The reader is referred to the survey papers
[1], [7] for recent development.

One of the central topics of switched linear control systems
is the synthesis problem that derives stabilizing switching
laws and feedback control laws for switched unstable sys-
tems. This topic attracts much attention as can be seen from
the numerous publications in the literature. Among these, the
existence of a stable convex combination of the subsystems
can lead to an elegant construction of a stabilizing switching
signal [11], [12]; conic switching laws were proposed to
study second-order switched linear systems [3], [14]; and an
observer-based switching strategy was developed to stabilize
a class of controllable switched linear control systems [6].

In this paper, we investigate the underlying relationship
between switched controllability and switched stabilizability

for switched linear control systems. It is well-known that a
completely controllable linear system is linear state feedback
stabilizable. The relation still holds for lower (first or second)
order switched linear systems [4], [8]. However, the relation-
ship does not hold true for higher-order (n ≥ 3) switched
linear systems, as shown in this paper. Moreover, even a
switched controllable system is switched stabilizable, it may
not be quadratically stabilizable. These make the problem
of switched stabilization very challenging. In the sequel, the
problem is handled as follows: the first step is to convert a
controllable system into an equivalent system with triangular
structure, the next step is classifying the systems into several
cases each with a normal form, then verify case by case
the stabilizability of the normal forms, and finally construct
stabilizing switching/control laws. The first step has been
addressed in [5], and the others will be done in this work
by taking the third-order systems as case study. One merit
of the approach is that it provides constructive solutions for
the problem of switched stabilization including quadratic and
non-quadratic stabilizabilities.

The paper is organized as follows. In Section II, we present
preliminaries including system description, definitions and
supporting lemmas. Main results are presented in Section
III, while Section IV briefly concludes the work.

II. Preliminaries

A. Systems Description

Let m̄ denote the set {1, · · · ,m} for a natural number m.
Consider a switched linear control system given by

ẋ(t) = Aσx(t) + Bσu(t) x(t0) = x0 (1)

where x ∈ Rn are the states, u(t) ∈ Rp is the controlled
input, σ ∈ m̄ is the controlled switching signal, and matrix
pair (Ai, Bi) for i ∈ m̄ denotes a subsystem of (1).

In general, the switching signal σ may depend on its past
value, the time and the state

σ(t) = ψ(t, x(t), σ(t−))
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or it may only depend on its past value and the state

σ(t) = ψ(x(t), σ(t−)) ∀ t.

In the latter case, the switching signal is said to be in state-
feedback form. We assume that the switching signal is taken
such that the switched system is well-posed. That is, for any
initial state x(t0) = x0, the switched system always admits a
solution for all forward time and there involve a finite number
of switchings in any finite time interval. For a switching
signal, any jump instant is said to be a switching time. That
is, at a switching time t, we have lims↑t σ(s) �= lims↓t σ(s).
The ordered sequence of the switching times is said to be the
switching time sequence of the switching signal. Similarly,
the ordered index sequence at the switching times is said to
be the switching index sequence of the switching signal.

For clarity, let Σ(Ai, Bi)m̄ denote switched linear system
(1), and φ(t; t0, x0, σ) denote the state trajectory at time t
initialized at x(t0) = x0 via switching signal σ.

B. Definitions

Definition 1: State x ∈ Rn is (switched) controllable,
if there exist a time instant tf > 0, a switching signal
σ : [0, tf ] → m̄, and an input u : [0, tf ] �→ Rp, such
that φ(tf ; 0, x, u, σ) = 0. The (switched) controllable set of
system (1) is the set of states which are controllable. The
system is said to be (switched) completely controllable, if
its controllable set is Rn.

Definition 2: System (1) is said to be (switched piecewise)
linear (state) feedback stabilizable, if there exist a switching
signal σ, and a piecewise linear state feedback control input

u(t) = Fσx(t) (2)

such that the closed-loop switched system

ẋ(t) = (Aσ + BσFσ)x(t)

is uniformly asymptotically stable.
Note that, in the piecewise linear feedback control law (2),

a linear feedback controller is associated to a subsystem. As a
result, the closed-loop system is till a switched linear system.

Definition 3: System (1) is said to be (switched piece-
wise linear state) quadratically stabilizable, if there exist
a switching signal σ in state-feedback form, a piecewise
linear state feedback control input in form (2), and a
quadratic positive definite function V (x) = xT Px, such that
V (φ(t; 0, x0, u, σ)) is strictly decreasing for any fixed non-
origin initial state x0.

C. Lemmas

Lemma 1: [9] The controllable set of system (1) is the
smallest subspace of Rn that is invariant under all Ai for
i ∈ m̄ and contains all image spaces of Bi for i ∈ m̄.

The following two lemmas are adopted from [2], [10].

Lemma 2: A sufficient condition for quadratic stabiliz-
ability is that there exist gain matrices Fi, i ∈ m̄ such that
the matrix pencil{∑

i∈m̄

wi(Ai + BiFi) : wi ≥ 0,
∑
i∈m̄

wi = 1

}

contains a Hurwitz matrix. For the case of m = 2, the
condition is also necessary.

Lemma 3: System (1) is linear feedback stabilizable if
there exist gain matrices Fi, i ∈ m̄, a natural number l,
a set of positive real numbers {h1, · · · , hl}, and a set of
indices {j1, · · · , jl}, such that matrix

e(Ajl
+Bjl

Fjl
)hl · · · e(Aj1+Bj1Fj1 )h1

is Schur.

III. Main Results

A. Controllability Does Not Imply Linear Feed-
back Stabilizability

Consider a controllable switched linear system given by

ẋ(t) = Aσx(t) + Bσu(t). (3)

It is well known that a completely controllable linear time-
invariant system is both linear state feedback stabilizable and
quadratically stabilizable. For switched linear systems, the
relationship between the controllability and the stabilizability
is much more complicated. In the following, we present
an example which is completely controllable but not linear
state feedback stabilizable. For this, we need a supporting
lemma which sets a necessary condition for linear feedback
stabilizability.

Lemma 4: Switched linear system (3) is not piecewise
linear feedback stabilizable, if for each set of gain matrices
{Fi, i ∈ m̄}, there exists a one-dimensional subspace W of
Rn, such that W is (Ai+BiFi)-invariant and (Ai+BiFi)|W
is unstable for all i ∈ m̄.

Proof: As W is of dimension one, (Ai + BiFi)|W is
in fact a scalar matrix with a positive real entry. Since W is
invariant under (Ai+BiFi) for all i ∈ m̄, any state trajectory
initialized from W will remain in the subspace and hence
diverge under arbitrary switching signal. This implies that
the switched system is not stabilizable by means of gain
matrices Fi, i ∈ m̄. The assumption of arbitrariness of the
gain matrices in the theorem clearly excludes the possibility
of the linear state feedback stabilizability of the switched
system. ♦

Example 1: For the third-order switched linear control
system (3) with

A1 =

⎡
⎣ 0 0 0

1 1 0
0 0 1

⎤
⎦ B1 =

⎡
⎣ 1

0
0

⎤
⎦ (4)

A2 =

⎡
⎣ 0 0 0

0 1 0
1 0 1

⎤
⎦ B2 =

⎡
⎣ 0

0
0

⎤
⎦ (5)

4874



it can be verified that the system is completely controllable
[9].

For any gain matrices F1 and F2 with

Fi = [fi1, fi2, fi3] i = 1, 2

it is clear that

A1 + B1F1 =

⎡
⎣ f11 f12 f13

1 1 0
0 0 1

⎤
⎦

and

A2 + B2F2 =

⎡
⎣ 0 0 0

0 1 0
1 0 1

⎤
⎦ .

If f2
12 + f2

13 �= 0, it can be verified that subspace

W = span

⎧⎨
⎩

⎡
⎣ 0

−f13

f12

⎤
⎦

⎫⎬
⎭

is invariant under Ai+BiFi for i = 1, 2. Otherwise, subspace

W = span

⎧⎨
⎩

⎡
⎣ 0

1
0

⎤
⎦

⎫⎬
⎭

is invariant under Ai + BiFi for i = 1, 2. In either case, we
have

(Ai + BiFi)|W = 1 i = 1, 2

which are unstable. By Lemma 4, the switched linear control
system is not linear feedback stabilizable. ♦

It is interesting to notice that the unstable sub-dynamics
(subspace) rely on the (parameters of) gain matrices. In
other words, different sequences of gain matrices may cor-
respond to different unstable sub-dynamics. This means
that piecewise linear gain matrices are not always able to
eliminate unstable common sub-dynamics. A possible way
to overcome this is either searching for nonlinear feedback
controllers or extending the scheme of piecewise linear feed-
back stabilization (for example, a subsystem is associated
with more than one linear controller). This is an important
subject for further investigation.

B. Classification

As shown in [5], each switched linear control system can
be converted into a normal form by means of suitable
coordinate change and feedback transformation. Unlike the
linear time-invariant case where each controllable system can
be converted into the Brunovsky form, the normal forms
are not unique for switched systems. As a case study, we
consider a controllable third-order switched linear system (3)
with two subsystems, i.e., n = 3 and m = 2.

For the purpose of stabilizability classification, we only
need to consider the case that the system is single-input,
that is,

rankB1 + rank B2 = 1.

Other systems can be converted into single-input by non-
regular state feedback as shown in [5]. For a single-input
switched system, without loss of generality that rankB1 = 1
and B2 = 0. Complete controllability implies either of the
five cases:

(a) rank[B1, A1B1, A
2
1B1] = 3;

(b) rank[B1, A1B1, A
2
1B1] = 2, and

rank[B1, A1B1, A2B1] = 3;
(c) rank[B1, A1B1, A

2
1B1] = rank[B1, A1B1, A2B1] = 2,

and rank[B1, A1B1, A2A1B1] = 3;
(d) rank[B1, A1B1] = 1, rank[B1, A2B1, A1A2B1] = 3;
(e) rank[B1, A1B1] = 1, rank[B1, A2B1, A1A2B1] = 2,

and rank[B1, A2B1, A
2
2B1] = 3.

By means of coordinate change and feedback transformation,
the switched system can be converted into the normal form

[5] Σ(Āi, B̄i)m̄ with B̄1 =

⎡
⎣ 1

0
0

⎤
⎦ and B̄2 = 0. For case (a),

pair (A1, B1) is completely controllable, hence the normal
form is

Ā1 =

⎡
⎣ 0 0 0

1 0 0
0 1 0

⎤
⎦ and Ā2 =

⎡
⎣ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

⎤
⎦

where ‘*’ denotes the entry which cannot be determined by
means of controllability. For case (b), the first two columns
of Ā1 and the first column of Ā2 are fixed, the other column
of Ā1 is constrained but the other columns of Ā2 are totally
unspecified. Hence, the matrices are in form

Ā1 =

⎡
⎣ 0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣ 0 ∗ ∗

0 ∗ ∗
1 ∗ ∗

⎤
⎦ .

Cases (c)-(e) can be discussed in the same way, and the
normal forms are

Ā1 =

⎡
⎣ 0 0 0

1 0 ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣ ∗ 0 ∗

∗ 0 ∗
0 1 ∗

⎤
⎦

Ā1 =

⎡
⎣ 0 0 0

0 0 ∗
0 1 ∗

⎤
⎦ and Ā2 =

⎡
⎣ 0 ∗ ∗

1 ∗ ∗
0 ∗ ∗

⎤
⎦

Ā1 =

⎡
⎣ 0 0 0

0 ∗ ∗
0 0 ∗

⎤
⎦ and Ā2 =

⎡
⎣ 0 0 ∗

1 0 ∗
0 1 ∗

⎤
⎦

respectively.

C. Quadratic Stabilization

The following lemma establishes a simple sufficient condi-
tion for quadratic feedback stabilizability.

Lemma 5: For a single-input switched system (3), sup-
pose that there exists a sequence of real numbers wi, i ∈ m̄,
such that matrix pair (

∑
i∈m̄ wiAi, B1) is controllable. Then,

the switched system is quadratically stabilizable.
Proof: Without loss of generality, we assume that each

wi is nonnegative and w1 > 0 (see Remark 2 below).
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Let A0 =
∑

i∈m̄ wiAi and B0 = w1B1. As (A0, B1) is
controllable, (A0, B0) is also controllable. Therefore, we can
find a feedback gain matrix F1 such that A0 + B0F1 is
Hurwitz. Let F2 = 0. Introducing the piecewise linear state
feedback control input

u(t) = Fσx(t)

we have that matrix∑
i∈m̄

wi(Ai + BiFi) = A0 + B0F1

is Hurwitz. By Lemma 2, the switched system is quadrati-
cally stabilizable. ♦

Remark 1: From the proof, the eigenvalues of the average
matrix A0+B0F1 can be arbitrarily (symmetrically) assigned
by appropriately choosing F1. On the other hand, the conver-
gence rate of the switched system can arbitrarily approach
that of the average system by a suitable switching signal with
sufficiently high switching frequency (see, e.g., [10]). As a
result, the convergence rate of the switched system can be
arbitrarily pre-assigned.

Remark 2: Note that the controllability of pair
(
∑

i∈m̄ wiAi, B1) for a set {w1, · · · , wm} implies the
controllability of pair (

∑
i∈m̄ wiAi, B1) for almost any

set {w1, · · · , wm} in Rm. Here “for almost all parameter
values” is to be understood as “for all parameter values
except for those in some proper algebraic variety in the
parameter space”. In other words, the set

{(w1, · · · , wm) : (
∑
i∈m̄

wiAi, B1) is not controllable}

is a variety in Rm. This comes from the fact that the
controllability is a generic property (see, e.g., [13]). As a
result, controllability is preserved in an open and dense set
of Rm.

It can be verified that, for forms (a), (c), (d) and (e), the
condition of Lemma 5 is always satisfied; for forms (b), the
condition of Lemma 5 is violated if and only if the normal
form is

Ā1 =

⎡
⎣ 0 0 0

1 0 0
0 0 υ1

⎤
⎦ and Ā2 =

⎡
⎣ 0 υ2 υ3

0 υ4 0
1 −υ1 υ4

⎤
⎦ (6)

where υ1, · · · , υ4 are arbitrary real numbers.
For switched system in the form (6), a detailed analysis

based on Lemma 2 shows that, the system is quadratically
stabilizable if and only if either υ1 < 0 or υ4 < 0. In other
words, the system is not quadratically stabilizable for the
case when υ1 ≥ 0 and υ4 ≥ 0.

Finally, we consider the case that

rankB1 + rank B2 ≥ 2.

Without loss of generality, we assume that

rank B2 ≤ rankB1 ≤ 2.

Let b1 be the first column of B1. According to [5], there exist
a nonsingular matrix T , and feedback gain matrices F1 and

F2, such that the single-input switched system Σ(Āi, b̄i)m̄ is
in the normal form, where

Āi = T (Ai + BiFi)T−1 i = 1, 2
b̄1 = Tb1 = e1 b̄2 = 0.

Let B̄i = TBi for i = 1, 2. It is clear that the stabilizability
of system Σ(Ai, Bi)2̄ is equivalent to the stabilizability of
Σ(Āi, B̄i)2̄. For the latter, it has been proven that the system
is quadratically stabilizable except for the case when Ā1 and
Ā2 are in the form (6). As a result, we only need to address
this special case.

If rankB1 = 2, then, there is a b̄3 �∈ span{e1} such that

B̄1 = [b̄1, b̄3].

It can be verified that, there exist a gain matrix F̄1, and
nonnegative real numbers w1 and w2, such that matrix

w1(Ā1 + B̄1F̄1) + w2Ā2

is Hurwitz, which means that system Σ(Āi, B̄i)2̄ is quadrat-
ically stabilizable. Similarly, if rankB1 = rankB2 = 1, it
can be verified that, there always exist a gain matrix F̄2, and
nonnegative real numbers w1 and w2, such that matrix

w1Ā1 + w2(Ā2 + B̄2F̄2)

is Hurwitz, which also means that system Σ(Āi, B̄i)2̄ is
quadratically stabilizable.

Summarizing the above analysis, we have the following
theorem.

Theorem 1: For a third-order controllable switched linear
control system (3) with two subsystems, the system is
quadratically stabilizable if and only if either of the following
conditions holds:

(i) rankB1 + rank B2 ≥ 2;
(ii) the system is single-input, and it is not equivalent to

normal form (6);
(iii) the system is single-input, and it is equivalent to normal

form (6) with either υ1 < 0 or υ4 < 0.

D. Non-quadratic Stabilizability

For the case where the system is not quadratically stabiliz-
able, it may be linear feedback stabilizable as illustrated in
the following.

To stabilize systems in the form (6), we seek a linear
feedback control input such that the closed-loop system
is stabilizable by means of periodic switching signals. By
Lemma 3, it suffices to find a feedback gain vector f1 =
[f11, f12, f13], and two positive real numbers h1 and h2, such
that matrix

exp (A2h2) exp ((A1 + b1f1)h1) (7)

is Schur.
Fix a positive real number h1. Let f11 = −2ρ, f12 =

−ρ2, and f13 = η, where ρ and η are real numbers to be
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determined. It can be computed that

e(A1+b1f1)h1 = exp

⎛
⎝

⎡
⎣ −2ρ −ρ2 η

1 0 0
0 0 υ1

⎤
⎦ h1

⎞
⎠ .

The analytic expression of exp (A2h2) can also be computed
as

eA2h2 =

⎡
⎣ υ5 υ6 υ7

0 eυ4h2 0
υ8 υ9 υ10

⎤
⎦

where υ5, · · · , υ10 are analytic functions of h2. Note that
υ1υ8 + υ9 is a nonzero function if and only if υ2 �= υ1υ4.
As the function is analytic, it is nonzero for almost any h2

(except for possibly isolated points) when υ2 �= υ1υ4.
Suppose that υ2 �= υ1υ4. Fix a positive h2 such that υ1υ8+

υ9 �= 0. Let

η =
−υ10

υ1υ8 + υ9
(ρ + υ1)

2
.

With some manipulation, we can express
(A2h2) exp ((A1 + b1f1)h1) in the form

Λ(ρ) =

⎡
⎢⎢⎣

q1(ρ)e−ρh1 q2(ρ)e−ρh1 r1+q3(ρ)e−ρh1

(ρ+υ1)2

q4(ρ)e−ρh1 q5(ρ)e−ρh1 r2+q6(ρ)e−ρh1

(ρ+υ1)2

q7(ρ)e−ρh1 q8(ρ)e−ρh1 q9(ρ)e−ρh1

(ρ+υ1)2

⎤
⎥⎥⎦

where r1, r2 are fixed real numbers and qi(·), i = 1, · · · , 9
are polynomials of ρ whose degrees are less than 3.

It is clear that

Λ∞
def
= lim

ρ→∞Λ(ρ) =

⎡
⎣ 0 0 r1

0 0 r2

0 0 0

⎤
⎦ .

The spectral radius of this matrix is zero. As a result, for
any given positive number ε < 1, there is a ρε such that

sr (Λ(ρ)) ≤ ε ∀ ρ ≥ ρε,

where sr A denotes the spectral radius of matrix A. Pick such
a ρ, the closed-loop switched system is exponentially stable

with the convergence rate not less than
ln ε

h1 + h2
.

Next, we turn to the case that υ2 = υ1υ4 in form (6).
In this case, we can transform system

∑
(Āi, B̄i)2̄ into an

equivalent form
∑

(Âi, B̄i)2̄ with

Â1 = TĀ1T
−1 + TB̄1f1 =

⎡
⎣ 0 0 0

1 υ1 0
0 0 υ1

⎤
⎦

Â2 = TĀ2T
−1 =

⎡
⎣ 0 0 υ3

0 υ4 0
1 0 υ4

⎤
⎦ (8)

where

T =

⎡
⎣ 1 −υ1 0

0 1 0
0 0 1

⎤
⎦ and f1 = [υ1 υ2

1 0].

For system
∑

(Âi, B̄i)2̄, let

f̄1 = [−ρ̄1 − ρ̄2 + υ1,−ρ̄1ρ̄2, f̄13]

where ρ̄1, ρ̄2 and f̄13 will be determined later. Simple
calculation gives

exp
(
(Â1 + B̄1f̄1)h̄1

)
=

⎡
⎣ ω1 ω2 ω3

ω4 ω5 ω6

0 0 1

⎤
⎦ eh̄1 v1

where

ω1 =
−ρ̄2 e−h̄1 ρ̄2 + e−h̄1 ρ̄1 ρ̄1

−ρ̄2 + ρ̄1

ω2 =

(
e−h̄1 ρ̄1 − e−h̄1 ρ̄2

)
ρ̄2 ρ̄1

−ρ̄2 + ρ̄1

ω3 = −
f̄13

(
e−h̄1 ρ̄1 − e−h̄1 ρ̄2

)
−ρ̄2 + ρ̄1

ω4 = −e−h̄1 ρ̄1 − e−h̄1 ρ̄2

−ρ̄2 + ρ̄1

ω5 =
−ρ̄2 e−h̄1 ρ̄1 + e−h̄1 ρ̄2 ρ̄1

−ρ̄2 + ρ̄1

ω6 =
f̄13

(
−e−h̄1 ρ̄2 ρ̄1 + ρ̄2 e−h̄1 ρ̄1 − ρ̄2 + ρ̄1

)
ρ̄1 ρ̄2 (−ρ̄2 + ρ̄1 )

.

Denote

eÂ2h̄2 =

⎡
⎣ ῡ5 0 ῡ6

0 eυ4h̄2 0
ῡ7 0 ῡ8

⎤
⎦ .

Suppose that υ3 > 0, then we have ῡ8 > eυ4h̄2 . Let

ρ̄1 =
1
h̄1

ln
ῡ8 − eυ4h̄2

ῡ8eῡ1h̄1

and

f̄13 =
1
ῡ7

(ῡ8e
υ1h̄1 + eυ4h̄2).

When ρ̄2 → ∞, the spectral radius of matrix

exp
(
Â2h̄2

)
exp

(
(Â1 + B̄1f̄1)h̄1

)
approaches zero. As a result, for any given positive number
ε < 1, there is a ρε such that for all ρ̄2 > ρε,

sr
(
exp

(
Â2h̄2

)
exp

(
(Â1 + B̄1f̄1)h̄1

))
≤ ε.

Pick such a ρ̄2, the closed-loop switched system is exponen-

tially stable with the convergence rate not less than
ln ε

h̄1 + h̄2
.

Now, suppose that υ3 < −υ2
4
4 . In this case, let

f̄1 = [−2ρ + υ1, − ρ2, 0]

where ρ is a positive real number to be determined. At the
same time, let

h̄2 =
2√

−4υ3 + υ2
4

(
− arctan(

√
−4υ3 + υ2

4

υ4

)
.
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Fig. 1. State and input trajectories of system (9)

It can be calculated that matrix exp(Â2h̄2) is of form⎡
⎣ ∗ 0 ∗

0 ∗ 0
∗ 0 0

⎤
⎦. From this, we can establish that

lim
ρ→∞ exp(Â2h̄2) exp(Â1h̄1) =

⎡
⎣ 0 0 ∗

0 0 0
0 0 0

⎤
⎦ .

As a result, for sufficiently large ρ, the closed-loop system
is exponentially stable with any pre-assigned rate of conver-
gence.

When υ3 = 0, it can be verified that Lemma 4 applies and
hence the system is not linear feedback stabilizable. In the
case that −υ2

4
4 ≤ υ3 < 0, the stabilizability of system (8) is

still an open problem.
To summarize, we have the following theorem.
Theorem 2: For a third-order single-input controllable

switched linear control system (3) with two subsystems,
suppose that its normal form is in the form (6). Then, a
sufficient condition for non-quadratic stabilizability is either
υ2 �= υ1υ4 or υ3 �∈ [−υ2

4
4 , 0].

E. An Illustrative Example

Consider controllable single-input normal system given by

Â1 =

⎡
⎣ 0 0 0

1 1 0
0 0 1

⎤
⎦ and Â2 =

⎡
⎣ 0 0 2

0 1 0
1 0 1

⎤
⎦ . (9)

This corresponds to the form (8) with υ3 > 0.
Let h̄1 = h̄2 = 1 and ρ̄2 = 500. From the design

procedure described in the last subsection, we have

f̄1 = [−498.2269, 386.5457,−1078.5935].

It can be verified that matrix eÂ1h̄1eÂ2h̄2 has spectral radius
0.2592 and hence is Schur stable.

The above analysis shows that the system is feedback
stabilizable. A sample state trajectory and the corresponding
input trajectory are shown in Figure 1, where the initial state
is x(0) = [1.4435,−0.3510, 0.6232]T .

IV. Conclusion

In this work, we examined the underlying relationship be-
tween switched controllability and switched stabilizability
for switched linear systems. It has been revealed that com-
plete controllability does not imply piecewise linear state
feedback stabilizability. As a case study, detailed stability
analysis and design have been carried out for third-order
switched linear control systems with two subsystems.
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