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Abstract A conceptual adaptive linear–quadratic (LQ)

control scheme is proposed. Its derivation is based on a

study of a family of asymptotic maximum likelihood (AML)
estimators, and their associated limit sets. The geometric

properties of such limit sets, lead to the formulation of

a time–varying, constrained optimization problem, whose

solution is an inherently consistent estimate of the system’s

unknown parameters. When incorporated within a certainty–

equivalence adaptive control scheme, these estimates yield

optimal long–run LQ closed–loop performance.

I. INTRODUCTION

The work of Kumar and Becker [10] and Kumar and

Lin [11] introduced the technique of biasing standard pa-

rameter estimation schemes in adaptive control algorithms

for controlled Markov chains. This biasing is a function of

the system performance that would result if the true system

were described by the current parameter estimate. The basic

idea is to direct the process of parameter estimates in a way

that takes account of both identification and steady state

system performance. This line of research was continued

for controlled diffusion processes by Borkar [1], and, more

recently, by Campi and Kumar [4] and Prandini and Campi

[21]. One notable advantage of this approach is that it permits

a significant weakening of the persistent excitation (PE)

requirement that is to be found in the work on consistency

based stochastic adaptive control and which is a particular

difficulty in the adaptive stabilization in both the continuous

and discrete time cases (see Lai and Wei [14], Caines [2, 3],

Chen and Guo [5]).

The adaptive control scheme proposed in this paper in-

volves parameter estimates which are implicitly biased. Un-
like the work cited above, these estimates are a product of the

solution of a time–varying, constrained optimization prob-

lem, constructed so as to make its solution inherently con-

sistent, thereby, incorporated within a certainty–equivalence

scheme, yielding optimal long–run LQ performance. The

adaptive scheme discussed in this paper is regarded as con-
ceptual, since any application would require an instantaneous
optimization procedure. It is therefore that such a scheme

is not recursively realizable (as are all biased-cost schemes

derived in the above cited publications, with the exception

of [10, 11] in which finite parameter sets are considered).
Nonetheless, based on the work presented here, a recursive
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algorithm, which generates approximate finite time solutions,
while still maintaining consistency, is derived in [17, 19].

A particular feature of our approach is the use of the

geometric analysis of Polderman [22, 23, 24] who studied

the structure of the sets of parameters corresponding to (i)

indistinguishable closed loop dynamical behaviour and (ii)

optimal LQ closed loop performance. This analysis was

specifically carried out with the analysis of LQ adaptive

control schemes in view.

Consider a class of completely observed LTI systems

whose states evolve according to the Îto equations

dxt = Axtdt + Butdt + Cdwt,

where x, u,w take values in IRn, IRm, IRr (respectively) and

w is a standard Brownian process independent of x. For a

given system, parameterized by unknown (A∗, B∗) ∆= θ∗, our
objective is to generate estimates {θt; t ≥ to} to be used in
an LQ certainty equivalence control to obtain the optimal

LQ (long run) cost which would be obtained if θ∗ were
known. In the solution to this problem provided in this paper

we consider the same control policy as described in Caines

[4]. The basic difference lies in the parameter estimation

algorithm. In Caines [4] a standard RLS algorithm has

been employed under a (sample-wise) PE condition which

requires independent verification. In the adaptive parameter

estimation and control work of Duncan and Pasik-Duncan [7,

8], the role of this PE condition is effectively replaced by

the condition that a certain determinant detÃt shall be almost

surely bounded away from zero. This condition is verifiable

in certain cases of interest. Alternatively, the required PE

property can be created by the injection of a diminishing
excitation signal, as has been shown by Duncan, Guo and

Pasik–Duncan [9]. In this work, no external dither is utilized.

Let φT
t = (xT

t ,−xT
t KT

t ) denote the regression vector
where Kt = K(θt) is computed via the control law; then,
roughly speaking, one class of PE conditions is equivalent

to assuming that the matrix
∫ t

0
φsφ

T
s ds (properly normal-

ized) converges to a strictly positive definite limit. Another

important class is that involving the comparative rates of

growth of eigenvalues of this matrix (see Lai and Wei [14],

Chen and Guo [5]). Note, however, that if Kt → K,
the existence of such a positive definite limit is highly

questionable. PE conditions are almost invariably used to

ensure consistency; an alternative formulation, which we

pursue in this work, is that where one simply considers

the natural convergence θt → I, as t → ∞, where I
is some limit set, which occurs without further conditions

for essentially all parameter estimation algorithms. (In our
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case, I corresponds to parameters yielding indistinguishable
system trajectories.) Our examination of the limit set I is
inspired by the topological dynamics formulation of stability

theory due to La Salle [16].

Let J(θ) be the long run optimal performance cost for a
system with (A,B) = θ. As has been established by Pold-
erman [22, 23], the limit set of indistinguishable dynamics

I = {(A,B)|A − BK(A,B) = A∗ − B∗K(A,B)}
is a smooth manifold upon which J has a unique minimum
θ∗ (= the true parameter) which, in addition, we show has
no local stationary points other than θ∗ on I. With those
properties in mind, the intuition behind the performance bi-

ased adaptive control algorithm is as follows: A conventional

certainty equivalence adaptive controller, using an MLE-type

parameter estimates is utilized. The MLE-type estimates, be-

ing members of a properly defined family of AML estimates,

are generated as solutions of a time–varying, constrained

optimization problem. More specifically, minimization of the

control cost J , subject to the constraint that the gradient
of the log–likelihood is bounded by a vanishing function

{δt, t ≥ 0}, is sought–after. Hence, as the time–varying
constraint makes the resulting solutions (or estimates) to

converge to the common AML limit set I, it follows that
minimization of J is asymptotically restricted to I, over
which θ∗ is the unique minimizer of J . With the desired
strong consistency thereby secured, optimal, closed-loop LQ

performance follows.

Our results are organized as follows: The adaptive control

problem is formulated in the next Section 2. In Section 3,

a class of AML estimates is defined and further, is shown

to have a common limit set I. Section 4 is devoted to the
investigation of the geometric properties of the limit set I.
Finally, in Section 5, the aforementioned time–varying, con-

strained optimization problem is formulated and its solutions

are shown to be consistent estimates of θ∗. The resulting
optimal LQ performance is then established.

Due to obvious constrains on the paper’s length, many of

the proofs are omitted. These appear in [17].

II. PROBLEM STATEMENT

We consider the system

dxt = Axtdt + Butdt + Cdwt, (II.1)

where xt ε IRn, ut ε IRm and wt ε IRp for all t ≥ 0, x0 is a

non-random initial condition and w is a standard Brownian
motion. Let the process w = {wt, t ≥ 0} be measurable
with respect to the increasing family of σ-fields Ft for all t ≥
0. The solution process {xt, t ≥ 0} for (II.1) is dependent
upon the values taken by A,B,C when these are treated as
non–random, time independent variables.

Let x generate the increasing family of σ-fields Fx
t , t ≥ 0.

Then the process u is assumed to satisfy the (adaptive)
non-anticipating control condition that ut is only an Fx

t

measurable function for t ≥ 0, and hence is not an explicit
function of A,B,C. We shall denote this condition by u ε U .

The objective in the application of adaptive control to the

system (II.1) is to achieve, along almost all sample paths,

Jo
∞

∆= inf
uεU

lim
t→∞

1
t

∫ t

0

(‖xs‖2 + ‖us‖2)ds (II.2)

where the control laws employed are such that the inner limit

exists, along almost all paths.

Let us define the matrix parameter Θ = [A,B]T and the
corresponding vector parameter θ = [co�(A,B)] ε IRn(n+m),

where [co�(A,B)]T = [(AT
1 , BT

1 ) · · · , (AT
n , BT

n )], with Ai

(respectively Bi) denoting the i-th row of A (respectively
B). Further define the n × (n + m)n matrix Ψt by

Ψt =

⎡
⎣ φT

t 0 · · · 0
0 φT

t 0 0
0 · · · · · · φT

t

⎤
⎦ ,

where φT
t

∆= (xT
t , uT

t ). Assuming a full rank noise (i.e.
CCT > 0), we take for simplicity C = I . The system
equation (II.1) may be conveniently re-expressed as

dxt = Ψtθdt + dwt, t ≥ 0. (II.3)

For convenience, when u ε U , we shall refer to both (II.1)
and (II.3) as the system Ξ(θ).
We use the notation θ∗ to denote the value of the deter-

ministic parameter of the system (II.3) generating a given set

of observations for a given control law u ε U . This parameter
θ∗ will be referred to as the true system parameter and we
assume that

θ∗ ε S ∆= {θ = co�(A,B) : (A,B) stabilizable}.
The adaptive control algorithms we study in this paper are

based upon the class of certainty equivalence (CE) algorithms

which have the following form for the adaptive LQ problem:

for each t ≥ 0,
(i) Compute an estimate θt ε S of θ∗ ε S.
(ii) Use the feedback control law

ut = −K(θt)xt,

where

K(θ) = K(A,B) = BT V (A,B) (II.4)

where V (A,B) is the (unique) positive definite
symmetric solution to the algebraic Riccati equa-

tion (ARE):

AT V + V A − V BBT V + I = 0. (II.5)

It is well known that for any given system, parameterized

by a stabilizable pair (A,B), the optimal achievable perfor-
mance (II.2) equals to

J(A,B) ∆= TrV (A,B). (II.6)

Therefore, (with a slight abuse of notation) we shall refer

to J(θ) ∆= TrV (θ) as the (synthetic) cost function. As will
be shown below, a minimization of (II.6), which takes place

during the adaptation procedure, leads to the desired optimal
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performance, that is, along almost all sample paths, one

obtains,

lim
t→∞

1
t

∫ t

0

(‖xs‖2 + ‖us‖2)ds = J(θ∗) = Jo
∞. (II.7)

One of the motives for the use of the gradient search

maximum likelihood (ML) class of parameter estimation

schemes in the adaptive control algorithm introduced in

this paper is that such schemes are sufficiently flexible to

permit various modifications to the algorithm while retaining

consistency; another motive is that they are comparatively

efficient numerically. To facilitate the analysis in this paper,

we reduce the proof of the consistency of the ML scheme

(for systems subject to feedback control which is dependent

upon current parameter estimates) to a convergence analysis

of recursive least squares schemes (for feedback systems) and

this, in turn, is reduced to the study of minimum variance

estimates (i.e. conditional expectations) within a Bayesian

framework. As a consequence, after the presentation of an in-

troductory result (Lemma 3.1) in Section 3 concerning AML

estimates, we proceed to establish a Bayesian convergence

result (Theorem 3.2) and then an RLS convergence result

(Corollary 3.3).

III. ASYMPTOTIC MAXIMUM LIKELIHOOD ESTIMATION

Let {(ut, xt), t ≥ 0} denote an observed input-
state sample path of the system Ξ(θ∗), and let Lt(θ)

∆=
L(θ, (ut

0, x
t
0)) =

∫ t

0
θT ΨT

s dxs− 1
2

∫ t

0
|Ψsθ|2ds denote a log-

likelihood function of (ut
0, x

t
0) at any θ ε S whose gradient

∇Lt(θ) is given by,

∇Lt(θ) =
∫ t

0

ΨT
s dxs −

∫ t

0

ΨT
s Ψsdsθ

=
∫ t

0

ΨT
s dws −

∫ t

0

ΨT
s Ψsds(θ − θ∗)

∆= mt − Φtθ̃, (III.1)

where mt, t ≥ 0 is an n(n + m) dimensional martingale,
θ̃

∆= θ − θ∗ and

Φt
∆=

∫ t

0

ΨT
s Ψsds.

In terms of (III.1) we may present the following prelim-

inary maximum likelihood estimation (MLE) result, which

we note does not constitute a consistency result without the

addition of further hypotheses.

Lemma 3.1
For the system Ξ(θ∗), and the observed process

{(ut, xt), t ≥ 0}, let {θt = θt(θ∗, ω), t ≥ 0}, be a process
which is progressively measurable with respect to the σ-fields
Fx

t , t ≥ 0. Assume that {θt, t ≥ 0} belongs to the class of
Asymptotic ML estimates (AML) in the sense that

∇Lt(θt) → 0 a.s. as t → ∞, (III.2)

which is denoted by {θt, t ≥ 0} ε AML. Further assume
that almost surely Φt is non-singular for all t sufficiently

large. Then there exists an a.s. finite random variable θ∞ =
θ∞(θ∗, ω) for which

θt → θ∞ a.s. as t → ∞ (III.3)

for all θ∗ε/N , where N is a Lebesgue null set in IRn(n+m)

independent of ω.

The characterization of the limit set of {θt} ε AML is
the purpose of the final phase of this section. Following the

Bayesian embedding approach (Kumar [13]), we begin with

a consistency proof in a Gaussian setting:

Theorem 3.2
Consider the system (II.1) where it is assumed that

C = I , (A∗, B∗, x0) have a joint Gaussian distribution and
w = {wt, t ≥ 0} is a standard Brownian vector process,
independent of (A∗, B∗, x0).
Suppose that the system is controlled by ut = −Ktxt, t ≥

0, where Kt is a causal, Fx
t -measurable, continuous and

bounded semi-martingale (matrix) which converges a.s. to

a finite, possibly random limit K∞. Let

Θ̂t
∆= E[Θ∗|Fx

t ] = E([A∗, B∗]T |Fx
t ) (III.4)

be the MV (minimum variance) estimate of Θ∗ ∆= [A∗, B∗]T .
Then

Θ̂t → {[A,B]T : A−BK∞ = A∗−B∗K∞}, a.s., as t → ∞
(III.5)

Corollary 3.3
Let ΘRLS

t be the matrix RLS estimate corresponding

to θRLS
t of Lemma 3.1 (i.e. θRLS

t = co�{ΘRLS
t }). Then,

under the conditions of Theorem 3.2 but with [A∗, B∗]
deterministic and stabilizable, ΘRLS

t is a.s. convergent to

some ΘRLS
∞ with

ΘRLS
∞ ε {[A,B]T : A − BK∞ = A∗ − B∗K∞}, a.s.

for all [A∗, B∗]T = Θ∗ε/N where N is a Lebesgue null set
in IR(n+m)×n independent of ω.

Proof: The RLS algorithm is, in the Bayesian setup of
Theorem 3.2, the Kalman filter for E[Θ∗|Fx

t )] = Θ̂t. Hence,

the conclusion follows by the convergence result of Theorem

3.2 and the mutual absolute continuity of the Lebesgue and

the Gaussian measures on IR(n+m)×n.

To conclude this section, the next theorem shows that

AML estimates posses the same limit set as RLS estimates

do:

Theorem 3.4
Consider the system (II.1) with C = I and [A∗, B∗] a
stabilizable (deterministic) pair. Suppose that Φt > 0 a.s. for
all t ≥ t0, for some t0 < ∞, and let {θt, t ≥ t0} ε AML in
the sense of (III.2) with θt ε S for all t ε [t0,∞], a.s. Then
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θ∞ = limt→∞ θt exists and is finite, w.p.1, and θ∞ ε I a.s.,
where

θ∞ ε I ∆= {θ = co�(A,B) : A − BK(θ) = A∗ − B∗K(θ)}.
(III.6)

This holds for all stabilizable pairs [A∗, B∗] outside a
Lebesgue null set N in IRn×n × IRn×m.

The following Theorem, provides an alternative, data-

based interpretation to the limit set I, by relating the limit
errors to the data:
Theorem 3.5
Under the conditions of Theorem 3.4, the limits θ∞ of

AML estimators {θt, t ≥ t0}, are characterized by the
property,

θ∞ ε
{
θ ε S|θ − θ∗ ε Ker(Φ(θ))

}
= I(θ∗) = I, (III.7)

where,

Φ(θ∞) = lim
t→∞

1
t
Φt =

blockdiag(n)
{ [

I
−K(θ∞)

]
P (θ∞)[I, −K(θ∞)T ]

}
,

and,

P (θ∞) = lim
t→∞

1
t

∫ t

0

xsx
T
s ds

=
∫ ∞

0

[expF (θ∞)t]CCT [expFT (θ∞)t]dt,

with blockdiag(n){G} being a block-diagonal matrix whose
n blocks are the matrices G, and F (θ) = A − BK(θ).

IV. GEOMETRIC PROPERTIES

In this section we examine the geometric characteristics

of the limit set I, the set of systems with indistinguish-
able closed-loop dynamics. As is apparent from Theorem

3.2, standard CE LQ schemes may only lead to parameter

estimate convergence into I and producing suboptimal per-
formance. To deal with this situation, the geometric study

in this section provides information which facilitates the

construction of an adaptive control scheme which will result

in the desired optimal performance.

Let

C = {θ ε S;K(θ) = K(θ∗)}
Since θt → I, as t → ∞, one would achieve the optimal
performance (II.7) if, further, I ⊂ C. However, Polderman
[22, 23] showed that

(i) I ∩ C = θ∗

(ii) V (θ) ≥ V (θ∗) ∀θ ε I.

(Recall that V is the solution of ARE (II.5).)
We show below that without consistent identification (i.e.

θt → θ∗) only suboptimal performance can be achieved,
as, due to (i), by using standard AML estimates one may
encounter

θt 	→ θ∗ (IV.1)

thus getting J(θ∞) > J(θ∗) (where, as define in (II.6), J(θ)
is the optimal achievable performance for a system param-

eterized by θ). We now examine the first order derivatives
of V and J on I. We show that, in addition of being the
unique minimum of J over I, θ∗ is also a unique stationary
value point of the gradient of J with respect to B (Lemma
4.1 below). Such a result is important as a key tool in

establishing the consistency of various gradient and Newton

type algorithms, in particular, the consistency of the recursive
algorithm derived in [17, 19].

First note that for any θ ε I, the calculation of V (θ) can
be made either by the ARE (II.5) or by

[A∗−B∗K(θ)]T V +V [A∗−B∗K(θ)]+K(θ)KT (θ)+I = 0
(IV.2)

where K(θ) = B(θ)T V (θ) = BT V (θ). Note that by (IV.2)
V (θ) = V (A,B) is actually a function of B only (where
Definition (III.6) determines the corresponding A for all θ ε
I).
Let dJ(θ)/dB be an n × m matrix whose typical (i, j)
entry is dJ(θ)/dBij . Note that since for all θ ε I, J is a
function of B only, one has,

dJ(θ)
dBij

=
∂J(θ)
∂Bij

+
n∑

p,q=1

∂Apq

∂Bij

∂J(θ)
∂Apq

.

Lemma 4.1
θ∗ is the unique stationary value point of dJ/dB over I,

that is,
dJ(θ)
dB

= 0 ⇔ θ = θ∗, θ ε I. (IV.3)

While we skip the lengthy proof, the Lemma is demon-

strated below to hold in the scalar case.

For a precise definition of the full derivative of J w.r.t. B
in (IV.3) let,

∇J(θ) = [(
∂J(θ)
∂co�A

)T , (
∂J(θ)
∂co�B

)T ]T . (IV.4)

Recall that for any θ ε I, A = A(B) is determined by
(III.6). Let D = D(θ) be an n2 × nm matrix whose entries
are

Dij(θ) =
∂(co�A)i

∂(co�B)j

Hence, the full derivative of J w.r.t. B is written as,

co�
dJ(θ)
dB

= DT (θ)
∂J(θ)
∂co�A

+
∂J(θ)
∂co�B

(IV.5)

Corollary 4.2

J(θ) > J(θ∗), ∀θ ε I, θ 	= θ∗. (IV.6)

Proof: Polderman [22, 23] already established that

TrV (θ) = J(θ) ≥ TrV (θ∗) = J(θ∗), ∀θ ε I, θ 	= θ∗.
(IV.7)

and further, that I is a smooth manifold. Hence, together
with (IV.3), uniqueness follows.
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The scalar example: With θ = (a, b)T , the ARE (II.5),

rewritten as,

2(a − bk(θ))v(θ) + k2(θ) + 1 = 0, k(θ) = bv(θ), (IV.8)

leads through differentiation (with v = J), to that

∂J

∂b
= −k

∂J

∂a
,

∂J

∂a
=

−v

a − bk
> 0, ∀θ ε S. (IV.9)

Differentiating (with respect to b) the I–defining relation,
a − bk(θ) = a∗ − b∗k(θ), (IV.10)

taking into account (IV.9), results in the following implicit

equation for d = ∂a/∂b (θ ε I):

d = (b − b∗)b(d − k)
∂v

∂a
+ 2k − b∗v. (IV.11)

Equation (IV.5) takes the form,

dJ(θ)
db

=
∂J

∂a
(d − k), θ ε S. (IV.12)

From here, it is easily verifiable that, on I,

θ = θ∗ ⇔ d = k ⇔ dJ(θ)
db

= 0. (IV.13)

As an alternative characterization of I, we look at the di-
rection orthogonal to I, obtained through the differentiation
of the relation (IV.10) with respect to θ: Rewrite (IV.10),

g(θ) = g(a, b) = a − a∗ − k(a, b)(b − b∗) = 0. (IV.14)

Then,

∇g(a, b) = (
∂g

∂a
,
∂g

∂b
)T , (IV.15)

is given by

∂g

∂a
= 1 +

k

a − bk
(b − b∗), (IV.16)

∂g

∂b
= −v(b − b∗) − k

(
1 +

k

a − bk
(b − b∗)

)
. (IV.17)

On the other hand, the tangent space to I (at any θ ε I),
is defined by q = (d, 1)T (where d = d(θ)). We now show
that,

(∇g(θ), q(θ)) = 0, ∀θ ε I. (IV.18)

The computation of this inner product is straightforward

using (IV.11, IV.15, IV.16, IV.17):

(∇g, q) = d +
kd

a − bk
(b − b∗) − v(b − b∗)

−k
(
1 +

k

a − bk
(b − b∗)

)
= (d − k)

(
1 +

k

a − bk
(b − b∗)

) − v(b − b∗)

= (d − k)
a − b∗k
a − bk

− (k − vb∗). (IV.19)

Now, take (IV.11) to write,

d − k = (b − b∗)b
∂v

∂a
(d − k) + k − b∗v

= −(b − b∗)
k

a − bk
(d − k) + k − b∗v. (IV.20)

From here one has,

(d − k)
(
1 +

k

a − bk
(b − b∗)

)
= k − b∗v, (IV.21)

rewritten as,

(d − k)
a − b∗k
a − bk

= k − b∗v. (IV.22)

Substituting this relation in (IV.19) results in (IV.18).

Remark: Note that by (IV.16, IV.17), ∇g(θ) = (1,−k(θ))T

if and only if θ = θ∗. It follows that ∇g(θ) and ∇J(θ)
become parallel only at θ = θ∗. This fact (easily verifiable in
the vector–valued parameter case), serves in the construction

of a recursive scheme, which utilizes a projection of the
gradient ∇J on I, a projection which, according to the
above, vanishes only at θ∗ [17, 19].

V. A CONCEPTUAL ADAPTIVE SCHEME

The results quoted in the previous section show that for

optimal adaptive LQ performance it is necessary to generate

consistent parameter estimates. Sufficiency follows from,

Theorem 5.1: Let {θ̂t, t ≥ 0} be a consistent estimate in
the sense that

θ̂t → θ∗, a.s. as t → ∞,

where in addition, θ̂t ε S ∀t ≥ 0. Then, with {θ̂t, t ≥ 0}
incorporated within an adaptive feedback law of the form,

ut = −K(θ̂t)xt,

the resulting long–run LQ performance is optimal in the

sense of (II.7), a.s.

Proof: See Duncan and Pasik-Duncan [6].

This leads us to adopt a methodology related to the biased

ML approach of Kumar [12] and Borkar [1], (see also Kumar

and Becker [10], Kumar and Lin [11], Campi and Kumar [4],

Prandini and Campi [21]). The techniques of the aforemen-

tioned authors invoke the minimization of a weighted sum of

the log-likelihood function and the computed performance J
of the controlled system.

In light of Theorem 3.4, the point of view adopted in this

paper is that, in the limiting case of an infinite observation

sample, the control task is to minimize J over the parameter-
ized system descriptions and parameterized controllers that

satisfy the constraint given by the vanishing of the gradient
of the log-likelihood function.

The conceptual adaptive algorithm is as follows. Suppose

that a positive scalar stochastic process {δt; t ≥ 0} is given
with δt monotonically decreasing to zero. Then we formulate

the adaptive optimization problem as,

minimize J(θ, θ),

subject to

{
θ ε S
‖∇Lt(θ)‖ ≤ δt,

(V.1)

where, with a slight change of notation, the first parameter,

θ, appearing in the function J(·, ·) denotes the system
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Ξ(·), while the second refers to the parameterization of
the feedback control law K(θ). Hence J(θ, θ′) denotes the
LQ performance of the system Ξ(θ) subject to the control
law ut = −K(θ′)xt, and we adopt the convention that

∇J(θ, θ) denotes the gradient of J(θ, θ) with respect to the
θ parameter in both entries.
Lemma 5.2
Suppose that Φt0 > 0, a.s., for some finite t0. Assume

that a strong solution {θt, t ≥ 0} to (V.1) exists. Then,
θt → θ∞(ω) ε I as t → ∞, a.s.

Proof: As a strong solution exists, it is necessary (by
construction) that,

‖∇Lt(θt)‖ → 0 a.s. t → ∞ a.s.
(where δt → 0). Hence, {θt} is an AML estimate and
therefore, by Theorem 3.4, converges to a finite limit in I.

Corollary 5.3
Let the conditions of Lemma 5.2 hold. Then, with proba-

bility 1, θ∞(ω) = θ∗, that is, the estimates {θt} are strongly
consistent and the associated CE based adaptive scheme is

a.s. optimal in the sense of (II.7).

Proof: As a solution to (V.1) is, by the constraint it is sub-
jected to, made to converge to I, it follows that minimization
of J is asymptotically restricted to I, on which θ∗ was shown
to be the unique minimizer of J , thereby making θ∗ the only
possible limit. Optimal performance follows from Theorem

5.1.
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