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Abstract— In this paper, we consider the generalized Lya-
punov stability analysis for a discrete-time system described by
a high order difference-algebraic equation. In the behavioral
approach, a Lyapunov function is characterized in terms of
a quadratic difference form. As a main result, we derive a
generalized Lyapunov stability theorem that the asymptotic
stability of a behavior is equivalent to the solvability of the
two-variable polynomial Lyapunov equation (TVPLE) whose
solution induces the Lyapunov function. Moreover, we derive
another asymptotic stability condition by using a polynomial
matrix solution of the one-variable dipolynomial Lyapunov
equation which is reduced from the TVPLE.

I. INTRODUCTION

The Lyapunov stability theory plays an important role in

the stability analysis of a dynamical system. In this paper,

we consider the generalized Lyapunov stability analysis for

a linear discrete-time (time-invariant) system represented by

a high order difference-algebraic equation as an extension of

the traditional Lyapunov stability theorem based on the state

space representation.

In the behavioral approach, a quadratic differential/dif-

ference form (QDF) is used for describing a quadratic func-

tional such as a storage function, supply rate and Lyapunov

function which play important roles in the dissipativity and

stability theory [4][9]. Since there is an one-to-one corre-

spondence between a QDF and a two-variable polynomial

matrix, a QDF is useful as an algebraic tool.

Willems and Trentelman [9] derived a generalized Lya-

punov stability theorem for the continuous-time system based

on QDFs. In their theorem, a Lyapunov function is con-

structed using the solution of the (one-variable) polynomial

Lyapunov equation (PLE) obtained from the two-variable

polynomial equation which is referred to as the two-variable

polynomial Lyapunov equation (TVPLE) in this paper. Based

on the theorem in [9], Kaneko and Fujii [3], Cotroneo

and Willems [1] derived asymptotic stability conditions in

terms of linear matrix inequalities obtained from the TVPLE.

Moreover, Peeters and Rapisarda [6] have developed an

algorithm to solve the PLE by a symbolic computation based

on the Faddeev’s method.

In the discrete-time system, a generalized Lyapunov sta-

bility analysis based on a QDF has never been studied so

far. The purpose of this paper is to prove the generalized

Lyapunov stability theorem for discrete-time systems. In

the discrete-time case, the equation corresponding to the
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continuous-time PLE becomes by the dipolynomial Lya-

punov equation (DLE). Since the DLE allows negative power

terms, it is not useful to reduce the proof using the DLE.

Thus, we complete the proof only based on the TVPLE.

Moreover, we show how the conditions of the theorem can be

rewritten using the polynomial matrix solution of the DLE.

We give the notations used in this paper in the following.

Rq×q
s : the set of q × q real symmetric matrices

R[ξ]: the set of polynomials with coefficients in R

Rp×q[ξ]: the set of p× q polynomial matrices in the indeter-

minate ξ
Rp×q[ζ, η]: the set of p × q polynomial matrices in the

indeterminates ζ and η
R

q×q
s [ζ, η]: the set of q × q real symmetric polynomial

matrices in the indeterminates ζ and η
R[ξ−1, ξ]: the set of dipolynomials in the indeterminate ξ
R

p×q[ξ−1, ξ] : the set of p× q dipolynomial matrices in the

indeterminate ξ
WT: the set of maps from T to W

R(ξ)∼ := R(ξ−1)�

diag
[
a1 a2 · · · aq

]
: q×q (block) diagonal matrix with

(block) diagonal elements {a1, a2, · · · , aq}
rankR : the rank of polynomial matrix R(ξ)
rankR(λ) : the rank of constant matrix R(λ)

II. PRELIMINARIES

In this section, we will review the basic definitions and

results from the behavioral system theory.

A. Linear discrete-time system

In the behavioral system theory, a dynamical system is

defined as a triple Σ = (T, W, B), where T is the time axis,

and W is the signal space in which the trajectories take their

values on. The behavior B ⊆ WT is the set of all possible

trajectories. In this paper, we will consider a linear time-

invariant discrete-time system whose time axis is T = Z

and signal space is W = Rq . Such a Σ is represented by a

system of linear difference-algebraic equation as

R0w(t) + R1w(t + 1) + · · · + RLw(t + L) = 0 (1)

where Ri ∈ R•×q (i = 0, 1, · · · , q) and L ≥ 0. The variable

w ∈ (Rq)Z is called the manifest variable. We call the

representation of (1) a kernel representation of B. A short

hand notation for (1) is

R(σ)w = 0,

where R(ξ) := R0 + R1ξ + · · ·+ RLξL ∈ R•×q[ξ]. The op-

erator σ is the shift operator defined by (σw)(t) := w(t + 1)
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and (σT w)(t) := w(t+T ) for all T ∈ Z. Then, the behavior

is given by

B =
{

w ∈ (Rq)Z
∣∣ R(σ)w = 0

}
. (2)

Consider another representation with an auxiliary variable

described by

A(σ)� = 0, w = C(σ)�, (3)

where A ∈ Rm×m[ξ], C ∈ Rp×m[ξ] and � ∈ (Rm)Z is

an auxiliary variable called latent variable. This is called a

latent variable representation of B if

B =
{
w ∈ (Rq)Z

∣∣ ∃ � ∈ (Rm)Z such that (3) holds.
}

.

A latent variable representation of B is called observable
if A(σ)� = 0 and w = C(σ)� = 0 imply � = 0. The

representation (3) is observable if and only if the constant

matrix
[
A(λ) C(λ)

]�
is of full column rank for all λ ∈ C.

If this is the case, we call the pair (A(ξ), C(ξ)) observable.

B. Quadratic difference form

Consider a two-variable polynomial matrix in Rq×q
s [ζ, η]

described by

Φ(ζ, η) =

N∑
i=0

N∑
j=0

Φijζ
iηj ,

where Φij ∈ Rq×q (i, j = 0, 1, · · · , N), N ≥ 0 and

Φ(ζ, η)� = Φ(η, ζ). This Φ(ζ, η) induces a quadratic dif-

ference form (QDF)

QΦ : (Rq)
Z
→ R

Z, QΦ(�)(t) :=

N∑
i=0

N∑
j=0

�(t+i)�Φij�(t+j).

This means that ζ and η correspond to the shift operations

on �(t)� and �(t), respectively. The rate of change of

the QDF QΦ(�)(t), i. e. ∇QΦ(�)(t) = QΦ(�)(t + 1) −
QΦ(�)(t) is also a QDF. Let ∇Φ ∈ Rq×q

s [ζ, η] denote the

two-variable polynomial matrix which induces ∇QΦ(�)(t),
namely ∇QΦ(�)(t) = Q∇Φ(�)(t). Then, it is given by

∇Φ(ζ, η) = (ζη − 1)Φ(ζ, η).
A two-variable polynomial matrix Φ ∈ Rq×q

s [ζ, η] is called

nonnegative definite, denoted by Φ ≥ 0, if QΦ(�)(t) ≥ 0 for

all � ∈ (Rq)Z and t ∈ Z. If Φ ≥ 0, and if QΦ(�) = 0 implies

� = 0, then Φ(ζ, η) is said to be positive definite, denoted

by Φ > 0. We have Φ ≥ 0 if and only if Φ(ζ, η) is factored

as Φ(ζ, η) = D(ζ)�D(η) for some D ∈ R•×q[ξ].
The mapping ∂ associates a two-variable polynomial ma-

trix and a dipolynomial matrix by

∂ : R
p×q[ζ, η] → R

p×q[ξ−1, ξ], ∂Φ(ξ) := Φ(ξ−1, ξ).

Proposition 1: [4] Let Φ ∈ Rq×q
s [ζ, η] be given. Then, the

following statements are equivalent.

(i) There exists a two-variable polynomial matrix Ψ ∈
Rq×q

s [ζ, η] satisfying ∇Ψ(ζ, η) = Φ(ζ, η), or equiv-

alently ∇QΨ(�)(t) = QΦ(�)(t) for all t ∈ Z and

� ∈ (Rq)Z.

(ii) ∂Φ(ξ) = 0 holds for all ξ ∈ C\{0}.

A two-variable polynomial matrix Φ ∈ R
q×q
s [ζ, η] is called

nonnegative definite along B, if QΦ(w)(t) ≥ 0 for all w ∈

B and t ∈ Z. We denote this by Φ
B

≥ 0. Moreover, if Φ
B

≥ 0
and {QΦ(w) = 0 =⇒ w = 0}, we call Φ(ζ, η) is positive

definite along B, denoted Φ
B

> 0.

C. B-equivalence of polynomial matrices

We introduce the notion of B-equivalence of polynomial

matrices.

Definition 1: [9]

(i) Polynomial matrices D1 ∈ Rp×q[ξ] and D2 ∈ Rp×q[ξ]
are B-equivalent if D1(σ)w = D2(σ)w for all w ∈ B

and t ∈ Z. We denote this by D1
B
= D2.

(ii) Two-variable polynomial matrices Φ1 ∈ R
q×q
s [ζ, η]

and Φ2 ∈ Rq×q
s [ζ, η] are B-equivalent if QΦ1

(w) =
QΦ2

(w) for all w ∈ B and t ∈ Z. We denote this by

Φ1
B
= Φ2.

The B-equivalence is characterized by R ∈ Rp×q[ξ] which

induces the kernel representation of B.

Proposition 2: [9]

(i) D1
B
= D2 if and only if there exists an F ∈ Rp×p[ξ]

satisfying D1(ξ) − D2(ξ) = F (ξ)R(ξ).

(ii) Φ1
B
= Φ2 if and only if there exists a G ∈ Rp×q[ζ, η]

satisfying

Φ2(ζ, η) = Φ1(ζ, η) + R(ζ)�G(ζ, η) + G(η, ζ)�R(η).
The next proposition gives a necessary and sufficient

condition for the nonnegative definiteness of Φ(ζ, η) along

B.

Proposition 3: [9] Let Φ ∈ Rq×q
s [ζ, η] be given.

(i) Φ
B

≥ 0 if and only if there exist Φ′ ∈ Rq×q
s [ζ, η]

and D ∈ R•×q[ξ] satisfying Φ
B
= Φ′ and Φ′(ζ, η) =

D(ζ)�D(η).

(ii) Φ
B

> 0 if and only if there exist Φ′ ∈ Rq×q
s [ζ, η]

and D ∈ R•×q[ξ] satisfying Φ
B
= Φ′ and Φ′(ζ, η) =

D(ζ)�D(η) with (R(ξ), D(ξ)) observable.

D. R-canonical polynomial matrices

In this section, we restrict our attention to the case where

a kernel representation of B is induced by a nonsingular

square matrix R ∈ Rq×q[ξ]. We define the R-canonicity of

polynomial matrices in the following.

Definition 2: [9]

(i) A polynomial matrix D ∈ R•×q[ξ] is called R-

canonical if D(ξ)R(ξ)−1 is strictly proper.

(ii) A two-variable polynomial matrix Φ ∈ Rq×q
s [ζ, η] is

called R-canonical if R(ζ)−�Φ(ζ, η)R(η)−1 is strictly

proper.

The next lemma ensures the uniqueness of an R-canonical

polynomial matrix up to B-equivalent polynomial matrices.

Lemma 1: [9] For any Φ ∈ Rq×q
s [ζ, η], there exists a

unique R-canonical Φ′ ∈ Rq×q
s [ζ, η] which is B-equivalent

to Φ(ζ, η).
Proposition 4: [9] Let Φ ∈ Rq×q

s [ζ, η] be R-canonical.

Then, the following statements hold.
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(i) Φ
B

≥ 0 if and only if Φ ≥ 0.

(ii) Φ
B

> 0 if and only if there exists a D ∈ R•×q[ξ]
satisfying Φ(ζ, η) = D(ζ)�D(η) with (R(ξ), D(ξ))
observable. Such a D(ξ) is R-canonical.

III. GENERALIZED LYAPUNOV STABILITY THEOREM

In this section, we give the generalized Lyapunov stability

theorem based on QDFs. Suppose that a system is given

by Σ = (Z, Rq, B) in the following. We first define the

asymptotic stability of behavior.

Definition 3: [9]

(i) A behavior B is said to be autonomous if w1, w2 ∈ B

and w1(t) = w2(t) (t < 0) imply w1 = w2.

(ii) A behavior B is said to be asymptotically stable if w ∈
B implies limt→∞ w(t) = 0.

The autonomy of B is a necessary condition for the asymp-

totic stability of B.

Suppose that a polynomial matrix R ∈ Rp×q[ξ] induces

a kernel representation of B. A polynomial matrix R(ξ) is

called Schur if rankR = q and rankR(λ) = q for all λ ∈ C

such that |λ| ≥ 1. The behavior B in (2) is autonomous if and

only if rankR = q [8]. We give a necessary and sufficient

condition for the asymptotic stability of the behavior which

is a well-known fact.

Lemma 2: [5] The behavior B in (2) is asymptotically

stable if and only if R(ξ) is Schur.

By Proposition 3 (ii) and Lemma 2, we obtain Lemma 3

which gives a sufficient condition for the asymptotic stability

of B.

Lemma 3: The behavior B is asymptotically stable if

there exists a two-variable polynomial matrix Ψ ∈ R
q×q
s [ζ, η]

satisfying Ψ
B

≥ 0 and ∇Ψ
B

< 0.

Proof: The proof is omitted because the lemma can be

proved in the same way as the continuous-time case [9].

The QDF QΨ(w) satisfying the conditions of Lemma 3 is

called a Lyapunov function for B.

In order to derive a necessary condition, we will see how

to construct a Lyapunov function under the assumption of

the asymptotic stability of B.

Assume that B is asymptotically stable. Let Φ ∈
R

q×q
s [ζ, η] be an arbitrary two-variable polynomial matrix

satisfying Φ
B

< 0. Consider the two-variable polynomial

matrix equation with unknown matrices Ψ ∈ Rq×q
s [ζ, η] and

Y ∈ Rp×q[ζ, η]

∇Ψ(ζ, η) = Φ(ζ, η)− Y (η, ζ)�R(η)−R(ζ)�Y (ζ, η). (4)

We refer to this equation as the two-variable polynomial
Lyapunov equation (TVPLE). From Propositions 2 (ii) and

3, there holds

∇Ψ
B
= Φ

B

< 0 (5)

for Ψ(ζ, η) and Y (ζ, η) satisfying the TVPLE (4). If there

exists a solution of (4) satisfying Ψ
B

≥ 0, then such a Ψ(ζ, η)
induces a Lyapunov function for B.

Lemma 4: Assume that B is asymptotically stable. Let

Φ ∈ Rq×q
s [ζ, η] be an arbitrary two-variable polynomial

matrix satisfying Φ
B

< 0. Then, there exist Ψ ∈ Rq×q
s [ζ, η]

and Y (ζ, η) ∈ R
p×q[ζ, η] satisfying the TVPLE (4). In this

case, we have Ψ
B

≥ 0.

Proof: We first show the solvability of the TVPLE (4).

Without loss of generality, we assume that R(ξ) is in the

Smith form, i.e. R(ξ) = diag
[
r1(ξ) r2(ξ) · · · rq(ξ)

]
,

where ri ∈ R[ξ] (i = 1, 2, · · · , q). Then, the TVPLE (4)

reduces to q2 scalar equations

(ζη − 1)ψij(ζ, η)
= φij(ζ, η) − yji(η, ζ)rj(η) − ri(ζ)yij(ζ, η)

(6)

for i, j = 1, 2, · · · , q, where ψij , φij , yij ∈ R[ζ, η] are the

(i, j)-th elements of Ψ(ζ, η), Φ(ζ, η) and Y (ζ, η), respec-

tively. Thus, we have only to prove the existence of ψij(ζ, η),
yij(ζ, η) and yji(η, ζ) satisfying (6). The asymptotic stability

of B and Lemma 2 imply that R(ξ) is Schur, i.e. both ri(ξ)
and rj(ξ) are Schur. Thus, ri(ζ), rj(η) and ζη − 1 have no

common zeros when viewed as two-variable polynomials.

It follows from Lemma A that there exist two-variable

polynomials ψ̂ij(ζ, η), ŷij(ζ, η) and ŷji(η, ζ) satisfying

ψ̂ij(ζ, η)(ζη − 1) + ŷij(ζ, η)ri(ζ) + ŷji(η, ζ)rj(η) = 1.

By multiplying this by φij(ζ, η), we see that ψij(ζ, η) :=
φij(ζ, η)ψ̂ij(ζ, η), yij(ζ, η) := φij(ζ, η)ŷij(ζ, η) and

yji(η, ζ) := φij(ζ, η)ŷji(η, ζ) satisfies (6).

Next, we show Ψ
B

≥ 0. The equation (5) is equivalent to

QΨ(w)(t + 1) − QΨ(w)(t) = QΦ(w)(t). Summing this up

from t = 0 to t = T yields

QΨ(w)(T + 1) − QΨ(w)(0) =

T∑
t=0

QΦ(w)(t).

Taking T → ∞ in the above equation, we obtain

QΨ(w)(0) = −
∑∞

t=0 QΦ(w)(t) from the asymptotic stabil-

ity of B. Together with Φ
B

< 0, this implies QΨ(w)(0) ≥ 0.

There holds Ψ
B

≥ 0, since w ∈ B is arbitrary. This completes

the proof

We obtain the next theorem as a main result of this paper

from Proposition 2 and Lemmas 3, 4.

Theorem 1: Let Φ ∈ Rq×q
s [ζ, η] be an arbitrary two-

variable polynomial matrix satisfying Φ
B

< 0. Then, the

following statements are equivalent.

(i) The behavior B is asymptotically stable.

(ii) There exists a two-variable polynomial matrix Ψ ∈
Rq×q

s [ζ, η] satisfying

Ψ
B

≥ 0 and ∇Ψ
B

< 0. (7)

(iii) There exists a two-variable polynomial matrix Ψ ∈

R
q×q
s [ζ, η] satisfying (5) and Ψ

B

≥ 0.

(iv) There exist two-variable polynomial matrices Ψ ∈
Rq×q

s [ζ, η] and Y ∈ Rp×q[ζ, η] satisfying the TVPLE

(4) and Ψ
B

≥ 0.

In the remainder of this section, we derive a necessary

and sufficient condition for the asymptotic stability of B in
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terms of the R-canonical solution of the TVPLE (4) based

on Theorem 1.

Suppose that a kernel representation of B is induced by the

nonsingular square polynomial matrix R ∈ R
q×q[ξ]. More-

over, we assume that the two-variable polynomial matrix

Φ
B

< 0 is R-canonical.

By Theorem 1 (i)⇔(iii), B is asymptotically stable if

and only if there exists Ψ
B

≥ 0 satisfying (5). For this

Ψ(ζ, η), there exists an R-canonical Ψ′ ∈ Rq×q
s [ζ, η] such

that Ψ′ B
= Ψ. It thus follows from Proposition 2 (ii) that B

is asymptotically stable if and only if there exist a Ψ′
B

≥ 0
and a Y ′ ∈ Rq×q[ζ, η] satisfying the TVPLE

∇Ψ′(ζ, η) = Φ(ζ, η) − Y ′(η, ζ)�R(η) − R(ζ)�Y ′(ζ, η).
(8)

Pre- and post-multiplying (8) by R(ζ)−� and R(η)−1 yield

(ζη − 1)R(ζ)−�Ψ′(ζ, η)R(η)−1

=R(ζ)−�Φ(ζ, η)R(η)−1 − R(ζ)−�Y ′(η, ζ)�

− Y ′(ζ, η)R(η)−1.

Since the first term on the right-hand side is strictly proper

in the sense of two-variable rational matrices, Ψ′(ζ, η) is R-

canonical, namely the left-hand side is proper, if and only if

Y ′(ζ, η)R(η)−1 is proper. The latter condition is equivalent

to the existence of a one-variable polynomial matrix X ′ ∈
XR such that X ′(η) = Y ′(ζ, η), where the set XR is defined

by

XR =
{
X ∈ R

q×q[ξ]
∣∣X(ξ)R(ξ)−1 : proper

}
. (9)

Hence, the TVPLE (8) is reduced to the TVPLE

∇Ψ′(ζ, η) = Φ(ζ, η) − X ′(ζ)�R(η) − R(ζ)�X ′(η) (10)

with the unknown matrices Ψ′ ∈ Rq×q
s [ζ, η] and X ′ ∈ XR.

Moreover, since Ψ′(ζ, η) is R-canonical, Ψ′
B

≥ 0 if and only

if Ψ′ ≥ 0 from Proposition 4 (i).

As a result, we obtain the following corollary.

Corollary 1: Let Φ ∈ Rq×q
s [ζ, η] be an arbitrary R-

canonical two-variable polynomial matrix satisfying Φ
B

< 0.

Then, the behavior B in (2) is asymptotically stable if and

only if there exist an R-canonical Ψ′ ∈ Rq×q
s [ζ, η] and

X ′ ∈ Rq×q[ξ] satisfying the TVPLE (10) and Ψ′ ≥ 0.

Moreover, for Ψ′(ζ, η) and X ′(η) satisfying (10), Ψ′(ζ, η)
is R-canonical if and only if X ′ ∈ XR.

In the next example, we explain that Corollary 1 is the

generalization of Lyapunov stability theorem based on the

state space equation.

Example 1: Consider the behavior B described by the

state space equation

w(t + 1) = Aw(t). (11)

Define R(ξ) = A−ξIq and Φ(ζ, η) = Φ0 = −D�
0 D0, where

(A, D0) is observable in the sense of state space system. This

is equivalent to the observability of (R(ξ), D0) in the sense

of the definition in section II-A. In the following, we show

that the TVPLE (10) is solvable if and only if so is the

state-space Lyapunov equation.

Assume that there exist an R-canonical Ψ′ ≥ 0 and

X ′ ∈ XR satisfying the TVPLE (8). Since R(ξ) = A− ξIq ,

from Lemma 6.3-10 of [2], Ψ′(ζ, η) and X ′(η) are a constant

symmetric matrix Ψ0 ∈ Rq×q
s and a polynomial matrix

with degree less than one, denoted as X ′(η) = X0 + X1η,

X0, X1 ∈ Rq×q , respectively. Substituting these into (8)

yields

0 =∇Ψ′(ζ, η) − Φ(ζ, η) + X ′(ζ)�R(η) + R(ζ)�X ′(η)

=ζη
(
Ψ0 − X�

1 − X1

)
+ ζ

(
X�

1 A − X0

)
+ η

(
A�X1 − X�

0

)
−

(
Ψ0 + Φ0 − X�

0 A − A�X0

)
.

Comparing the coefficients in the above equation, there holds

Ψ0 − X�

1 − X1 = 0, X�

1 A − X0 = 0 (12)

Ψ0 + Φ0 − X�

0 A − A�X0 = 0. (13)

All pairs (X0,X1) satisfying (12) are parametrized by X0 =
Ψ0A/2 + GA and X1 = Ψ0/2 − G, respectively, where

G ∈ Rq×q is an arbitrary skew symmetric matrix. Hence,

we have X ′(η) = Ψ0 (ηIq + A) /2 + GR(η). Substituting

X0 into (13), we see that Ψ0 must satisfy the well-known

Lyapunov equation

A�Ψ0A − Ψ0 = Φ0. (14)

The positive definiteness of Ψ0 follows from the observabil-

ity of (R(ξ), D0).
Conversely, if Ψ0 is the positive definite solution of (14),

it is not difficult to see that Ψ′(ζ, η) := Ψ0 and X ′(η) :=
Ψ0(ηIq + A)/2 satisfy the TVPLE (8) by tracing back the

above calculation.

Consequently, the equivalence of the solvabilities of the

TVPLE (8) and the Lyapunov equation (14) has been proved.

It is well-known that the system described by (11)

is asymptotically stable if and only if (14) has a positive

definite solution [10]. Therefore, the above discussion shows

that Corollary 1 includes the Lyapunov stability theorem

based on the state space equation as the special case.

IV. DIPOLYNOMIAL LYAPUNOV EQUATION

In Section III, we have seen that a necessary and sufficient

condition for the asymptotic stability of B is characterized

in terms of the TVPLE (4). On the other hand, in the

continuous-time case, the asymptotic stability condition is

derived using the one-variable PLE as well as the TVPLE (4).

In this section, we will consider the discrete-time counterpart

of the results on the continuous-time PLE.

Again, let Φ
B

< 0 be an arbitrary two-variable polynomial

matrix. By Proposition 1, the TVPLE (4) is equivalent to the

dipolynomial Lyapunov equation (DLE)

R(ξ)∼X(ξ) + X(ξ)∼R(ξ) = ∂Φ(ξ), (15)

where X ∈ Rp×q[ξ−1, ξ] is the unknown dipolynomial

polynomial matrix. For the solution X(ξ) to the DLE (15),
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let Y ∈ R
p×q[ζ, η] satisfy ∂Y (ξ) = X(ξ). Then, we can

compute a Lyapunov function for B by substituting Y (ζ, η)
into the TVPLE (4).

Lemma 5: Assume that B in (2) is asymptotically stable.

Let Φ ∈ Rq×q
s [ζ, η] be an arbitrary two-variable polynomial

matrix satisfying Φ
B

< 0. Then, the following statements hold

from Corollary 1 and Lemmas 5, 6.

(i) The DLE (15) has a solution.

(ii) Let X0 ∈ Rp×q[ξ−1, ξ] be one solution of the DLE (15).

Then, all solutions of the DLE (15) are parametrized by

X(ξ) = X0(ξ) + F (ξ)R(ξ),

where F ∈ Rp×p[ξ−1, ξ] is the free parameter satisfying

F (ξ)∼ = −F (ξ).
(iii) Let Y ∈ Rp×q[ζ, η] be such that ∂Y (ξ) = X(ξ) for

X ∈ Rp×q[ξ−1, ξ] satisfying the DLE (15). Then, a

Lyapunov function for B is induced by

Ψ(ζ, η) =
Φ(ζ, η) − Y (η, ζ)�R(η) − R(ζ)�Y (ζ, η)

ζη − 1
.

(16)

(iv) Let Xi ∈ Rp×q[ξ−1, ξ] (i = 1, 2) be solutions of the

DLE (15). Let Ψi ∈ R
q×q
s [ζ, η] be computed from (16)

for Xi(ξ). Then, we have

Ψ1
B
= Ψ2.

Proof: (i) There exists a Y (ζ, η) satisfying TVPLE (4)

from Lemma 4. By taking X(ξ) = ∂Y (ξ) for this Y (ζ, η),
X(ξ) satisfies the DLE (15).

(ii) Define X̄(ξ) := X(ξ) − X0(ξ). Then, we obtain

R(ξ)∼X̄(ξ) + X̄(ξ)∼R(ξ) = 0. Using R(ξ) in the Smith

form as in the proof of Lemma 4, the (i, j)-th element of

this equation is written by

ri(ξ
−1)x̄ij(ξ) + x̄ji(ξ

−1)rj(ξ) = 0, (17)

where x̄ij ∈ R[ξ−1, ξ] is the (i, j)-th element of X̄(ξ).
Multiplying this equation by ξdeg ri(ξ), we get

ξdeg ri(ξ)ri(ξ
−1)x̄ij(ξ) = −ξdeg ri(ξ)x̄ji(ξ

−1)rj(ξ).

Since rj(ξ) and ξdeg ri(ξ)ri(ξ
−1) have no common zeros,

there exists fij ∈ R[ξ−1, ξ] satisfying

x̄ij(ξ) = fij(ξ)rj(ξ). (18)

By rewriting (18) in terms of a matrix, we have X̄(ξ) =
R(ξ)F (ξ).

Next, we show F (ξ)∼ = −F (ξ). Substituting (18) into

(17) yields ri(ξ
−1)

{
fji(ξ

−1) + fij(ξ)
}

rj(ξ) = 0. Since

ri(ξ
−1), rj(ξ) 
= 0, we have fji(ξ

−1) + fij(ξ) = 0. This

is equivalent to F (ξ)∼ + F (ξ) = 0.

(iii) The proof is clear from Lemma 4.

(iv) It follows from (16) that ∇Ψ1
B
= ∇Ψ2. Then, we have

0 =

T−1∑
t=0

∇QΨ1
(w)(t) −

T−1∑
t=0

∇QΨ2
(w)(t)

= Q(Ψ1−Ψ2)(w)(T ) − Q(Ψ1−Ψ2)(w)(0) (19)

for all w ∈ B and T ∈ Z. Since B is asymptotically stable,

we have lim
T→∞

Q(Ψ1−Ψ2)(w)(T ) = 0. Hence, taking T → ∞

in (19) yields Q(Ψ1−Ψ2)(w)(0) = 0. By substituting this into

(19), we get Q(Ψ1−Ψ2)(w)(T ) = 0 for all w ∈ B and T ∈ Z.

This implies Ψ1 − Ψ2
B
= 0.

Remark 1: Since the solution X(ξ) of the DLE (15) is not

unique from Lemma 5 (ii), Ψ(ζ, η) in (16) is not unique. In

contrast, Lemma 5 (iv) shows that the Lyapunov functions

QΨ(w) is unique over B for Φ(ζ, η) independently of X(ξ).
We derive a necessary and sufficient DLE condition for the

asymptotic stability of B based on Corollary 1. Suppose that

a kernel representation of B is induced by the nonsingular

square polynomial matrix R ∈ Rq×q[ξ]. Moreover, we

assume that the two-variable polynomial matrix Φ
B

< 0 is

R-canonical. Substituting ζ = ξ−1 and η = ξ into TVPLE

(10), we obtain

X ′(ξ)∼R(ξ) + R(ξ)∼X ′(ξ) = ∂Φ(ξ). (20)

It follows that X ′(η) satisfying the TVPLE (10) is a poly-

nomial matrix solution of the DLE (15). Thus, we have the

following lemma.

Lemma 6: Let Φ ∈ Rq×q
s [ζ, η] be an arbitrary R-canonical

two-variable polynomial matrix satisfying Φ
B

< 0. Then, the

following statements are equivalent for X ′ ∈ Rq×q[ξ].

(i) X ′ ∈ XR is a polynomial matrix solution of the DLE

(15).

(ii) There exists an R-canonical two-variable polynomial

matrix Ψ′ ∈ Rq×q[ζ, η] such that Ψ′(ζ, η) and X ′(η)
satisfy the TVPLE (10).

Proof: (ii) ⇒ (i) Substituting ζ = ξ−1 and η = ξ into

(10) yields (20). Thus, the proof follows immediately.

(i) ⇒ (ii) By Propositions 1 (i)⇔(ii) and 2 (ii), there

exists Ψ′ ∈ Rq×q
s [ζ, η] satisfying

∇Ψ′(ζ, η) = Φ(ζ, η) − X ′(ζ)�R(η) − R(ζ)�X ′(η),

which shows that Ψ′(ζ, η) and X ′(η) satisfies the TVPLE

(10). Since Φ(ζ, η) is R-canonical and X ′(ξ)R(ξ)−1 is

proper, Ψ′(ζ, η) is R-canonical.

Lemma 5 is rewritten by the following lemma using the

polynomial matrix solution of the DLE (15).

Lemma 7: Assume that B in (2) is asymptotically stable.

Let Φ ∈ Rq×q
s [ζ, η] be an arbitrary R-canonical two-variable

polynomial matrix satisfying Φ
B

< 0. Let XR be the set given

by (9). Then, the following statements hold.

(i) Let X ′ ∈ XR be a solution of the DLE (15). Then,

the R-canonical two-variable polynomial matrix which

induces a Lyapunov function for B is given by

Ψ′(ζ, η) =
Φ(ζ, η) − X ′(ζ)�R(η) − R(ζ)�X ′(η)

ζη − 1
.

(21)

(ii) Let X ′
0 ∈ XR be a solution of the DLE (15). Then, all

polynomial matrix solutions X ′ ∈ XR are parametrized

by X ′(ξ) = X ′
0(ξ) + F0R(ξ), where F0 ∈ Rq×q is the

free parameter satisfying F�
0 = −F0.
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(iii) Let Ψ′(ζ, η) be computed by (21). Then, Ψ′(ζ, η) is

determined uniquely for Φ(ζ, η) independently of the

solution X ′ ∈ XR of the DLE (15).

Remark 2: As explained in Remark 1, there does not hold

the uniqueness of Ψ′(ζ, η) in general. But, Lemma 7 (iii)

claims that Ψ′(ζ, η) is unique if it is restricted to be an R-

canonical polynomial matrix.

From Corollary 1 and Lemmas 5, 6, we obtain a necessary

and sufficient condition for the asymptotic stability of B in

terms of a polynomial matrix solution of the DLE (15).

Theorem 2: The behavior B is asymptotically stable if

and only if there exists a polynomial matrix solution X ′ ∈
XR of the DLE (15) such that Ψ′(ζ, η) in (21) satisfies Ψ′ ≥
0.

Example 1 (continued): We show the relationship between

DLE (15) and the asymptotic stability of the behavior B

described by the state space equation (11). Let X ′(ξ) =
Ψ0 (ξIq + A) /2. Then, we have

R(ξ)∼X ′(ξ) + X ′(ξ)∼R(ξ) = A�Ψ0A − Ψ0 = Φ0.

This implies that X ′ ∈ XR is the polynomial matrix

solution of the DLE (15). Since Ψ′(ζ, η) computed by

(21) is nonnegative definite, B is asymptotically stable by

Theorem 2.

V. NUMERICAL EXAMPLE

Example 2: Consider the behavior B whose kernel repre-

sentation is induced by the polynomial matrix

R(ξ) =

[
3ξ − 1 4ξ2 − 2

0 2ξ2 − 1

]
.

Define the (R-canonical) two-variable polynomial matrix

Φ(ζ, η) =

[
−1 0
0 −1 − ζη

]
B

< 0.

Then, a solution of the TVPLE (4) is given by

Ψ(ζ, η) =

[
9
8 0
0 3

8ζη + 5
3

]
,

Y (ζ, η) =

[
− 1

16 (3η + 1) 0
1
8 (3η + 1) − 1

3 (2η2 + 1)

]
.

For w =
[
w1 w2

]�
∈ B, the QDFs QΨ(w) and ∇QΨ(w)

are given by

QΨ(w)(t) =
9

8
w1(t)

2 +
5

3
w2(t)

2 +
8

3
w2(t + 1)2,

∇QΨ(w)(t) = −w1(t)
2 − w2(t)

2 − w2(t + 1)2.

Since Ψ
B

≥ 0 and ∇Ψ
B

< 0, B is asymptotically stable, and

QΨ(w) is a Lyapunov function for B.

Also, a polynomial matrix solution of the DLE (15) is

given by

X ′(ξ) =

[
− 1

16 (3ξ + 1) 0
1
8 (3ξ + 1) − 1

3 (2ξ2 + 1)

]
∈ XR.

Computing Ψ′(ζ, η) for this X ′(ξ) by (21) yields

Ψ′(ζ, η) = Ψ(ζ, η) =

[
9
8 0
0 3

8ζη + 5
3

]
≥ 0.

Therefore, the asymptotic stability is proved from Theorem

2, too.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have derived a generalized Lyapunov

stability theorem for a system represented by a high order

difference-algebraic equation (kernel representation) based

on QDFs. In the theorem, we have shown that the asymptotic

stability of the behavior is equivalent to the solvability of the

TVPLE (4) whose solution induces the Lyapunov function.

Moreover, we have clarified the relationship between the

TVPLE (4) and the DLE (15). This results in another

asymptotic stability condition of the behavior in terms of a

polynomial matrix solution of the DLE (15). As future works,

we have to study the algorithm for solving the TVPLE (4)

using linear matrix inequalities of the coefficient matrices,

or a symbolic computation.

APPENDIX

A. Hilbert’s Nullstellensatz

Lemma A: [7] n-variable polynomials ri(ξ1, · · · , ξn) (i =
1, 2, · · · , l) have no common zeros if and only if there

exist n-variable polynomials gi(ξ1, · · · , ξn) (i = 1, 2, · · · , l)
satisfying the following n-variable polynomial equation

l∑
i=1

gi(ξ1, · · · , ξn)ri(ξ1, · · · , ξn) = 1.
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