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Abstract— We propose a novel approach for solving the
optimal feedback control problem. Following our previous
research, we formulate the problem as a Hamiltonian system
by using the necessary conditions for optimality, and treat
the resultant phase flow as a canonical transformation. Then
starting from the Hamilton-Jacobi equation for generating
functions we derive a set of 1st order quasilinear partial
differential equations with the appropriate initial or terminal
conditions, which forms the well-known Cauchy problem.
These equations can also be derived by applying the invariant
imbedding technique to the two point boundary value problem.
The solution to this Cauchy problem is utilized for solving
the Hamiltonian two point boundary value problem as well
as the optimal feedback control problem with hard and soft
constraint boundary conditions. As suggested by the illustrative
examples given, this method is promising for solving problems
with control constraints, non-smooth control logic, and non-
analytic cost function.
Key Words. Optimal Feedback Control, Hamiltonian
System, Generating Function, Hamilton-Jacobi Equation,
Cauchy Problem

I. INTRODUCTION

Since the mid 1950s, Pontryagin’s minimum principle
and Bellman’s dynamic programming have been two main
branches of modern deterministic optimal control theory.
Between these two, in general, to find the optimal feedback
control for a given system requires that one should resort to
Bellman’s dynamic programming and solve the Hamilton-
Jacobi-Bellman equation (HJBE), which is still a very active
field of research. However, since it is extremely difficult to
find a solution to the HJBE, there have been a myriad of
other creative approaches to finding optimal feedback control
laws. Many representatives can be found in the vast amount
of literature on this topic; various manipulations of 1st
order necessary conditions for optimality [1][2], employment
of state dependent Ricatti equations [3], iterative methods
based on the generalized HJBE [4][5], derivation of a new
governing equation by a special transformation [6], etc.
However, there has not been a noticeably superior candi-
date among these diverse techniques. Furthermore, many of
these methods only apply to one specific type of boundary
conditions or system.

Recently we have studied optimal feedback control prob-
lems in the context of Hamiltonian systems. Motivated by
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Guibout and Scheeres’ work [7], we treated the Hamiltonian
system derived from the necessary conditions for optimal-
ity as a canonical transformation and use the generating
functions to solve the optimal feedback control problem.
Circumventing the final time singularity by the Legendre
transformation, we obtained the optimal solution in feedback
form for the hard constraint problem, a difficult and general
type of boundary condition that has rarely been treated in
feedback sense [8]. Adapting this method, we derived an
optimal control strategy for the nonlinear optimal rendezvous
problem in a central gravity field [9]. Later we found that
a specific kind of generating function contains the general
information needed to evaluate the optimal cost function.
This recognition provided us with an advantage for problems
where both hard and soft constraint boundary conditions are
of interest, as a single generating function is enough to treat
them together and the difficult Hamilton-Jacobi equation
(HJE) need not be solved repetitively [10]. However, despite
these advantages, our method has a restrictive applicability
to problems with control constraints due to the difficulty
of treating the inherent switching structure of the control
which is not known a priori, non-smoothness of the optimal
control strategy and cost function, and the possible existence
of singular control regimes [11].

In an attempt to overcome or mitigate these barriers,
we present a new technique stemming from the generating
function method. With a new set of governing equations
derived from the HJE along with the appropriate boundary
conditions, we show how to use them to solve the optimal
feedback control problem. Unlike our previous approaches
based on generating functions, this method is well suited
for problems with control constraints, and thus of non-
smoothness in the control scheme and cost function in
general.

This document is structured as follows. In section II, we
formulate the optimal control problem as a Hamiltonian
system and review the properties of generating functions as a
solution tool. In section III, from the HJE for the generating
functions we derive a set of new governing equations with the
appropriate boundary conditions, which forms a Hamiltonian
Cauchy problem. We discuss how to solve the Cauchy prob-
lem to obtain the optimal feedback control. Then in section
IV, we apply our method to illustrative examples including
problems with control constraints. Concluding remarks are
given in section V.
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II. OPTIMAL CONTROL PROBLEM FORMULATED AS A

HAMILTONIAN SYSTEM

We consider minimization of the following performance
index

J = φ(x(tf ), tf ) +
∫ tf

t

L(x(τ), u(τ), τ)dτ

subject to the following system with terminal boundary
conditions

ẋ = F (x, u, t) , ψ(x(tf ), tf ) = 0 (1)

Here x ∈ Rn, u ∈ Rm, t ∈ R, φ(x(tf ), tf ) : Rn×R → R,
L(x(τ), u(τ), τ) : Rn × Rm × R → R, F (x(t), u(t), t) :
Rn × Rm × R → Rn, and ψ(x(tf ), tf ) : Rn × R →
Rp≤n. The control u = [u1 u2 · · · um]T is bounded by the
following inequality by component:

|ui| ≤ ui0 = constant

The unconstrained problem can be dealt with by letting
ui0 → ∞, i = 1, 2, · · · ,m.

Given this problem statement, our objective is to find the
optimal feedback control law for a given domain considered
in (x, t) ∈ Rn × R. Then from any initial point, we
can evaluate the optimal trajectory satisfying the terminal
constraints by simple forward integration of the system (1),
updating the control as new state measurements are made.

Instead of resorting to dynamic programming and solving
the Hamilton-Jacobi-Bellman equation (HJBE), we formulate
the given problem as a Hamiltonian system. First define the
pre-Hamiltonian H̄ as

H̄(x, λ, u, t) = L(x, u, t) + λT F (x, u, t) (2)

where λ represents the costates. Then, Pontryagin’s principle
provides the necessary conditions for optimality and defines
a Hamiltonian system for states and costates only [10][12]:

H(x, λ, t) = H̄(x, λ, u∗(x, λ, t), t) (3)

ẋ = Hλ(x, λ, t) (4)

λ̇ = −Hx(x, λ, t) (5)

u∗(x, λ, t) = arg min
ū

H̄(x, λ, ū, t) (6)

As is noted in the problem definition, the initial states
are chosen explicitly on a given domain. For the terminal
condition, suppose we have an explicit condition for ψ:

ψ(x(tf ), tf ) = x(tf ) − xf = 0 (7)

where xf ∈ Rn = constant. Then the terminal states are
completely specified, which forms the hard constraint prob-
lem. Otherwise if ψ(x(tf ), tf ) = 0 is given by an implicit
equation or does not exist, then the following transversality
condition determines the n terminal boundary conditions [12,
section 2]:

λ(tf ) =
∂[φ(x(tf ), tf ) + νT ψ(x(tf ), tf )]

∂x(tf )
(8)

where ν is a Lagrange multiplier vector adjoint to ψ. In the
sense that the terminal states are not directly specified but

indirectly affected by φ and ψ, we call this type of boundary
condition the soft constraint problem1. In either case we
have 2n split boundary conditions equally divided between
the initial and terminal time. Therefore, the optimal control
problem is reduced to a two point boundary value problem
(TPBVP).

There exists diverse numerical techniques for solving this
TPBVP, which usually yield the open loop optimal trajectory.
However, this does not fit into our purpose of obtaining a
feedback control scheme on a given domain. Instead, we
view the Hamiltonian phase flow (x(t), λ(t)) as a trans-
formation between terminal coordinates (x, λ, t) and initial
coordinates (x0, λ0, t0), which is by definition a canonical
transformation2. Then there exist generating functions for
these transformations that can have one of the four classical
forms:

F1(x, x0, t, t0), F2(x, λ0, t, t0) F3(λ, x0, t, t0), F4(λ, λ0, t, t0)

Note that these generating functions are functions of n
initial coordinates and n terminal coordinates. By definition
they satisfy the given boundary value problem and provide
relations between initial and terminal states and costates by
the following relations [13]:

λ =
∂F1(x, x0, t, t0)

∂x
(9)

λ0 = −∂F1(x, x0, t, t0)
∂x0

(10)

0 = H(x, λ, t) +
∂F1(x, x0, t, t0)

∂t
(11)

λ =
∂F2(x, λ0, t, t0)

∂x
(12)

x0 =
∂F2(x, λ0, t, t0)

∂λ0
(13)

0 = H(x, λ, t) +
∂F2(x, λ0, t, t0)

∂t
(14)

x = −∂F3(λ, x0, t, t0)
∂λ

(15)

λ0 = −∂F3(λ, x0, t, t0)
∂x0

(16)

0 = H(x, λ, t) +
∂F3(λ, x0, t, t0)

∂t
(17)

x =
∂F4(λ, λ0, t, t0)

∂λ
(18)

x0 = −∂F4(λ, λ0, t, t0)
∂λ0

(19)

0 = H(x, λ, t) +
∂F4(λ, λ0, t, t0)

∂t
. (20)

As can be seen, the generating functions satisfy a partial
differential equation found by substituting for λ in (11) and
(14), and for x in (17) and (20), which are usually referred
to as the Hamilton-Jacobi (HJ) equation.

A crucial property of the generating functions related to
a given transformation is that they are linked to each other

1Among all possible soft constraint formulations, it is still very difficult
to determine the optimal feedback control for problems with non-trivial ψ
due to the additional Lagrange multiplier ν. Therefore in this paper, we
consider problems where ψ vanishes, thus ν = 0.

2Refer to Greenwood [13], Goldstein [14], and Guibout and Scheeres [7]
for a review of canonical transformations and generating functions.
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via Legendre transformations, which can be represented by
the following identities:

F2(x, λ0, t, t0) = F1(x, x0, t, t0) + λT
0 x0 (21)

F3(λ, x0, t, t0) = F1(x, x0, t, t0) − λT x (22)

F4(λ, λ0, t, t0) = F2(x, λ0, t, t0) − λT x (23)

Among these generating functions, F1 is a special quantity
for the optimal control problem as it provides the optimal
cost function by the following theorem:

Theorem 2.1 (Optimal Cost and Control Law from F1):
Let xf be the (fixed) terminal state at tf and x be the
(moving) initial state at t. Also let F1(xf , x, tf , t) be
a generating function for the given phase flow. Then,
F1 satisfies the necessary conditions of the TPBVP by
definition. Also, the function

V (x, t) = −F1(xf , x, tf , t) + φ(xf , tf )

is the optimal cost function and satisfies the HJB equation
and the sufficient conditions. Furthermore, the optimal feed-
back control can be expressed as

u = arg min
ū

H̄

(
x,

∂V (x, t)
∂x

, ū, t

)
Proof Refer to Park and Scheeres[10].

In our previous works [8][9][10], we have used generating
functions and their Legendre transformations to develop a
systematic methodology to solve a class of optimal control
problems where the performance index and the system are
analytic, and thus expandable as Taylor series. However, as
is observed in [11], though we obtain a consistent result
for problems with control constraints and singular optimal
control problems, the applicability of our solution techniques
is restrained by the unknown switching structure a priori,
non-smoothness of cost function and control scheme, and
possible singularities in the cost function. In an effort to
overcome these difficulties, we derive a new set of equations
from the HJE and employ their solution to obtain the optimal
feedback control, which we detail in the next section.

III. HAMILTONIAN CAUCHY PROBLEM FOR SOLVING

OPTIMAL FEEDBACK CONTROL PROBLEMS

Derivation of Governing Equations

We start from the HJEs for generating functions. First
consider the HJE for F1 in (9) and (11). Regarding x0 and t0
as constants (which is consistent with the definition of F1)
and taking partial differentiation of (11) with respect to x,
we have

∂

∂x

(
∂F1

∂t
+ H

)
= 0

Here note that the Hamiltonian H(x, λ, t) =
H(x, λ(x, x0, t, t0), t) from (9). Using the chain rule
for the Hamiltonian and the exactness property of F1 yields

∂2F1

∂t∂x
+ Hx + Hλ

∂λ

∂x
= 0

Substituting λ = ∂F1/∂x into the first term, we obtain a
system of PDEs for the costate λ:

∂λ

∂t
+

∂λ

∂x
Hλ = −Hx, (24)

which is our new governing equation for the Hamiltonian
system. Also starting from the HJE for F2 in (12) and (14),
taking λ0 and t0 as constants, and following the similar
procedure, yields the same result.

Now we derive a similar equation for the state x from the
HJEs for F3 and F4. From the HJE for F3 in (15) and (17), if
we regard x0 and t0 as constants and take partial derivatives
of (17) with respect to λ, we have

∂

∂λ

(
∂F3

∂t
+ H

)
= 0

Observing that the H(x, λ, t) = H(x(λ, x0, t, t0), λ, t) from
(15) and using the chain rule for the Hamiltonian and the
exactness property of F3 yields

∂2F3

∂t∂λ
+ Hλ + Hx

∂x

∂λ
= 0

Substituting x = −∂F3/∂λ into the first term, we obtain a
system of PDEs for the state x:

∂x

∂t
− ∂x

∂λ
Hx = Hλ, (25)

which is another set of governing equations for the Hamil-
tonian system. Finally starting from the HJE for F4 in (18)
and (20) and following a similar procedure yields the same
result.

Note that (24) and (25) are n simultaneous first order
quasilinear PDEs. In order to solve these equations, we need
to derive at least n initial or terminal conditions to form
an initial value problem (Cauchy problem). We see that the
states x and costates λ in (24) and (25) are simply the same
quantities as those in the Hamiltonian formulation in (3)-(5).
Hence the boundary conditions for (24) and (25) should be
compatible with those of the Hamiltonian system, that is, (7)
and (8). We note that it is the type of boundary conditions
(7) and (8) that determines which equations to use between
(24) and (25), and how to use them to derive the optimal
feedback control.

First we consider the hard constraint boundary condition
(7). As this should be satisfied by the state x in (25) at the
terminal time, we obtain

x(t = tf , λ) = xf (26)

Similarly for the soft constraint boundary condition (8), as
this should be satisfied by (24) at the terminal time, we have

λ(t = tf , x) =
∂[φ(x, tf ) + νT ψ(x), t)]

∂x
(27)

With these terminal conditions (26) and (27), the governing
PDEs (25) and (24), respectively, constitute the initial (or
terminal) value problems, or so called Cauchy problems3.

3Whereas our derivation originates from the Hamiltonian system theory,
one can also derive the same results from the so-called invariant imbedding
method based on characteristic theory of 1st order PDEs. See Meyer [15]
for details.
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Finally note that the solutions to these Cauchy problems
(24,27) and (25,26) are subordinate to generating functions
by the relations (9), (12), (15) and (18); we can obtain the
solutions to the above Cauchy problems simply by partial
differentiations of generating functions, once we find them.
However, as the motivation of this study suggests, it is
very difficult to solve the HJE for a generating function for
problems with control bounds, and thus non-smooth optimal
control logic and cost function. In that case, we can resort
to our new tools (24) and (25).

Generation of Optimal Feedback Control from the Cauchy
Problems

So far we have derived a new set of governing equations
and their associated terminal conditions to form a Cauchy
problem. It remains how to evaluate the optimal feedback
control from these new formulations. We discuss the hard
and soft constraint problem separately.

Suppose we have solved the Cauchy problem (25,26) for
the hard constraint problem. Then we have a solution of the
form x = x(t, λ). Again note that the state x is the same
variable as that of the Hamiltonian formulation (3)-(5); the
initial conditions (x0, λ0) at the arbitrary moment t0 ≤ tf
should be satisfied by the solution to the Cauchy problem.
Then given the (arbitrary) initial state x0, the following
equation should be satisfied:

x(t0, λ0) = x0, (28)

which is an n-tuple of implicit algebraic equation for the
n-tuple of unknowns λ0 = [λ10 λ20 · · ·λn0]T . If we
find a solution λ0 to this equation, we can evaluate the
optimal trajectory by simple forward integration of (4)-(5).
Furthermore solving (28) implicitly for a given domain of
initial state to construct λ0 = λ0(t0, x0), we obtain the
optimal feedback scheme by the optimality condition (6):

u∗(x, λ(t, x), t) = arg min
ū

H̄(x, λ(t, x), ū, t) (29)

Note that we do not solve the Cauchy problem (25,26)
repetitively. Once we find a solution field for the domain
of interest, the optimal feedback scheme can be obtained
algebraically, which provides a substantial advantage over
repetitive solving the TPBVP numerically for each boundary
conditions.

For the soft constraint problem, the situation is more
favorable, as is seen below. Similarly we first solve the
Cauchy problem (24) and (27), which yields the solution
of the form λ = λ(t, x). Then the same arguments conclude
that the following equation should be satisfied:

λ(t0, x0) = λ0, (30)

Here note the difference from the hard constraint problem;
given the initial state x0, λ0 is an explicit function of t0 and
x0, which can be more easily computed in general. Then in
the same way, starting from (x0, λ0), we can evaluate the
optimal trajectory as well as the optimal feedback control.

Finally we conclude this section by claiming that our
method is truly applicable to free final (or initial) time

problems. In this case, the transversality condition for the
free time index [12, section 2]

H(t0) − ∂φ(x(t0), t0)
∂t0

= 0

H(tf ) +
∂φ(x(tf ), tf )

∂tf
= 0

provides the additional algebraic equation for the varying
time index.

Numerical Computation

So far we have shown that our new method is composed
of two steps; first we solve the Cauchy problem (25,26) or
(24,27), and then solve the associated implicit or explicit
algebraic equations (28) or (30) for the hard or soft constraint
problem to derive the optimal feedback control law.

Though the well-posed Cauchy problem is guaranteed to
have a unique solution [15, pages 9-17], it is by no means
easy to solve a system of 1st order quasilinear PDEs numer-
ically for most non-trivial problems. Suppose we consider
one of the traditional finite difference methods, for example.
Then, we are first faced with the obstacle of dimensionality.
If we assign M grids for one spatial dimension and N grids
for the time span of interest, then we need NMn storage
points for a 2n-dimensional Hamiltonian system representing
the necessary conditions for optimality (3)-(5).

For the hard constraint problem, this curse of dimension-
ality becomes even more significant, as we need to solve
the algebraic equations (30) implicitly. In general, we do
not know a priori where in the λ-domain the solutions exist
for the corresponding x-domain of interest. Thus, we need to
solve the Cauchy problem (25,26) for a large enough domain,
in the hope that the solution falls into the estimated domain.
For the soft constraint problem, the problem of estimating
the solution domain can be alleviated, as the expression (30)
becomes an explicit function for x. The initial costate λ0 can
be evaluated by n-dimensional interpolation, which is much
simpler than the case of hard constraint problem.

Despite these difficulties and limitations, note that once
the Cauchy problems are solved, the solutions work as
implicit (or explicit) numerical feedback charts for the hard
(soft) constraint problem. We believe that with such charts
the interpolation process can be done rapidly for relatively
high dimensional problems. In other words, the solution to
the Cauchy problem, the feedback chart, can be real time
implementable for many practical problems.

IV. ILLUSTRATIVE EXAMPLES

Linear Quadratic Soft Constraint Problem

We first consider a 2nd order linear quadratic soft con-
straint problem: minimize

J =
1
2
xT (tf )Qfx(tf ) +

1
2

∫ tf

t0

(xT Qx + uT Ru)dt

subject to the linear system

ẋ = Ax + Bu
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Fig. 1. Loci of Initial Costates and Optimal Control Scheme, x0 =
[0.1 cos θ 0.1 sin θ]T , θ = 0 ∼ 360 , Qf = 1

where the numerical parameters are chosen such that

A =
[

0 1
−1 0

]
, B =

[
0
1

]

Q = 02×2 , R = I1×1 , t0 = 0 , tf = 1

Defining the pre-Hamiltonian as

H̄ =
1
2
(xT Qx + uT Ru) + λT (Ax + Bu)

and using Pontryagin’s principle yields the following Hamil-
tonian system:

H(x, λ, t) =
1
2
xT Qx + λT Ax − 1

2
λT BR−1BT λ

[
ẋ

λ̇

]
=

[
A −BR−1BT

−Q −AT

] [
x
λ

]

u(x, t) = −R−1BT λ(t)

As this is a soft constraint problem, the terminal boundary
condition is determined from the transversality condition (8)
as

λ(tf ) = Qfx(tf )

Now we can set up the Cauchy problem (24,27) as follows:

∂λ

∂t
(t, x) +

∂λ

∂x
(t, x)[Ax − BR−1BT λ] = −(Qx + AT λ)

λ(tf , x) = Qfx

For numerical computation of this Cauchy problem, the
2nd order Lax-Wendroff finite difference scheme is chosen
for this problem4. After solving this Cauchy problem we
can obtain the initial costate from the explicit function
(30), and the optimal feedback control law from (29). For
the illustration of the feedback nature of our method, we
choose a set of initial conditions around the origin with
the radius of r = 0.1, which is parameterized by x0 =
[r cos θ r sin θ]T , θ = 0 ∼ 360degrees. Figure 1 shows
the loci of initial costates and the corresponding optimal
control scheme for the given set of initial conditions with
Qf = 1. It is seen that the numerical solutions consistently
approximate the reference solution, which is provided by the
sweep method in Bryson and Ho [12, pages 148-157] or the
generating function method in [10].

4For a comprehensive discussion of finite difference methods, we cite
[16].

Time Optimal Control of the Double Integrator System

As another example, consider minimizing

J =
∫ tf

t0

dt

subject to the double-integrator system with control con-
straints: [

ẋ1

ẋ2

]
=

[
x2

u

]
, |u| ≤ 1

The initial and terminal boundary conditions are given by[
x1(t0)
x2(t0)

]
=

[
x10

x20

]
,

[
x1(tf )
x2(tf )

]
=

[
0
0

]

Here for convenience, we fix the terminal time tf = 0 and
vary the initial time t0, which does not change the intrinsic
property of the problem. Then, defining the pre-Hamiltonian
as

H̄(x, λ, u, t) = 1 + λ1x2 + λ2u

and using the Pontryagin’s principle yields the following
necessary conditions for optimality with the transversality
condition for free initial time:

H = 1 + λ1x2 − |λ2|
ẋ1 = x2 x1(t0) = x10 x1(tf ) = 0
ẋ2 = −sign(λ2) x2(t0) = x20 x2(tf ) = 0
λ̇1 = 0
λ̇2 = −λ1

u = −sign(λ2)
H(t0) = 1 + λ1(t0)x2(t0) − |λ2(t0)| = 0

From the transversality condition, we can show that there
does not exist singular intervals and that the optimal control
should be u = ±1 [11]. The Cauchy problem (25,26) for
this hard constraint problem can be written as[

∂x1
∂t

∂x2
∂t

]
+

[
∂x1
∂λ1

∂x1
∂λ2

∂x2
∂λ1

∂x2
∂λ2

] [
0

−λ1

]
=

[
x2

−sign(λ2)

]

[x1(tf , λ) x2(tf , λ)]T = [ 0 0 ]T ,

which can be solved numerically. In fact, this problem can be
used to show that the solution to the above Cauchy problem
can be derived from the associated generating functions,
which has been computed in [11]. For example, starting from
F2 generating function, we can obtain the initial state x0 as
a function of terminal state xf and initial costate λ0

5:

F2(xf , λ0, t) =
±λ2

20 − 2λ20 ∓ 1
2λ10

∓ x2f + x1fλ10

∓x2
2fλ10

2
, (u = ∓1 → ±1)

5For the effective domain for each case of the solution, see [11].
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Fig. 2. The Solution to the the Cauchy Problem (xf = 0)
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x10 =
∂F2

∂λ10
= x1f ∓ 1

2
x2

2f +
∓λ2

20 + 2λ20 ± 1
2λ2

10

x20 =
∂F2

∂λ20
=

±λ20 − 1
λ10

Imposing the given terminal boundary condition at the origin,
i.e., (x1f , x2f ) = (0, 0), and removing the subscript 0 to
represent the moving initial conditions, we have

(x1, x2) =
(∓λ2

2 + 2λ2 ± 1
2λ2

1

,
±λ2 − 1

λ1

)

Simply by direct substitution, we can easily show that this
expression satisfies the above Cauchy problem.

Now suppose that we have found this solution numerically
from the Cauchy problem (25,26). Then fixing the initial
states into the desired ones (x1, x2) = (x10, x20), we can
find the loci of initial costates from each component of the
solution in the λ1λ2-domain. The whole procedure can be
shown graphically with ease. We first draw plots for x1 =
x1(λ1, λ2) and x2 = x2(λ1, λ2) (Figure 2). Then for the
desired initial states, we construct the contours for each plot,
as in Figure 2 where the contours are drawn for x1 = 0 ∼ 1
and x2 = 1 ∼ 2, respectively. Imposing these two contours
together in the λ1λ2-plane, we can find the initial costates
for the given initial states by choosing the intersection of
these two contours (Figure 3). Then, the optimal feedback
control law can be determined from the optimality condition
u = −sign(λ2).

V. CONCLUSION

We have presented a new method for solving the optimal
feedback control problem. Formulating the optimal control

problem as a Hamiltonian system, we have derived new
governing PDEs with their associated boundary conditions
and formed Cauchy problems. Then it has been shown how
the solutions to the Cauchy problems can be used for solving
both hard and soft constraint problems. Though the new
equations have been derived from the HJEs for generating
functions, they can be used independently. Furthermore, they
can compensate for the limited applicability of generating
functions for some problems with non-smooth control logic
and cost function.

In the future we will further research how to recover
the generating functions from the solutions to the Cauchy
problems. Also, we are exploring the relations between the
solutions to the hard and soft constraint problem and trying
to find a method to recover one solution from the other, as
can be done in our generating function method.

ACKNOWLEDGEMENT

This research is supported by National Science Foundation
Grant CMS 0408542. We acknowledge fruitful discussions
with Prof. Philip Roe concerning numerical solutions of
Cauchy problems.

REFERENCES

[1] D. L. Lukes. Optimal regulation of nonlinear dynamical systems. Siam
Journal on Control, 7(1):75–100, 1966.

[2] T Yoshida and K. A. Loparo. Quadratic regulatory theory for analytic
non-linear systems with additive controls. Automatica, 25(4):531–544,
1989.

[3] J. R. Cloutier. State-dependent Riccati equation techniques: An
overview. In Proceedings of the American Control Conference, pages
932–936, 1997. Alberquerque, NM.

[4] G. N. Saridis and G. L. Chun-Sing. An approximation theory of
optimal control for trainable manipulators. IEEE Transactions on
Systems, Man, and Cybernetics, 9(3):152–159, 1979.

[5] R. Beard, G. Saridis, and J. Wen. Galerkin approximation of the Gener-
alized Hamilton-Jacobi-Bellman equation. Automatica, 33(12):2159–
2177, 1997.

[6] J. A. Fax and R. M. Murray. Finite-horizon optimal control and
stabilization of time-scalable systems. In Proceedings of the 39st IEEE
Conference on Decision and Control, pages 748–753, 2000. Sydney,
Australia.

[7] V. Guibout and D. J. Scheeres. Solving relative two point boundary
value problems: Applications to spacecraft formation flight transfers.
Journal of Guidance, Control, and Dynamics, 27(4):693–704, 2004.

[8] C. Park and D. J. Scheeres. Solutions of optimal feedback control
problem using hamiltonian dynamics and generating functions. In
IEEE conference on Decision and Control, pages 1222–1227, 2003.
Maui, Hawaii.

[9] C. Park, V Guibout, and D. J. Scheeres. Solving optimal continuous
thrust rendezvous problems with generating functions. Journal of
Guidance, Control, and Dynamics, accepted.

[10] C. Park and D. J. Scheeres. Solutions of optimal feedback control
problem with general boundary conditions using hamiltonian dynamics
and generating functions. Automatica, submitted.

[11] C. Park and D. J. Scheeres. Extended applications of generating
functions to optimal feedback control problems. In Proceedings of
the American Control Conference, pages 852–857, 2005. Portland,
Oregon.

[12] A. E. Bryson and Y. Ho. Applied Optimal Control. Hemisphere
Publishing Corp., London, 1975.

[13] D. T. Greenwood. Classical Dynamics. Prentice-Hall, Inc., Englewood
Cliffs, N. J., 1977.

[14] H. Goldstein. Classical Mechanics. Addision-Wesley, 1965.
[15] G. H. Meyer. Initial Value Methods for Boundary Value Problems.

New York, N.Y., 1973.
[16] J. W. Thomas. Numerical Partial Differential Equations: Finite

Difference Methods. Springer Verlag, New York, New York, 1995.

2798


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




