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Abstract— The classical Nevanlinna-Pick (NP) interpolation
problem is about finding a rational function that satisfies
given interpolation conditions, along with a norm condition. In
this paper we address the NP problem using concepts from
behavioral systems theory and quadratic differential forms
(QDFs). The NP problem is solved using a certain “dualization
of data”. We address system theoretic motivations for this
dualization and the advantages gained in this process. Finally,
we address the problem of constructing interpolating functions
that satisfy a “frequency dependent” norm condition.

I. INTRODUCTION

A class of interpolation problems in Hardy spaces con-
sists of computing an analytic function that satisfies some
interpolation conditions, along with a norm constraint. The
Nevanlinna-Pick (NP) interpolation problem is one of the
most important interpolation problems in this class. The NP
interpolation problem has found numerous applications in
model approximation, robust stabilization, the model match-
ing problem in H∞ control, circuit theory, among others. We
now give a brief statement of the classical NP problem:
Given n pairs of complex numbers (λi, bi) with λi ∈ C

+, the
open right half complex plane, and |bi| < 1, i = 1, 2 . . . n,
compute a scalar rational function G(s) such that

1) G(λi) = bi, i = 1, 2 . . . n
2) G(s) is analytic in C

+.
3) supω∈R

|G(iω)| < 1
Several variants of the above problem have been studied with
various assumptions on the data, [2]. The scalar and matrix
versions, the tangential NP problem with (simple) multiplici-
ties, the two sided Nudelman problem, the Subspace Nevan-
linna Pick Interpolation (SNIP) [7] are some variants and
generalizations of the classical NP problem. Basic to all these
variants of the NP problem is an assumption of a “frequency
independent norm” that the interpolating (rational) function
must satisfy. In other words, it is assumed that the norm
inequality satisfied by the interpolating function is the same
at all frequencies.

In this paper, we re-examine various aspects of the NP
interpolation problem in the behavioral theoretic framework
[5]. We show that concepts in behavioral theory can be con-
veniently married to the concepts behind NP–like problems
to yield generalizations in several directions. We show that
the classical NP interpolation problem can be re-cast into a
problem of dissipative systems, on which considerable work
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has been reported in behavioral systems theory. In such a
setting, the aspects of analyticity and the norm conditions on
the interpolant can be examined separately. This formulation
also allows us to consider a generalized interpolation prob-
lem wherein the required interpolant satisfies a frequency-
weighted norm condition.

II. BACKGROUND AND PRELIMINARY RESULTS

We assume that the reader is familiar with the basic
philosophy of the behavioral approach to systems theory.
However, for the sake of completeness, a brief introduction
is given below. A “behavior” is, loosely speaking, a set
of trajectories in some function space. This set is defined
by certain laws. A behavior is called linear if these laws
are linear. A linear behavior is called controllable if any
trajectory in the behavior can be “steered” to every other
trajectory in the behavior (see [5] for the exact definition).
A behavior is controllable if and only if it admits a “image
representation”. A behavior is called “autonomous” if it is
finite dimensional. Autonomy is the worst-possible kind of
uncontrollability.

A. Models for data

By “data” we mean a finite set of measurements of a
phenomenon. A model M for the data is a subset of the
ambient space containing the data. M is often chosen from
a “model class” M which presumes certain features about
the model like linearity, time invariance etc. Clearly, by
this definition the data admit several models. However, it is
possible to order these models according to their prohibitive
power: given the data, a model class M, and two models
M1 and M2 for the data from the class M, M1 is said to
be more powerful than M2 if M1 ⊂ M2. A model M∗ from
a model class M is said to be a Most Powerful Unfalsified
Model (MPUM) for the given data if it contains the data
and if every other model M from M for the data satisfies
M∗ ⊆ M .

In the sequel, we assume that the data is given as

D = {Viexpλit, i = 1, 2 . . . , n, ci ∈ C
q, λi ∈ C}

Let us address the question of linear, time-invariant (LTI)
models for D. We call the matrix N(ξ) a representation of
a model for B in the generative sense if

1) ImN( d
dt )expλit = Vi, i = 1, . . . n.

2) ImN( d
dt )expµt = C

• if µ �= λi
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B. Quadratic Differential Forms

In systems theory, quadratic functionals of variables and
their derivatives are often encountered, for instance, the
Lyapunov function in stability theory, the Lagrangian of
a dynamical system, the Hamiltonian, various cost criteria
in optimal control, etc. In [8] a two variable polynomial
matrix was used to represent such quadratic functionals.
This notation has proved to be extremely handy. With this
notation, operations on (infinite dimensional) trajectories can
be conveniently represented as algebraic operations on (finite
dimensional) polynomial matrices, albeit in two variables.

Let R
q×q[ζ, η] denote the set of real polynomial matrices

in the indeterminates ζ and η. An element Φ in this set is
given by

Φ(ζ, η) =
∑
k,l

Φklζ
kηl (1)

where the sum ranges over non-negative integers k, l and this
sum is assumed finite (i.e. only a finite number of Φkl are
nonzero). Such a Φ induces a quadratic differential form

QΦ : C∞(R, Rq) → C∞(R, R) (2)

defined by

(QΦ(w))(t) =
∑
k,l

(
dkw(t)

dtk
)T Φkl(

dlw(t)
dtl

). (3)

Here, C∞(R, R•) denotes the space of C∞ functions from
R to R

•. Φ will be called symmetric if Φ(ζ, η) = ΦT (η, ζ).
The set of such symmetric two variable polynomial matrices
will be denoted by R

q×q
s [ζ, η]. It can be seen that this set

is actually a sub-ring of R
q×q[ζ, η]. Moreover, it can be

easily shown that it is enough to consider just symmetric
two variable polynomial matrices and hence in this paper it
will always be assumed that Φ ∈ R

q×q
s [ζ, η].

A controllable linear differential behavior B ≡ {w} is
said to be dissipative with respect to the supply rate QΦ, or
in short Φ-dissipative, if∫ ∞

−∞
QΦ(w)dt ≥ 0 ∀ compactly supported w ∈ B (4)

The set of all Φ-dissipative controllable behaviors is denoted
by LΦ. There is a simple test to determine whether B is Φ-
dissipative [8]: using an image representation M( d

dt ) of B,
define the two variable polynomial matrix Φ′(ζ, η) by

Φ′(ζ, η) = MT (ζ)Φ(ζ, η)M(η) (5)

Proposition 2.1: B ∈ LΦ if and only if Φ′(−iω, iω) ≥ 0
for all ω ∈ R.
A Φ-dissipative behavior also has special associated QDFs
known as the “storage functions”. Every storage function,
QΨ, satisfies the “dissipation inequality”:

d

dt
QΨ(w) ≤ QΦ(w) ∀ w ∈ B (6)

We say that QΨ is a positive semidefinite storage function
on the manifest variables of B if for every manifest variable
trajectory w ∈ B, (QΨ(w))(t) ≥ 0 for all t ∈ R. QΨ is said

to be a positive definite storage function on the manifest
variables of B if it is positive semidefinite, and in addition,
QΨ(w) = 0 (i.e. QΨ(w) is the zero trajectory) ⇐⇒ w = 0.

In this paper, we henceforth concentrate on behaviors with
two manifest variables only. Assume that a controllable C∞-
behavior B is given by the kernel representation[

p( d
dt ) −q( d

dt )
] [

u
y

]
= 0 (7)

An image representation of B is seen to be[
u
y

]
=

[
q( d

dt )
p( d

dt )

]
� (8)

Also, B can be identified with the scalar rational function
p(ξ)/q(ξ). We shall invoke this association time and again
in this paper. With this background, we are in a position to
consider the NP interpolation problem in a behavioral setting,
albeit for the simpler case of behaviors with two manifest
variables. We develop the NP interpolation problem in two
steps, first we develop it for the case when the interpolant
satisfies a fixed norm condition at all frequencies. Later, we
address the problem of an interpolant satisfying a frequency
weighted norm condition.

III. NEVANLINNA PICK INTERPOLATION – THE

STANDARD CASE

We begin by translating the classical Nevanlinna Pick
interpolation problem as given in Section I into the language
of behavioral systems theory and address some issues that
arise out of such a formulation. We will only consider
the scalar interpolation problem in this paper, and hence
we consider C∞-behaviors B with two manifest variables
(u, y) that take values in R

2. A behavioral formulation of
Nevanlinna-Pick interpolation has been done in [7], where
a characterization of solutions of a “Subspace Nevanlinna
Interpolation Problem” was obtained in terms of kernel rep-
resentations. In this paper we show obtain a characterization
of all solutions in terms of image representations. Such a
characterization has an advantage over [7]: controllability of
all solutions obtained as image representations is guaranteed,
unlike in a characterization in terms of kernel representations.

Consider a controllable behavior B given by an observable
image representation:[

u
y

]
=

[
q( d

dt )
p( d

dt )

]
� (9)

Define the 2 × 2 constant matrix J as

J =
[

1 0
0 −1

]
(10)

Let

Jstrict
ε =

[
1 − ε 0

0 −1

]
, ε ∈ (0, 1)

Then, we have the following lemma:
Lemma 3.1: supω∈R

|p(iω)
q(iω) | < 1 if and only if the be-

havior B associated with the rational function p(ξ)/q(ξ) is
Jstrict

ε -dissipative for some ε ∈ (0, 1).
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Proof: Follows easily after applying Proposition 5.1 [8]. �
Lemma 3.1 serves as a connection between the classical
(rational function based) formulation and a behavioral for-
mulation of the NP problem.
Behavioral Nevanlinna Pick Interpolation (Problem state-
ment): Consider n trajectories {Viexpλit}i = 1 . . . n and
expx ≡ ex, in C∞(R, C2) (which we name the data set D).
Assume that

1) λi, i = 1, 2 . . . n ∈ C
+ and are distinct,

2) Vi ∈ C
2 are contractive, i.e. Vi = [x y]T with |x| >

|y|. Then,

determine all Jstrict
ε -dissipative controllable behaviors (i.e.

all behaviors that are Jstrict
ε -dissipative for some ε ∈ (0, 1))

B given by an observable image representation:[
u
y

]
=

[
q( d

dt )
p( d

dt )

]
�

such that:

1) B has positive definite storage functions;

2) B contains D, i.e.

[
q( d

dt )
p( d

dt )

]
expλit =

Viexpλit, , i = 1, 2 . . . n.

�

It is evident that condition (2) above implies that[
q(λi)
p(λi)

]
expλit = Vi , i = 1, 2 . . . n, where Vi is a basis

for Vi. Thus, the problem is actually that of interpolating
n distinct subspaces Viexpλit, i = 1, . . . n. We say that B
“interpolates the data” if it contains the trajectories Viexpλit.
Any behavior B that satisfies conditions (1) and (2) will be
called a solution to the “Subspace Nevanlinna Pick Problem
(SNIP)”.

We denote by S the linear span of the subspaces
Viexpλit, i = 1, . . . n. Thus S is a n-dimensional subspace
of C∞(R, C2). We now introduce the concept of a “Pick
matrix”of of the QDF QJ and the n distinct subspaces
Viexpλit, i = 1, 2 . . . n. A Pick matrix of QJ and Viexpλit

is defined as the n × n Hermitian matrix:

TJ,V1:n,λ1:n =

[
V ∗

i JVj

¯̄λi + λj

]n

i,j=1

(11)

where Vi ∈ C
2 spans Vi. A Pick matrix is obviously

not unique, since a different basis for Vi gives a differ-
ent Pick matrix. However it can be shown that proper-
ties of TJ,V1:n,λ1:n like its signature, sign-definiteness and
(non)singularity remain invariant under a change of basis of
the subspaces Vi. While describing these properties, we shall
refer to TJ,V1:n,λ1:n as the Pick matrix with a slight abuse of
notation.

We now introduce the notion of the “dual” set of the data.
Dualization is a very powerful concept that makes the NP
problem simpler to solve (we address this in a later section).

A. Dualizing of the data

Given subspaces Viexpλit, i = 1 . . . n with Vi ∈ C
2 and

contractive, define a “data set” D as

D = {V1expλ1t,V2expλ2t, . . .Vnexpλnt}
Define the “dual subspace” of Viexpλit as V⊥J

i exp−λ̄it,
where V⊥J

i is defined by:

V⊥J
i = {v ∈ C

2|v∗Jw = 0∀w ∈ Vi}
Since Vi is contractive, V⊥J

i is uniquely defined and in fact
the two are complements of one another in C

2. The dual the
data set D is defined by D⊥J in the obvious way:

D⊥J = {V⊥J
1 exp−λ̄1t,V⊥J

2 exp−λ̄2t, . . .V⊥J
n expλ̄nt}

Dualizing of the subspaces Viexpλit is instrumental in
determining a characterization of all solutions to the SNIP,
the following section shows.

IV. CONSTRUCTION OF NEVANLINNA-PICK

INTERPOLANTS

In the sequel we will assume that TJ,V1:n,λ1:n is a nonsin-
gular (Hermitian) matrix. Then:

Theorem 4.1: If TJ,V1:n,λ1:n is nonsingular there exists a
representation N( d

dt ) of a model for D∪D⊥J (in a generative
sense) that satisfies the following properties:

1) ImN(λi) = Vi

2) ImN(−λ̄i) = V⊥J
i

3) ImN(µ) = C
2 if µ �= λi,−λ̄i

4) NT (−ξ)JN(ξ) = r(−ξ)r(ξ)J
for some polynomial r(ξ) ∈ R[ξ].
Proof: We only give a short proof of the result due to limi-
tations of space. Consider the trajectory V1expλ1t. Define a
matrix R(ξ) as follows:

R(ξ) = (ξ + λ̄1)I2×2 − V1

[
V ∗

1 JV1

λ1 + λ̄1

]−1

V ∗
1 J

Then, it can be shown that

1) R( d
dt )V1expλ1t = 0.

2) R( d
dt )V⊥J

1 exp−λ̄1t = 0.
3) RT (−ξ)JR(ξ) = (−ξ − λ̄1)(ξ + λ1)J .

Define N(ξ) = adjR(ξ), i.e. R(ξ)N(ξ) = det R(ξ)I2×2.
Since det R(ξ) has roots at λ1 and −λ̄1, R(λ1)N(λ1) = 0
and R(−λ̄1)N(−λ̄1) = 0. Thus, the differential operator
N( d

dt ) satisfies the properties:

1) ImN( d
dt )expλ1t = Vi and

2) ImN( d
dt )exp−λ̄1t = V⊥J

1 .

It can be easily verified that NT (−ξ)JN(ξ) =
(ξ + λ1)(−ξ + λ̄1)J . A recursive modeling procedure
developed in [6] can be used to construct N( d

dt ) for
V2expλ2t . . .Vnexpλnt and their duals. �

This “special” representation of a MPUM for D∪D⊥J can
be used to elegantly characterize all solutions of the SNIP:
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Theorem 4.2: Consider the data set D∪D⊥J . Let N(ξ) be
a “special representation” of a MPUM for D∪D⊥J as defined
in Theorem 4.1. The following statements are equivalent:

1) The Pick matrix TJ,V1:n,λ1:n is positive definite.
2) There exists a solution to the SNIP.

Further, every solution Im
[

q( d
dt )

p( d
dt )

]
to the SNIP can be

given as

f(ξ)
[

q(ξ)
p(ξ)

]
= N(ξ)

[
φ(ξ)
π(ξ)

]
(12)

where f(ξ) is a Hurwitz polynomial and ||π(ξ)/φ(ξ)||∞ < 1.

Proof: We give a sketch of the complete proof. Since N(ξ)
is J-unitary, every J-dissipative behavior is dissipative with
respect to the QDF induced by NT (ζ)JN(η) and vice
versa. Hence, every solution to the interpolation problem
is obtained as the image of a J-dissipative behavior under
the map N( d

dt ). A J-dissipative behavior defined by Im[
q( d

dt )
p( d

dt )

]
has positive definite storage functions if and

only if q(ξ) is Hurwitz. It can be shown that if φ(ξ) (in
the Theorem statement) is chosen to be Hurwitz, q(ξ) is
guaranteed to be Hurwitz. Hence, every solution to the SNIP
can be obtained as the image of the set of all plants having
infinity norm less than one, under the map N( d

dt ). �
An important advantage of converting the SNIP from a

kernel representation to an image representation is that by
doing so, controllability is guaranteed. Such a re-formulation
also explains why dualizing the data is crucial in solving the
Nevanlinna-Pick interpolation problem.

Notice that in the solution suggested above, we have
considered the data set D ∪ D⊥J . This is in contrast with
the problem statement of SNIP which related to finding all
interpolating behaviors for D alone. The following section
addresses the necessity of considering D ∪D⊥J rather than
D alone, and how this consideration still yields all solutions
to SNIP.

V. SYSTEM THEORETIC IMPLICATIONS OF DUALIZING

THE DATA

In this section, we give a justification for dualizing the
data. We start by considering a hypothetical situation in
which the data has not been dualized. Let as before D =
{Viexpλit} be the data set and F (ξ) be any model in
the generative sense for D, i.e. Im F (λi) = Vi and Im
F (µ) = C

2, µ �= λi. Then, the following lemma is easily
proved:

Lemma 5.1: Given any representation of a model F ( d
dt )

(in the generative sense) of D, let[
q(ξ)
p(ξ)

]
= F (ξ)

[
s(ξ)
r(ξ)

]

Then, Im

[
q(λi)
p(λi)

]
⊆ Vi for arbitrary s(ξ), r(ξ).

Proof: Follows from the fact that ImF (λi) = Vi. �

Corollary 5.2: Every behavior B = Im

[
q( d

dt )
p( d

dt )

]
which interpolates given subspaces Viexpλit is given as[

q(ξ)
p(ξ)

]
= F (ξ)

[
s(ξ)
r(ξ)

]
where s(ξ), r(ξ) are arbitrary

coprime polynomials.
At this juncture when all possible interpolants have been

characterized, we bring in the additional condition of dissipa-
tivity. Consider the two variable polynomial matrix Φ(ζ, η)
defined as

Φ(ζ, η) = FT (ζ)JF (η)

The following theorem relates Φ-dissipativity with solutions
to SNIP:

Theorem 5.3: Consider the set of Φ-dissipative behaviors.
Let B′ be an arbitrary behavior in this set. Then, B :=
F ( d

dt )(B
′) is a J-dissipative behavior that interpolates D :=

Viexpλit. Moreover, for every J-dissipative behavior B that
interpolates D there exists a corresponding Φ-dissipative
behavior B′.
Proof: It has been shown in [3] that F ( d

dt ) can be thought
of as a differential operator that maps every Φ-dissipative
behavior into a J-dissipative behavior. Moreover, it is “in-
vertible”, i.e. for every J-dissipative behavior, there exists a
corresponding Φ-dissipative behavior and vice versa.

A behavior B that is given by Im F ( d
dt ) interpolates

D since F (ξ) is a model for D. Further, such a B is
J-dissipative if and only if it is obtained as the image of a
Φ-dissipative behavior under the map F ( d

dt ). �

Thus in principle given any representation of a model
for D, one may construct a QDF QΦ from this represen-
tation. If the set of Φ-dissipative behaviors is “known”,
the set of all J-dissipative behaviors that interpolate D
can be determined.

One sees immediately that QΦ is a fairly general sup-
ply rate and no easy characterization is available for the
set of Φ-dissipative behaviors. Of course, we do have a
characterization in terms of J-dissipative behaviors [3] but
this characterization is not good enough in the present
context. Thus, determining the set of Φ-dissipative behaviors
is arguably a difficult task in general. We try to make QΦ “as
simple as possible” so that the set of Φ-dissipative behaviors
is “known”. Dualizing the data does just this, as we show
below.

Assume that the model F (ξ), in addition to modeling D
also models D⊥J (in a generative sense). Then we have the
following result:

Theorem 5.4: The representation F (ξ), which is a repre-
sentation of a model for D ∪D⊥J , satisfies

FT (−ξ)JF (ξ) = r(ξ)r(−ξ)UT (−ξ)JU(ξ)

with U(ξ) unimodular if and only if columns of F (−λ̄i) are
J-orthogonal to columns of F (λi), i.e. FT (−λ̄i)JF (λi) = 0

Proof: Assume FT (−λ̄i)JF (λi) = 0. Since F (ξ) is non-
singular, FT (−ξ)JF (ξ) is a nonzero polynomial. Hence,
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there exists a polynomial r(ξ) such that r(ξ)r(−ξ) divides
FT (−ξ)JF (ξ). Notice that the inertia of FT (−ξ)JF (ξ) is
the same as that of J for all ξ �= λi,−λ̄i. Also, since
det FT (−ξ)JF (ξ) has no other roots than λi,−λ̄i, there
exists a Unimodular matrix U(ξ) such that FT (−ξ)JF (ξ) =
r(ξ)r(−ξ)UT (−ξ)JU(ξ).

The converse of the statement is trivial. �

Remark 5.5: The surprising, and interesting feature of the
Nevanlinna-Pick iteration algorithm is that there exists a
representation of a model with U(ξ) (see Theorem 5.4) equal
to the identity matrix. Indeed, if F (ξ) is a model in the
generative sense, F (ξ)V (ξ) is also another representation
of the same model if and only if V (ξ) is unimodular. This
follows from the fact that the columns of F (ξ) and that
of F (ξ)V (ξ) generate the same module. Thus, given any
matrix F (ξ) such that columns of F (λi) are J-orthogonal to
columns of F (−λ̄i) there exists a unimodular matrix V (ξ)
such that F1(ξ) = F (ξ)V (ξ) satisfies FT

1 (−ξ)JF1(ξ) =
r(ξ)r(−ξ)J .

In other words, Theorem 5.4 and Remark 5.5 imply that if
ImF (−λ̄i) models D⊥J then F (ξ) can be suitably modified
so that it enjoys the J-unitary property. In the following
subsection, another implication of dualizing is addressed
with reference to Pick matrices.

A. Dualizing and Pick matrices

Given a J-dissipative behavior B with two manifest

variables given by B = Im

[
q( d

dt )
p( d

dt )

]
, the Pick-matrix T

associated with B is defined as follows:

1) Compute roots of λi of q(−ξ)q(ξ) − p(−ξ)p(ξ) = 0
such that λi ∈ C

+, i = 1, 2 . . . n.
2) Then T = [ q(λ̄i)q(λj)−p(λ̄j)p(λi)

λj+λ̄i
]ni,j=1 is the Pick

matrix.

In SNIP, a necessary and sufficient condition for solv-
ability is stated in terms of a Pick matrix. This matrix is
completely dependent on the data given and has (apparently)
no connection with the Pick matrix of an interpolating
behavior. However, we now show that because of dualizing
the data, these two objects are in fact the same (modulo a
congruence transformation).

Given the data set D = Viexpλit with λi ∈ C
+, recall

that the Pick matrix of the data is defined as

TJ,V1:n,λ1:n =
[

V ∗
i JVj

λ̄i + λj

]n

i,j=1

Consider a behavior B associated with the rational func-
tion p(ξ)/q(ξ) that is a solution to the SNIP. Therefore, it
follows that

Im
[

q(λi)
p(λi)

]
= Vi

Since the “special model”(Theorem 4.1 ) models D ∪
D⊥J , any interpolant models both D and D⊥J . This is in
apparently more restrictive than the problem statement which

required B to interpolate only D. However, the character-
ization obtained in Theorem 4.2 shows that a solution to
the SNIP may be obtained with a common factor that is
a Hurwitz polynomial, in other words a polynomial having
roots at −λ̄i. Thus, B does interpolate D⊥J , albeit in a trivial
manner.

Thus, in summary, dualizing the data has the following
system theoretic implications:

• It is necessary for, and guarantees existence of a J-
unitary model F ( d

dt ).
• J-unitariness of a model implies that the QDF QΦ

defined by Φ(ζ, η) = FT (ζ)JF (η) is “like QJ”, i.e.
every Φ-dissipative behavior is J-dissipative and vice
versa. Thus, the set of Φ-dissipative behaviors in this
case is “known” which enables a easy characterization
of the solutions of the SNIP.

We now address a generalization of SNIP using Quadratic
differential forms. We obtain a characterization of inter-
polants that satisfy a frequency-dependent norm, a result
which is new and important.

VI. NEVANLINNA-PICK PROBLEM WITH FREQUENCY

DEPENDENT NORMS

In this section, we address the problem of constructing Φ-
dissipative behaviors that interpolate certain given subspaces.
The matrix Φ that induces the QDF QΦ may not necessarily
be a constant matrix. Hence, interpolating behaviors that are
Φ-dissipative are required to satisfy a “frequency dependent
norm” along with the given interpolation conditions.

We assume that the QDF QΦ is such that Φ(ζ, η) admits
the factorization

Φ(ζ, η) = KT (ζ)Jstrict
ε K(η)

with K(ξ) square and nonsingular. Necessary and sufficient
conditions for such a factorization (and an algorithm to
compute the factorization when it exists) can be easily
obtained using the coefficient matrix of a QDF. We now
state the “generalized SNIP” (abbreviated as GSNIP) which
we will address in this section:
GSNIP: Given a QDF QΦ with Φ(ζ, η) =
KT (ζ)Jstrict

ε K(η) with K(ξ) ∈ R
2×2[ξ] and nonsingular,

together with n distinct subspaces Viexpλit, determine
necessary and sufficient conditions for the existence of

Φ-dissipative behaviors B := Im
[

q( d
dt )

p( d
dt )

]
such that

1) B has positive definite storage functions (with respect
to QΦ), and

2) Im

[
q(λi)
p(λi)

]
= Vi.

Assumption: We assume that {λi}∩ spec K(ξ) = φ, i.e. λi

is not a singularity of K(ξ). We also assume that the spaces
K(λi)Vi are contractive.

The following theorem gives necessary and sufficient
conditions for the solvability of GSNIP:

Theorem 6.1: Given
1) a QDF QΦ with Φ(ζ, η) = KT (ζ)Jstrict

ε K(η).
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2) a Φ-dissipative C∞-behavior B defined by an observ-
able image representation:[

u
y

]
=

[
q( d

dt )
p( d

dt )

]
�

3) subspaces Viexpλit with Vi ∈ C
2, λi ∈ C

+

the GSNIP is solvable if and only if

1)

[
s(ξ)
r(ξ)

]
= K(ξ)

[
q(ξ)
p(ξ)

]
are such that r(ξ), s(ξ)

coprime.
2) The modified pick matrix TΦ,V1:n,λ1:n is positive defi-

nite where

TΦ,V1:n,λ1:n =
[
V ∗

i KT (λ̄j)JK(λi)Vi

λi + λ̄j

]n

i,j=1

Further, every Φ-dissipative behavior B with positive definite
storage functions that interpolates Viexpλit satisfies condi-
tions 1 and 2.
Proof: We give a sketch of the complete proof in the

following lines. Define a behavior B′ as Im

[
s( d

dt )
r( d

dt )

]
�.

Since B is Φ-dissipative, B′ is Jstrict
ε -dissipative.

The behavior B has positive definite storage functions if
and only if r(ξ) and s(ξ) are coprime, and s(ξ) is Hurwitz.
This follows from the Kalman-Yakubovich lemma [4].

Define Wi = K(λi)Vi. Then, there exists a Φ-dissipative
interpolating behavior B for Viexpλit if and only if there
exists a Jstrict

ε -dissipative behavior B′ for Wiexpλit.
Finally, there exists a solution to the SNIP (a “stable”

B′) if and only if the corresponding Pick matrix is positive
definite:

TJ,V1:n,λ1:n =
[
W ∗

i JWj

λ̄i + λj

]n

i,j=1

> 0

This argument shows that there exists a Φ-dissipative
behavior that interpolates Viexpλit if and only if the co-
primeness conditions hold, and if in addition the modified
Pick matrix is positive definite. The fact that every such
solution must be obtained using the procedure suggested
follows from a simple contradiction argument. �
The essential idea in the above proof is that the matrix K(ξ)
can be used to convert the problem into a problem of SNIP
with QJstrict

ε
. Thus solution to GSNIP can be obtained as

follows:

1) Given subspaces Viexpλit choose a basis Vi for Vi.
Define

Wi = K(λi)Vi

2) Compute the Pick matrix [W ∗
i JWj/(λ̄i +λj)]ni,j=1. If

this matrix is positive definite then proceed, else stop,
there is no solution.

3) Compute all Jstrict
ε -dissipative behaviors that interpo-

late the subspaces Wiexpλit, and which have positive
definite storage functions. Let B′ be such a (control-
lable) behavior.

4) Every behavior B that satisfies the condition that there
exists a B′ (with an observable image representation)
satisfying B = K( d

dt )(B
′) is a solution to GSNIP.

VII. CONCLUSION

In this paper we have provided a behavioral theoretic
characterization of all solutions to the Nevanlinna Pick inter-
polation problem. The characterization presented here guar-
antees controllability. We have provided an explanation as
to the need of the so called “mirror images” in interpolation
problems. In all classical formulations of the Nevanlinna-
Pick problems, the interpolant is required to satisfy a “fre-
quency independent” norm condition. We have generalized
the Nevanlinna-Pick problem to cases where a interpolant is
required to satisfy a “frequency dependent” norm condition.
This is shown to be intimately related to dissipativity with
respect to a supply rate defined using a Quadratic Differential
Form. We have obtained necessary and sufficient conditions
for the solvability of a class of Nevanlinna-Pick interpolation
problems with “frequency dependent” norm conditions.
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