
Stabilization of swelling porous elastic soils with fluid saturation by one
internal damping

Jun-Min Wang and Bao-Zhu Guo

Abstract— This article considers the stabilization of a system
of one-dimensional swelling porous elastic soils with fluid
saturation. This system is strongly coupled by vibrations of both
fluid and solid elastic materials. Using Riesz basis approach, it
is shown that the system can be exponentially stabilized by one
internal damping with variable feedback gain imposed in the
fluid equation. The result improved greatly at the first time the
previous results in literature where two dampings are needed
to get the same result.

I. INTRODUCTION

It is generally recognized that the swelling of soils, plants,

drying of fibres, wood, paper, etc belong to the porous

media theory. A complete formulation of a mixture the-

ory for porous elastic solids filled with fluid and gas was

developed in [2]. This formulation has many applications

in various practical problems such as field of swelling,

oil explanation, slurred and consolidation problems. Several

literatures are available recently to cope with the stability

of one-dimensional problems, for instance [4],[8]. One of

problems in this theory is the interactions between two

various components ([8]). In [4] the exponential stability

was obtained for one-dimensional problem by imposing three

internal damping with constant feedback gains in both solid

and liquid equations. This article, on the other hand, shows

that only one internal damping imposed in fluid equation is

sufficient to stabilize exponentially the system. The advan-

tage of this article is that the feedback gain is not constant

but a function in spatial variable. Moreover, it requires only

that this function is positive in any measurable subset with
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positive measure in spatial space, which can not be treated

by the method in [4]. The Riesz basis approach is adopted

in investigation. We obtained more elaborate results. The

generalized eigenfunctions of the system form a Riesz basis

for the energy state space. The asymptotic of eigenvalues is

explicitly obtained. The spectrum-determined growth condi-

tion that is a difficult problem in partial differential equation

system controls is established. The exponential stability is

a consequence of these results. To our knowledge, this is a

first attempt to exponentially stabilize the two coupled wave

equations by one internal damping.

The plan of this paper is as follows: in Section 2, we

formulate the problem in the energy state space as an abstract

evolution equation. Section 3 is devoted to the spectral

analysis of the system, which is the main body of the article.

The Riesz basis generation as well as exponential stability

are presented in Section 4.

II. FORMULATION OF THE PROBLEM

We consider a linear field equation of swelling porous

elastic soils in fluid saturation of the following ([2], [4]):

ρz
∂2z

∂t2
= a1

∂2z

∂x2
+ a2

∂2u

∂x2
− ρzk1(x)

∂z

∂t
, (1)

ρu
∂2u

∂t2
= a2

∂2z

∂x2
+ a3

∂2u

∂x2
(2)

where z and u represent the displacements of fluid and solid

elastic materials at space position x ∈ (0, `) and time t >

0, respectively. The constants ρz, ρu > 0 are the densities

of each constituent. The parameters a1, a3 > 0 and a2 are

the constitutive constants and k1(x) is a viscous damping

function.

The initial and boundary conditions of the system (1)-(2)

are

z(x, 0) = z0(x), u(x, 0) = u0(x), x ∈ [0, `], (3)

d

dt
z(x, 0) = z1(x),

d

dt
u(x, 0) = u1(x), x ∈ [0, `], (4)
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and

z(0, t) =
d

dx
z(`, t) = u(0, t) =

d

dx
u(`, t) = 0. (5)

The total energy function for the system (1)-(5) is given by

E(t) :=
1
2

∫ `

0

[
ρz|zt(x, t)|2 + ρu|ut(x, t)|2

+

〈
Υ

(
zx(x, t)

ux(x, t)

)
,

(
zx(x, t)

ux(x, t)

)〉

C2

]
dx

(6)

where

Υ :=

(
a1 a2

a2 a3

)
(7)

is positive definite, i.e., a1a3 > a2
2.

For simplicity, we assume ` = 1 throughout the paper.

We begin by formulating the system (1)-(5) into an abstract

evolution equation on the state Hilbert space H:


H :=

(
H1

E(0, 1)× L2(0, 1)
)2

,

H1
E(0, 1) :=

{
f ∈ H1(0, 1) | f(0) = 0

} (8)

where H1(0, 1) denotes the usual Sobolev space. Due to the

energy function (6), it is natural to introduce the following

inner product on H:

〈Y1, Y2〉H :=
∫ 1

0

[
ρzw1w2 + ρuv1v2

+

〈
Υ

(
z′1
u′1

)
,

(
z′2
u′2

)〉

C2

]
dx

(9)

where Yi := [zi, wi, ui, vi], i = 1, 2, and the prime “′”
denotes the differentiation with respect to x. Define the

operators A and B in H by

A




z

w

u

v




>

:=




w
1
ρz

(
a1z

′′ + a2u
′′
)

v
1
ρu

(
a2z

′′ + a3u
′′
)




>

(10)

for all [z, w, u, v] ∈ D(A), where

D(A) :=





[z, w, u, v] ∈ H | z, u ∈ H2(0, 1),

w, v ∈ H1
E(0, 1),

z′(1) = u′(1) = 0





, (11)

and for all [z, w, u, v] ∈ D(B) = H,

B




z

w

u

v




>

:=




0

−k1(x)w

0

0




>

. (12)

Let Y (t) := [z(·, t), zt(·, t), u(·, t), ut(·, t)]. Then the system

(1)-(5) can be formulated into an abstract evolution equation

on H: 



d

dt
Y (t) = (A+ B)Y (t), t > 0,

D(A+ B) = D(A),

Y (0) := [z0, z1, u0, u1].

(13)

Lemma 2.1: The operator A defined by (10) and (11) is

skew-adjoint in H.

Theorem 2.1: Let A and B be defined by (10)-(12). Then

A and A + B are of compact resolvents and 0 ∈ ρ(A) ∩
ρ(A+B). Therefore, the spectrums of A and A+B consist

of isolated eigenvalues only.

Theorem 2.2: Let A and B be defined by (10)-(12). Then

A generates a C0-group on H and so is A + B due to the

boundedness of B.

III. SPECTRAL ANALYSIS

In this section, we are devoted to the spectral analysis for

the system (1)-(5). Let λ ∈ σ(A+ B) and Yλ := [z, w, u, v]

be an eigenfunction of A+B corresponding to λ. Then (A+

B)Yλ = λYλ implies w = λz, v = λu and that z, u satisfy

the following system of characteristic equations (0 < x < 1)




ρzλ
2z(x)− a1z

′′(x)− a2u
′′(x)

+ρzk1(x)λz(x) = 0,

ρuλ2u(x)− a2z
′′(x)− a3u

′′(x) = 0,

(14)

and the boundary condition,

z(0) = u(0) = z′(1) = u′(1) = 0. (15)

For brevity in notation, we set




r1 :=
√

ρz

a1
, r2 :=

√
ρu

a3
, a4 :=

a2

a1
,

a5 :=
a2

a3
, δ :=

1
1− a4a5

> 0.

(16)

Note that if a2 = 0, there is no coupling for the system (1)-

(2). So we always assume that a2 6= 0 in the sequel. Now

(14) becomes (0 < x < 1)




r2
1λ

2z(x)− z′′(x)− a4u
′′(x)

+r2
1k1(x)λz(x) = 0,

r2
2λ

2u(x)− a5z
′′(x)− u′′(x) = 0.

(17)
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In order to solve the above equation, we solve the following

equation that is equivalent to (17):




r2
1λ

2z(x)− a4r
2
2λ

2u(x)− (1/δ)z′′(x)

+r2
1k1(x)λz(x) = 0,

r2
2λ

2u(x)− a5r
2
1λ

2z(x)− (1/δ)u′′(x)

−a5r
2
1k1(x)λz(x) = 0.

(18)

Set

z1 := z, z2 := z′, u1 := u, u2 := u′, (19)

Φ(x) := [z1, z2, u1, u2]>. (20)

Then (18) becomes

TD(x, λ)Φ(x) = 0, (21)

where

TD(x, λ)Φ(x) := Φ′(x) + A(x, λ)Φ(x), (22)

A(x, λ) := A0 − λA1(x)− λ2A2 (23)

and A0, A1 and A2 are three matrix functions defined by

A0 :=




0 −1 0 0

0 0 0 0

0 0 0 −1

0 0 0 0




, (24)

A1(x) :=




0 0 0 0

δr2
1k1(x) 0 0 0

0 0 0 0

−a5δr
2
1k1(x) 0 0 0




, (25)

A2 :=




0 0 0 0

δr2
1 0 −a4δr

2
2 0

0 0 0 0

−a5δr
2
1 0 δr2

2 0




. (26)

Under the same formulation, the boundary condition (15)

becomes

TRΦ(x) := W 0Φ(0) + W 1Φ(1) = 0, (27)

with

W 0 :=




1 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0




, (28)

W 1 :=




0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1




. (29)

As a conclusion, we have the following Theorem 3.1.

Theorem 3.1: The characteristic equation (14) together

with boundary condition (15) is equivalent to the first order

linear system (21) with boundary condition (27). Moreover,

λ ∈ σ(A+ B) iff (21) and (27) have a nonzero solution.

Next we utilize a standard technique due to Birkhoff-Langer

([1]) and Tretter ([5], [6]) to expand the characteristic deter-

minant of (21) and (27). To begin with, we diagonalize the

leading term λ2A2 in (23). Let

r3 :=

√√√√δ
(
r2
1 + r2

2

)
+

√
δ2(r2

1 + r2
2)2 − 4δr2

1r
2
2

2
, (30)

r4 :=

√√√√δ
(
r2
1 + r2

2

)−
√

δ2(r2
1 + r2

2)2 − 4δr2
1r

2
2

2
, (31)

s := − δa4r
2
2

r2
3 − δr2

1

= −r2
3 − δr2

2

δa5r2
1

, (32)

t := − δa4r
2
2

r2
4 − δr2

1

= −r2
4 − δr2

2

δa5r2
1

, (33)

δ1 :=
1

s− t
, sδ1 > 0, tδ1 < 0 (34)

with r2
3 + r2

4 = δr2
1 + δr2

2 and

r3 6= r4, 1 + ta5 =
r2
3

δr2
1

> 0, 1 + sa5 =
r2
4

δr2
1

> 0. (35)

Define an invertible matrix P (λ) by

P (λ) := S

[
P1(λ)

P2(λ)

]
, ∀ λ ∈ C, λ 6= 0, (36)

where

S :=

[
sI2 tI2

I2 I2

]
, S−1 := δ1

[
I2 −tI2

−I2 sI2

]
, (37)

I2 is a 2× 2 identity matrix and

P1(λ) :=

[
r3λ r3λ

r2
3λ

2 −r2
3λ

2

]
, P2(λ) :=

[
r4λ r4λ

r2
4λ

2 −r2
4λ

2

]
,

P−1
1 (λ) :=




1
2r3λ

1
2r2

3λ
2

1
2r3λ

−1
2r2

3λ
2


 ,
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P−1
2 (λ) :=




1
2r4λ

1
2r2

4λ
2

1
2r4λ

−1
2r2

4λ
2


 .

It is easy to see that P (λ)−1 exists whenever λ 6= 0 and

P (λ)−1 :=

[
P−1

1 (λ)

P−1
2 (λ)

]
S−1. (38)

So the matrix P (λ) is a polynomial of degree 2 in λ. Defining

Ψ(x) := P−1(λ)Φ(x) (that is Φ(x) = P (λ)Ψ(x)) (39)

and T̂D(x, λ) := P (λ)−1TD(x, λ)P (λ), we have

T̂D(x, λ)Ψ(x) = Ψ′(x) + Â(x, λ)Ψ(x) = 0 (40)

where

Â(x, λ) := P (λ)−1A(x, λ)P (λ). (41)

Since

S−1A(x, λ)S

=




0 −1 0 0

−λ2r2
3 + λk3(x) 0 λk4(x) 0

0 0 0 −1

−λk5(x) 0 −λ2r2
4 − λk6(x) 0




where




k3(x) := −sδ1δr
2
1(1 + ta5)k1(x),

k4(x) := −tδ1δr
2
1(1 + ta5)k1(x),

k5(x) := −sδ1δr
2
1(1 + sa5)k1(x),

k6(x) := −tδ1δr
2
1(1 + sa5)k1(x),

(42)

we obtain

Â(·, λ) =



k7 − r3λ k7 k8 k8

−k7 r3λ− k7 −k8 −k8

−k9 −k9 −r4λ− k10 −k10

k9 k9 k10 r4λ + k10




where ki, i = 7, 8, 9, 10 are functions in x ∈ [0, 1] given by




k7(x) :=
k3(x)
2r3

, k8(x) :=
r4k4(x)

2r2
3

,

k9(x) :=
r3k5(x)

2r2
4

, k10(x) :=
k6(x)
2r4

.

(43)

It is seen from the above that Â(x, λ) can decompose into

Â(x, λ) := −λÂ1 − Â0(x) (44)

with

Â1 :=




r3

−r3

r4

−r4




, (45)

Â0(x) :=




−k7 −k7 −k8 −k8

k7 k7 k8 k8

k9 k9 k10 k10

−k9 −k9 −k10 −k10




. (46)

Theorem 3.2: Let 0 6= λ ∈ C, and let Â(x, λ) be defined

by (44)-(46). For x ∈ [0, 1], set

E(x, λ) := diag
[
er3λx, e−r3λx, er4λx, e−r4λx

]
. (47)

Then there exists a fundamental matrix solution Ψ̂(x, λ) to

the system (40),

Ψ′(x, λ) = −Â(x, λ)Ψ(x, λ) (48)

such that for large enough |λ|,

Ψ̂(x, λ) :=
(
Ψ̂0(x) +O(λ−1)

)
E(x, λ), (49)

where

Ψ̂0(x) := diag
(
e−k11(x), ek11(x), ek12(x), e−k12(x)

)
.

k11(x) :=
∫ x

0
k7(ξ)dξ, k12(x) :=

∫ x

0
k10(ξ)dξ.

(50)

Corollary 3.1: Let Ψ̂(x, λ) given by (49) be a fundamen-

tal matrix solution to the system (48). Then

Φ̂(x, λ) := P (λ)Ψ̂(x, λ) (51)

is a fundamental matrix solution to the first order linear

system (22).

We are now in a position to estimate the asymptotic of the

eigenvalues. Note that the eigenvalues of the first order linear

system (22), (27) are given by the zeros of the characteristic

determinant

∆(λ) := det
(
TRΦ̂(x, λ)

)
, λ ∈ C, (52)

where the operator TR is given by (27) and Φ̂(x, λ) is any

fundamental matrix to the equation TD(x, λ)Φ(x) = 0 (see

[5]). Note that

TRΦ̂(x, λ) = W 0P (λ)Ψ̂(0, λ) + W 1P (λ)Ψ̂(1, λ). (53)

A simple computation by using (28), (29) and (36) gives

TRΦ̂(·, λ) =
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


sr3λ[1]1 sr3λ[1]1
r3λ[1]1 r3λ[1]1

sr2
3λ

2[1]1er3λ−k11(1) −sr2
3λ

2[1]1e−r3λ+k11(1)

r2
3λ

2[1]1er3λ−k11(1) −r2
3λ

2[1]1e−r3λ+k11(1)

tr4λ[1]1 tr4λ[1]1
r4λ[1]1 r4λ[1]1

tr2
4λ

2[1]1er4λ+k12(1) −tr2
4λ

2[1]1e−r4λ−k12(1)

r2
4λ

2[1]1er4λ+k12(1) −r2
4λ

2[1]1e−r3λ−k12(1)




where

[a]1 := a +O(λ−1).

Thus, further computation gives

∆(λ) = det
(
TRΦ̂(·, λ)

)
= −r3

3r
3
4(t− s)2λ6

×
{(

er3λ−R 1
0 k7(ξ)dξ + e−r3λ+

R 1
0 k7(ξ)dξ

)

×
(
(er4λ+

R 1
0 k10(ξ)dξ + e−r4λ−R 1

0 k10(ξ)dξ
)

+O(λ−1)
}

.

Theorem 3.3: Let ∆(λ) be the characteristic determinant

of the first order linear system (21) and the boundary

condition (27). Then an asymptotic expression of ∆(λ) is

given by

∆(λ) = µλ6
{
∆1 ×∆2 +O(λ−1)

}
(54)

where µ := −r3
3r

3
4(t− s)2,

∆1 := er3λ−R 1
0 k7(ξ)dξ + e−r3λ+

R 1
0 k7(ξ)dξ, (55)

∆2 := er4λ+
R 1
0 k10(ξ)dξ + e−r4λ−R 1

0 k10(ξ)dξ. (56)

Now the characteristic determinant ∆(λ) = 0 is

∆1 ×∆2 +O(λ−1) = 0

which is equivalent to

er3λ−R 1
0 k7(ξ)dξ + e−r3λ+

R 1
0 k7(ξ)dξ +O(λ−1) = 0 (57)

or

er4λ+
R 1
0 k10(ξ)dξ + e−r4λ−R 1

0 k10(ξ)dξ +O(λ−1) = 0. (58)

By the Rouché’s Theorem, the roots of (57) can be estimated

by those of

er3λ−R 1
0 k7(ξ)dξ + e−r3λ+

R 1
0 k7(ξ)dξ = 0

which can be found explicitly as

λ̃1k =
1
r3

(∫ 1

0

k7(ξ)dξ + (k +
1
2
)πi

)
, k ∈ Z, (59)

where k7(x) is defined by (43). Thus, the roots of (57) satisfy

(for |k| ≥ N1, k ∈ Z)

λ1k =
1
r3

(∫ 1

0

k7(ξ)dξ + (k +
1
2
)πi

)
+O(k−1), (60)

where N1 is a sufficiently large positive integer. Repeating

the same discussion for equation (58), we can get the

asymptotics of its eigenvalues (for |k| ≥ N2, k ∈ Z):

λ2k =
−1
r4

(∫ 1

0

k10(ξ)dξ − (k +
1
2
)πi

)
+O(k−1), (61)

where N2 is a sufficiently large positive integer.

Eventually, we have obtained the following result for the

spectrum of A+ B.

Theorem 3.4: Let A + B be defined by (10)-(12). Then

each λ ∈ σ(A+B) is algebraically simple when |λ| is large

enough, and the following asymptotic expressions hold (for

|k| ≥ max{N1, N2}, k ∈ Z)

λ1k =
1
r3

(∫ 1

0

k7(ξ)dξ + (k +
1
2
)πi

)
+O(k−1), (62)

λ2k =
−1
r4

(∫ 1

0

k10(ξ)dξ − (k +
1
2
)πi

)
+O(k−1), (63)

where N1, N2 are large enough positive integers. Further-

more, from (16), (32)-(35), (42) and (43), it follows that
∫ 1

0

k7(ξ)dξ =
−sδ1r3

2

∫ 1

0

k1(ξ)dξ (64)

and ∫ 1

0

k10(ξ)dξ =
−tδ1r4

2

∫ 1

0

k1(ξ)dξ. (65)

Therefore, as k →∞,

Reλ1k → −sδ1

2

∫ 1

0

k1(ξ)dξ, (66)

Reλ2k → tδ1

2

∫ 1

0

k1(ξ)dξ. (67)

IV. EXPONENTIAL STABILITY

In this section, we investigate the stability of (13).

Theorem 4.1: Let A and B be defined by (10)-(12). Then

the generalized eigenfunctions of A+B are complete in H.

Proof. Since A is a skew-adjoint operator with compact

resolvents and 0,∞ ∈ ρ(A), (iA)−1 is compact, self-adjoint

and Ker(iA)−1 = {0}. Moreover, by (62) and (63) (where

we can take k1(x) ≡ 0), we have {λk((iA)−1)}∞k=1 ∈ l2.

Since

(i(A+ B))−1 = (iA)−1(I − BA−1(I + BA−1)−1)
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BA−1 and BA−1(I + BA−1)−1 are compact and I −
BA−1(I + BA−1)−1 is invertible, so the required result

follows from the Keldysh’s theorem (see [3, pp.170, Theorem

4.1]). ¤

Finally the verification of the Riesz basis property for the

system (13) will be done by Theorem 4.2 of [7].

Theorem 4.2: System (13) is a Riesz spectral system (in

the sense that its generalized eigenfunctions form a Riesz

basis inH) and so it satisfies the spectrum determined growth

condition.

Proof. In view of Theorem 3.4, we may take σ2(A+ B) :=

σ(A+ B) and σ1(A+ B) := {∞}. Then conditions 1),

2) and 3) in Theorem 4.2 of [7] are satisfied. Moreover,

Theorem 4.1 implies that X1 = {0}. Thus, the first assertion

of Theorem 4.2 of [7] says that there is a sequence of the

generalized eigenfunctions of A+ B, which forms a Riesz

basis for H. Finally, the spectrum determined growth con-

dition is a direct consequence of the Riesz basis generation

and the algebraic simplicity of the high eigenvalues. ¤

We are now ready to discuss the stability of the system

(13). From (66) and (67), in order to achieve the exponential

stability, we need the following necessary condition
∫ 1

0

k1(ξ)dξ > 0. (68)

Condition (68) together with (34) guarantees that

−sδ1

2

∫ 1

0

k1(ξ)dξ < 0,
tδ1

2

∫ 1

0

k1(ξ)dξ < 0.

These imply that the high eigenvalues of the system (13) are

located on the left half plane.

The last step is to consider the low eigenvalues of the

system (13):

Suppose k1(x) ≥ 0 and k1(x)
∣∣∣
I

> 0, where I is some

measurable subset of [0, 1] with positive measure. Then with

the assumption (68), for each Y := [z, w, u, v] ∈ D(A+B),

one has

Re
〈
(A+ B)Y, Y

〉
H = −

∫ 1

0

k1(ξ)|w|2dξ ≤ 0.

So the operator A + B defined by (10)-(12) is dissipative

and hence the real part of all the spectrum is located on the

left half plane, i.e., Re
(
λ(A + B)

) ≤ 0. Furthermore, let

λ := iτ , 0 6= τ ∈ R be an eigenvalue of A+B and let Y be

its corresponding eigenfunction. Then it follows from above

that

0 ≡ Re
〈
(A+ B)Y, Y

〉
H = −

∫ 1

0

k1(ξ)|w|2dξ,

and hence w ≡ 0 in I and so is w ≡ 0 in [0, 1]. By (A +

B)Y = iτY , we further have that z ≡ 0 and




u′′(x) = 0, 0 < x < 1,

ρuτ2u(x) + a3u
′′(x) = 0, 0 < x < 1,

u(0) = u′(1) = 0.

By a direct computation, we obtain v = u ≡ 0. Thus Y ≡
0 that contradicts λ = iτ being an eigenvalue of A + B.

Therefore, there is no eigenvalue on the imaginary axis and

hence the system (13) is exponentially stable.

Theorem 4.3: Let A+B be defined by (10)-(12). Suppose

condition (68) is satisfied and k1(x) ≥ 0 with k1(x)
∣∣∣
I

> 0.

Then the system (13) is exponentially stable.
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