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Abstract—This paper deals with robustly stable model
predictive control (MPC) of the class of piecewise linear
systems. A piecewise linear feedback controller, that stabilizes
the nominal system, is derived from linear matrix inequalities.
Further, an algorithm is designed for constructing a polyhedral
robustly positively invariant set for the system. First, a min-
max feedback MPC scheme with known mode, based on a
dual-mode approach that stabilizes the system, is presented.
The second robustly stable MPC scheme is based on a semi-
feedback controller, but this time the mode of the system is
unknown.

I. INTRODUCTION

A. Overview

In the area of hybrid systems, model predictive control

(MPC) has recently attracted much interest due to its

ability to handle systems with hard input-state constraints.

Research has been focused on developing stabilizing MPC

for hybrid systems and in particular for piecewise linear

(PWL) and piecewise affine (PWA) systems: [1]–[5]. Since

disturbances are always present, it is important that the MPC

controller is robust. To guarantee constraint fulfillment for

every possible disturbance realization within a certain set,

the control action has to be chosen safe enough to cope

with the effect of the worst disturbance realization. Because

of this rigorous min-max approach, the control scheme for

the class of perturbed PWA systems is computationally

demanding (as it is a dynamic programming problem [1] or

requires recasting the problem into a canonical form [6]).

In this paper we consider the class of PWL systems

with additive disturbance. In Section II we derive a local

controller for the nominal system in terms of linear matrix

inequalities (LMI). In Section III we construct a convex

robustly positively invariant set for the system. We propose

two MPC algorithms for stabilizing a perturbed PWL sys-

tem. Under the assumption that the mode is known, we

derive a stable min-max feedback MPC scheme based on

a dual-mode approach. The second MPC scheme assumes

unknown mode, using a semi-feedback controller. From a

computational point of view, the second scheme is less

demanding (quadratic programming) than the first scheme

(mixed-integer linear programming).

B. Notations and definitions

A PWA system with additive disturbance is defined as

x(k+1) = Aix(k)+Biu(k)+ai+w(k), if x(k) ∈ Pi (1)
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where x, u and w denote, respectively, the state, input and
disturbance; {Pi}i∈I is a finite partition of R

n. The closure

cl(Pi) is given by cl(Pi) = {x : Eix ≥ ei}. When ai = 0,
ei = 0, ∀ i ∈ I, we get a PWL system:

x(k + 1) = Aix(k) + Biu(k) + w(k), if x(k) ∈ Pi (2)

It is assumed that the disturbance belongs to a bounded

polyhedron w ∈ W and the control and state are required

to satisfy the constraints u ∈ Uc and x ∈ Xc; Xc, Uc and

W are all polytopes, with 0 ∈ Uc,W and 0 ∈ int(Xc).
Given two sets Y,Z ⊂ R

n, the Minkowski sum of Y
and Z is defined as: Y ⊕ Z = {y + z : y ∈ Y, z ∈ Z} and
the Pontryagin difference as Y � Z = Y ⊕ (−Z) = {y ∈
R

n : y ⊕ Z ⊆ Y }. We denote with M⊥ the orthogonal

complement of a matrix M . We have then MT M⊥ = 0
and [M M⊥] is nonsingular.

II. STABILIZING FEEDBACK CONTROLLER FOR THE

NOMINAL PWL SYSTEM

In this section we design a local stabilizing feedback

controller for the nominal PWL system. We discuss all the

solutions of the matrix inequalities that appear by applying

different levels of conservatism with the S-procedure. The

nominal system associated to (2) is defined as:

x(k + 1) = Aix(k) + Biu(k), if x(k) ∈ Pi (3)

Now we determine a PWL state feedback controller u(k) =
Fix(k), if x(k) ∈ Pi such that the nominal system

(3) in closed-loop with this controller is stable. Such a

controlleris derived from Lyapunov arguments. We search

for a piecewise quadratic Lyapunov function [4] V (x) =
xT Pix, if x ∈ Pi, such that the following relations are

satisfied:{
xT (Ai + BiFi)

T Pj(Ai + BiFi)x − xT Pix < 0,

xT Pix > 0 for all x ∈ Pi and for all (i, j) ∈ I,
(4)

where we have considered1 that x ∈ Pi and (Ai+BiFi)x ∈
Pj . Since (4) has to be valid only for x ∈ Pi, we can

use the S-procedure [8] in order to reduce conservatism.
One method to relax the matrix inequalities (4) is: find

Fi, Pi, Uij , Vi, for (i, j) ∈ I, where Uij , Vi have all entries

non-negative that satisfy the following matrix inequalities:

(Ai + BiFi)
T Pj(Ai + BiFi)

T − Pi + ET
i UijEi < 0 (5)

Pi > ET
i ViEi (6)

1For simplicity we assume that from a certain mode i ∈ I all the
transitions to any other mode are possible. The case in which only some
transitions are possible can be implemented straightforwardly [7].
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The symbol * is used to induce a symmetric structure in an

LMI. We have the following solution for (5)–(6):

Theorem 2.1: The matrix inequalities (5)–(6) have a so-
lution iff the following matrix inequalities have a solution[

BT
i PjBi BT

i PjAi

∗ AT
i PjAi−Pi +ET

i UijEi

]
<

[
I −Fi

∗ FT
i Fi

]
(7)

Pi > ET
i ViEi (8)

where Uij , Vi have all entries non-negative, ∀(i, j) ∈ I.
Proof: It is easy to see that (5) can be written as[

Fi

I

]T[
BT

i PjBi BT
i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi

][
Fi

I

]
<0

We have

[
−I
FT

i

]⊥

=

[
Fi

I

]
since

[
Fi

I

]
is a basis

of ker(

[
−I
FT

i

]
) (where ker(A) denotes the kernel of the

matrix A). Therefore, the previous formula can be written
as [

−I
FT

i

]⊥T

Qij

[
−I
FT

i

]⊥

<0 (9)

where Qij =

[
BT

i PjBi BT
i PjAi

∗ AT
i PjAi − Pi + ET

i UijEi

]
.

Using now the Finsler’s lemma [8], (9) is equivalent to

Qij < σij

[
−I
FT

i

] [
−I Fi

]
(10)

with σij ∈ R. Of course (10) has a solution if and only if

Qij < σ

[
−I
FT

i

] [
−I Fi

]
(11)

has a solution, with σ > 0 (Take σ > maxi,j{0, σij} for the
implication “(10)⇒ (11)”; the other implication is obvious).
Now if we divide (11) by σ > 0 and denote with Pi →
1/σPi, Uij → 1/σUij , Vi → 1/σVi we obtain that (11) is

equivalent to (7). ♦
Now we discuss some possible relaxations for (5)–(6).

The first relaxation is to replace (6) with Pi > 0.
Proposition 2.2: For Pi > 0, the matrix inequalities (5)

are equivalent to[
Pi − ET

i UijEi ∗
Ai + BiFi Sj

]
> 0 (12)

0 < Pj ≤ S−1
j , for all (i, j) ∈ I. (13)

Proof: With the relaxation Pi > 0, (5) is equivalent with

(Ai + BiFi)
T S−1

j (Ai + BiFi)−Pi+ET
i UijEi <0, (14)

0 < Pj ≤ S−1
j , for all (i, j) ∈ I. (15)

It is clear that if (5) has a solution, then there exists an ε > 0
such that (Ai + BiFi)

T Pj(Ai + BiFi)− Pi + ET
i UijEi <

−ε(Ai+BiFi)
T (Ai+BiFi). Then, we can take S−1

j = Pj+
εI ≥ Pj and thus we obtain (5)–(6). The other implication

is obvious. Applying the well-known Schur complement to

(12) we obtain the equivalent formulation (14). ♦

An algorithm for finding a solution for (12)–(13) is given

in [7].

Now we discuss a second relaxation. If we do not

apply the S-procedure condition “x ∈ Pi”, with the more

conservative one “x ∈ R
n”, then (4) becomes:

(Ai + BiFi)
T Pj(Ai + BiFi) − Pi < 0, Pi > 0 (16)

for all (i, j) ∈ I. There are two methods to linearize
(16). One is based on the well-known linearizing change

of variable Si = P−1
i , Yi = FiSi (this type of linearization

was used also in [2], [4]). Another linearization of (16) is

Si = P−1
i , Yi = FiGi [9].

Proposition 2.3: The following LMIs in Yi, Si, Gi[
Gi + GT

i − Si ∗
AiGi + BiYi Sj

]
> 0 (17)

for all (i, j) ∈ I have a solution if and only if Fi =
YiG

−1
i , Pi = S−1

i are solutions of (16). ♦
The proof is straightforward, using the Schur complement

(see [7] for details). If we can find Pi, Fi, using one of the

approaches proposed before (Theorem 2.1 or Propositions

2.2 or 2.3), then the feedback controller u(k) = Fix(k) if
x(k) ∈ Pi asymptotically stabilizes the origin of (3).

III. CONVEX ROBUSTLY POSITIVELY INVARIANT SET

In the sequel we assume that we have determined a

state feedback controller u(k) = Fix(k) if x(k) ∈ Pi that

stabilizes the nominal system (3) (cf. Section II). We define

AFi
= Ai + BiFi. Then the PWL system with additive

disturbance (2) becomes:

x(k + 1) = AFi
x(k) + w(k), if x(k) ∈ Pi. (18)

We define the following set:

XF = ∪i∈I{x ∈ Pi : x ∈ Xc, Fix ∈ Uc}

Definition 3.1 ( [10]): A set Ω ⊆ XF is a robustly
positively invariant (RPI) set for system (18) if for any
x ∈ Ω ∩ Pi with i ∈ I, we have AFi

x + w ∈ Ω for
all w ∈ W . The maximal (minimal) RPI set is defined as
the largest (smallest) with respect to inclusion, RPI set for

(18). ♦
It can be easily seen that both the minimal and the

maximal RPI set associated to system (18) are in general

non-convex sets. For system (18) the evolution of the mode

i = i(k) depends on the state x(k). Nevertheless, for ease of
computation of a convex (polyhedral) RPI set for (18), we

will disregard this relation mode-state and we will consider

that i(k) evolves independently of x(k) (i.e. i(k+1) ∈ I for
all k ≥ 0). This type of relaxation was used also in [2], [11]
in order to obtain a convex invariant set for deterministic

PWL systems. So, we replace the PWL system (18) with

the following time-varying system

xk+1 = AFi(k)
xk + wk, i(k + 1) ∈ I (19)

where i(·) is a switching signal in IN.
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Definition 3.2: A set Ω is an RPI set for system (19) if
for any x ∈ Ω we have that AFi

x+w ∈ Ω, for any possible
switching i ∈ I and any admissible disturbance w ∈ W . ♦
In the sequel we construct an RPI set for system (19). We

define the following set recursion:

Oi
0 = Xi

0 = {x : x ∈ Xc, Fix ∈ Uc},

Oi
t = {x ∈ XFi

: AFi
x ⊕ W ⊆ ∩j∈IO

j
t−1} (20)

for any i ∈ I and t = 1, 2, . . .
It is clear from (20) that Oi

t+1 ⊆ Oi
t, and therefore O

i
t

converges to Oi
∞. We define:

Oi
∞ = lim

t→∞
Oi

t = ∩t≥0O
i
t, O∞ = ∩i∈IO

i
∞. (21)

The properties of O∞ are given in the following theorem:

Theorem 3.3: (i) The maximal RPI set included in
∩i∈IXFi

for the system (19) is the convex set O∞.

(ii) The set O∞ is an RPI set for the PWL system (18).

Proof: (i) It is easy to observe that since the sets X,U,
andW are polytopes (described by a finite number of linear

inequalities), all the sets Oi
t are also polytopes and thus

convex. So,Oi
∞ is also convex. SinceO∞ is the intersection

of convex sets, O∞ is convex.

For any x ∈ O∞ we have x ∈ Oi
t+1 for all i ∈ I and

t ≥ 0. According to (20), AFi
x ⊕ W ⊆ ∩j∈IO

j
t for all

i ∈ I and t ≥ 0. Hence AFi
x ⊕ W ⊆ O∞ for all i ∈ I.

Therefore, O∞ is an RPI set for system (19).

Due to the recursion (20), O∞ is the maximal RPI set for

system (19) included in ∩i∈IXFi
. Indeed, let T ⊆ ∩i∈IXFi

be an RPI set for the system (19) and let x ∈ T . Then from
the definition of an RPI set for system (19), it follows that

AFi
x ⊕ W ⊆ T ⊆ ∩i∈IXFi

⊆ ∩j∈IO
j
0 for all i ∈ I. This

implies that x ∈ Oi
1 for all i ∈ I. Therefore, T ⊆ Oi

1 for

all i ∈ I. By iterating this procedure we get T ⊆ Oi
t ∀t ≥ 0

and i ∈ I. In conclusion T ⊆ O∞, i.e. O∞ is maximal.

(ii) It is clear that the set of trajectories of the PWL

system (18) is a subset of the trajectories of the system

(19). So, any RPI set of (19) is also an RPI set for (18). ♦
Because the sets Oi

t are described by a finite number of

linear inequalities, it is important to know whether the set

O∞ can be finitely determined, i.e. whether there exists a
finite t∗ such that Oi

t∗ = Oi
t∗+1 for all i ∈ I (therefore

O∞ = ∩i∈IO
i
t∗ is a polyhedral set). Using the recursion

(20) and the commutativity property of intersection, we

have: O0 = ∩i∈IO
i
0, Ot = ∩i∈IO

i
t for all t ≥ 1 ⇒

Ot+1 ⊆ Ot, and therefore, O∞ = ∩t≥0Ot. Now, Ot can

be written in terms of Pontryagin differences:

Y0 = ∩i∈IXFi
, O0 = Y0;

Y1 = Y0 � W, O1 = ∩i∈I{x ∈ O0 : AFi
x ∈ Y1};

Yt = ∩(i1,...it−1)∈I×...×I(Yt−1 � AFi1
...AFit−1

W ), (22)

Ot = ∩(i1,...it)∈I×...×I{x ∈ Ot−1 : AFi1
...AFit

x ∈ Yt}.

It is clear that Yt+1 ⊆ Yt (since 0 ∈ W ). Therefore, the
limit of this sequence Y∞ = ∩t≥0Yt exists. We have the

following stopping criterion for computing O∞:

Theorem 3.4: If the free switching system x(k + 1) =
AFi

x(k) with i ∈ I is asymptotically stable and ∃t0 ≥ 0
such that Ot0 is bounded and 0 ∈ int(Y∞), then O∞ is

finitely determined and therefore also a polyhedral set.

Proof: From asymptotic stability we have:{
AFi1

...AFit
x → 0,when t → ∞, for all x ∈ R

n

Ot0 is bounded, 0 ∈ int(Y∞)

implies that there exists a t∗ ≥ t0 such that for all
(i1, ..., it∗+1) ∈ I × ... × I, AFi1

...AFit∗+1
x ∈ Y∞ ⊆

Yt∗+1, for all x ∈ Ot0 . Since Ot∗ ⊆ Ot0 we have :

AFi1
...AFit∗+1

x ∈ Yt∗+1, for all x ∈ Ot∗ . Therefore,

according to the recursion (22), Ot∗ ⊆ Ot∗+1. But Ot∗+1 ⊆
Ot∗ . In conclusion, we have Ot∗ = Ot∗+1 and O∞ =
Ot∗ . Since Ot∗ is described by a finite number of linear

inequalities, O∞ is a polyhedral set. ♦

IV. ROBUST MPC WITH KNOWN MODE

In the sequel we propose two robustly stabilizing MPC

schemes for PWL system (2). We consider two cases

depending on whether the mode at each sample step is

known or unknown. For each case we develop a robustly

stable MPC scheme.

A. Feedback min-max MPC scheme

In this section we develop a stable MPC scheme for the

PWL system (2), with known mode despite the presence

of disturbances, based on a feedback min-max approach

using a dual-mode MPC formulation. In order to determine

a suitable control law, an optimal control problem VN (.)
with horizon N is solved. Let w = (w(0), ..., w(N −1)) be
a possible realization of the disturbance over the interval 0
to N − 1. Efficient control in the presence of disturbances
requires state feedback; so, the decision variable (for a

given initial state x) in the optimal control problem is a
control policy defined as π = (u(x), µ1(·), ..., µN−1(·))
where u(x) ∈ Uc and µk : Xc → Uc, k = 1, ..., N − 1
is a state feedback control law. Let x(k;x, π,w) denote the
solution to (2) at step k. The feedback min-max optimiza-
tion problem is defined as:

VN (x) : min
π

max
w∈W N

N−1∑
k=0

l(xk, uk) (23)

⎧⎪⎨
⎪⎩

xk = x(k;x, π,w) ∈ Xc, ∀k = 1, ..., N − 1

uk = µk(x(k;x, π,w)) ∈ Uc, ∀k = 0, ..., N − 1

xN = x(N ;x, π,w) ∈ O∞, ∀w ∈ W N ,

where l(x, u) is convex and such that l(x, u) ≥
α(d(x,O∞)), if x �∈ O∞ and l(x, u) = 0, if x ∈ O∞

with α a K−function [12]. The distance of a point x
to the closed, convex set O∞ is defined as d(x,O∞) =
minxo∈O∞

‖x−xo‖. In the sequel we consider ‖X‖ as the
p−norm (‖X‖p, p ≥ 1) for vectors and matrices.
For linear systems problem (23) can be solved using the

extreme disturbance realizations [12]. In our setting, due to
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the nonlinearities of the system, this approach cannot be

applied directly. To overcome this problem, we propose to

restrict the admissible control policies π to only those that
guarantee that, for every value of the disturbance, the mode

i(k) is unique at each sample step k but the state is not
known (e.g. gear box with gear position being the mode):

x(k;x, π,w) ∈ Pi(k), ∀w ∈ W N . (24)

It can be easily observed that imposing (24) to the system

(2) the state set generated by the disturbance at each sample

step k is a convex set:

x(k;x, π,W k)=x(k;x, π, 0)+X(k; i(0)...i(k−1),W k) (25)

where the first term expresses the nominal trajectory corre-

sponding to (3) and the second term represents a convex

uncertainty set associated with the state, which depends

on the switching mode sequence i(0), . . . , i(k − 1) and
on the set W k. Since W is a bounded polyhedron with

v vertices, let LN
v denote the set of indexes � such that

w� = (w(0)�, . . . , w(N − 1)�) takes values only on the
vertices of W . Then, LN

v is a finite set with the cardinality

VN = vN . Further, let u� = (u�
0, . . . , u

�
N−1) denote a control

sequence associated with the �-th disturbance realization w�

and let x�
k = x(k;x0,u�,w�) be the solution of (2) with

the additional constraint (24). Using (24), the optimization

problem (23) becomes a finite-dimensional optimization

problem

VN (x) : min
u

max
�∈LN

v

N−1∑
k=0

l(x�
k, u�

k) (26)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

constraint (24), x�
0 = x, ∀� ∈ LN

v

x�
k ∈ Xc, k = 1, ..., N − 1, ∀� ∈ LN

v

u�
k ∈ Uc, k = 0, ..., N − 1, ∀� ∈ LN

v

x�
N ∈ O∞, ∀� ∈ LN

v

x�1
k = x�2

k ⇒ u�1
k = u�2

k , ∀�1, �2 ∈ LN
v

The last constraint is the well-known causality constraint
[12]. The optimization problem to be solved at step k is:

VN−k(xk) : min
u

max
�∈LN−k

v

N−k−1∑
j=0

l(x�
k+j|k, u�

k+j|k) (27)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

constraint (24), x�
k|k = xk, ∀� ∈ LN−k

v

x�
k+j|k ∈ Xc, j = 1, ..., N − k − 1, ∀� ∈ LN−k

v

u�
k+j|k ∈ Uc, j = 0, ..., N − k − 1, ∀� ∈ LN−k

v

x�
N |k ∈ O∞, ∀� ∈ LN−k

v

x�1
k+j|k = x�2

k+j|k⇒u�1
k+j|k = u�2

k+j|k,∀�1, �2∈LN−k
v

where x�
k+j|k is the prediction of the state at step k+j given

by the model (2), corresponding to the �-th disturbance
realization (w(0)�, ..., w(N−k−1)�) and applying the input
sequence u�

k|k, ..., u�
N−1|k. The constraint (24) is imposed

only to the states x�
k+j|k with j = 1, ..., N − k − 1 and

not to x�
N |k. The only constraint on the state x�

N |k is the

terminal constraint: x�
N |k ∈ O∞. We use a variable horizon

scheme as in [12]. The feedback min-max MPC controller

is based on a dual-mode approach. For any k ≥ 0, given
the current state xk, the algorithm is formulated as follows:

Feedback min-max MPC algorithm (I)
• if xk ∈ O∞ ∩ Pi then take uRH(xk) = Fixk, ∀i ∈ I
• otherwise, solve (27) and set uRH(xk) to the first
control in the optimal solution computed: u�

k|k,

where uRH(x) is the control input applied to the system
according to the receding horizon strategy.

B. Stability

We give first some definitions [13]: a set Tset is robustly
stable iff for all ε > 0, there exists a γ > 0 such that
d(x0, Tset) < γ implies d(x(k), Tset) < ε for all k ≥ 0
and all admissible disturbance sequences. The set Tset is

robustly finite-time attractive with domain of attraction X
iff for all x0 ∈ X there exist a finite-time M such that

x(k) ∈ Tset for all k ≥ M . The set Tset is robustly
finite-time stable with the domain of attraction X iff it

is robustly stable and robustly finite-time attractive with

domain of attraction X . We define also X̄N = {x ∈ R
n :

(26) has a solution for x}
Theorem 4.1: If the optimization problem VN (x0) is
feasible (hence has an optimum), then all subsequent op-

timization problems VN−k(xk) with k = 1, ..., N − 1 are
feasible. Moreover, at sample step N we have xN ∈ O∞.

Proof: At step k = 0, with the initial state x0 = x ∈ Pi0 ,

let (u∗�
0|0, ..., u

∗�
N−1|0) be the optimal solution corresponding

to the �-th disturbance realization, satisfying the constraints
(24), therefore producing the “certain” switching sequence

i0, i1, ..., iN−1. Let x�
0|0, ..., x

�
N−1|0 be the corresponding

state trajectories. From the causality constraints we have:

u∗�1
0|0 = u∗�2

0|0 = u∗
0 for any �1 �= �2 ∈ LN

v . Now the input u
∗
0

is applied and the disturbance takes a certain value w0 =∑
�∈LN

v
µ�w

�
0 ∈ W , where w�

0 is a vertex of W and µ� are

appropriate convex scalar weights. Therefore, x1 = Ai0x+
Bi0u

∗
0 +w0 =

∑
�∈LN

v
µ�x

�
1 with x�

1 = Ai0x+Bi0u
∗
0 +w�

0,

i.e. x1 lies in the convex hull co{x
�
1 : � ∈ LN

v }. Define the
following control sequence

(
∑

�∈LN−1
v

µ�u
∗�
1|0, ...,

∑
�∈LN−1

v

µ�u
∗�
N−1|0) (28)

With this control sequence the state predictions at step

k = 1 evolve in the convex hull of the predictions at step
k = 0: x1+j|1 ∈ co{x�

1+j|0, � ∈ LN−1
v }, where x1+j|1

with j = 1, ..., N − 1 is the state prediction at step k = 1,
for an arbitrary disturbance sequence. Similarly the input

predictions evolves in the convex hull of the predictions

made at time k = 0 (according to (28)). Moreover, the
switching sequence is certain: i1, ..., iN−1 (we used that

X,U,O∞ are convex). Then, the problem VN−1(x1) is
feasible and has an optimum. By induction, we can prove

that all subsequent optimization problems VN−k(xk) are
feasible. Furthermore, V1(xN−1) is feasible. So, there exists
an optimal input such that xN ∈ O∞. ♦
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Theorem 4.2: The feedback min-max MPC law uRH(.)
given by the algorithm (I) makes O∞ robustly finite-time

stable for the system (2) in closed-loop with uRH(x) with
a region of attraction X̄N .

Proof: See [7]. ♦
The optimization problem (27) can be recast as a mixed-

integer linear programming problem when the p−norm is
either ‖ · ‖1 or ‖ · ‖∞.

V. ROBUST MPC WITH UNKNOWN MODE

A. Robust MPC using quadratic optimization problems

The maximal RPI set Õ∞ included in XF for (18) is

(in general) not a convex set. The maximal RPI set Õ∞,

for which the nominal controller u = Fix is feasible, is
in general small. Now we derive a robustly stable MPC

scheme that uses prediction control trajectories which do not

correspond to fixed state feedback control laws. Therefore,

we enlarge the set of initial states that can be steered to a

target set, close to the origin. We introduce a new control

variable ck such that the new input applied to the system is

uk = Fixk + ck, if xk ∈ Pi. (29)

Let N be the control horizon, then ck, ..., ck+N−1 represent

degrees of design freedom and ck+N+j = 0, ∀j ≥ 0. In
this case the PWL system (18) becomes

xk+1 = AFi
xk + Bick + wk, if xk ∈ Pi. (30)

Employing a reasoning similar to [14], the dynamics of (30)

can be described by the autonomous PWL system

zk+1 = Aizk + Dwk, if zk ∈ P̃i (31)

where z ∈ R
n+Nm, z =

[
x
f

]
, f = [cT

k , ..., cT
k+N−1]

T ,

D =

[
I
0

]
, Ai =

[
AFi

[
Bi 0 ... 0

]
0 M

]
, M =⎡

⎢⎢⎣
0 I 0 ... 0
0 0 I ... 0
. . . ... .
0 0 0 ... 0

⎤
⎥⎥⎦, cl(P̃i) = {z : [Ei 0]z ≥ 0}.

Clearly the stability properties of the matrices Ai depend

only on the matrices AFi
. We denote

Xi
0,z = {z = [xT fT ]T : x ∈ Xc ∩ Pi, Fix + ck ∈ Uc}

= {z : [I 0]z ∈ Xc ∩ Pi, [Fi I 0]z ∈ Uc}.

Remark 5.1 If there exists an RPI set O for (18), then there
must exist at least one RPI set Oz ⊆ ∪i∈IXi

0,z for (31).

Indeed, from definition (31), it is clear that Oz = {z =
[xT 0]T : x ∈ O} is an RPI set for this system. ♦

So, if the maximal RPI set Õ∞ for (18) exists, then there

exists also a maximal RPI set O∞,z for the augmented

system (31) and the projection of O∞,z into the state space

R
n (denoted with O∞,zx) contains Õ∞. Therefore, the

benefits of using free control moves are clear now. The

robust MPC algorithm is defined as follows:

Algorithm (II)

1) Off-line step: compute Fi and the maximal RPI set

O∞,z for (31)

2) On-line step: each step k, given xk solve

J∗
N (k) = min

f
fT f, s.t. z = [xT

k fT ]T ∈ O∞,z (32)

Implement the controller uk = Fixk + ck.

The maximal RPI set for (31) included in ∪i∈IXi
0,z is in

general a union of polyhedral sets: O∞,z = ∪q
j=1O

j
z , where

Oj
z are polytopes. Therefore, at step 2 of Algorithm (II) we

have to solve q quadratic programming (QP) problems, and
then to choose f for which fT f is the smallest one.
Theorem 5.2: Given x0 ∈ O∞,zx, the receding horizon

implementation of the Algorithm (II) asymptotically steers

the trajectory of (30) to Õ∞.

Proof: If x0 ∈ O∞,zx, then (32) has a solution at

k = 0, f∗
0 = [c∗T

0 ...c∗T
N−1]

T . Moreover, there exists an

i0 ∈ I such that x0 ∈ Pi0 ∩ O∞,zx. Let us denote with

f feas
1 = [c∗T

1 ...c∗T
N−1 0]T . Applying the feedback input

u0 = Fi0x0 + c∗0 to the system (30), and keeping in
mind that O∞,z is an RPI set for (31), then we obtain

[xT
1 f feasT

1 ]T ∈ O∞,z . Therefore, f
feas
1 is feasible at k = 1.

By induction, we can prove that given x(k), for all k ≥
1 the optimization problem (32) has an optimal solution
f∗

k = [c∗T
k , ..., c∗T

k+N−1]
T and at sample step k+1 we have a

feasible solution f feas
k+1 = [c∗T

k+1...c
∗T
k+N−10]T . In conclusion

J∗
N (k + 1) − J∗

N (k) ≤ −‖c∗k‖
2. (33)

Hence, the sequence {J∗
N (k)}k≥0 is non-increasing and

bounded below by 0. Therefore, it converges to J∞
N < ∞.

Summing (33) from 0 to ∞ we obtain: 0 ≤
∑

k≥0 ‖c
∗
k‖

2 ≤
J∗

N (0)−J∞
N < ∞. So, the series

∑
k≥0 ‖c

∗
k‖ is convergent.

We conclude that c∗k → 0 as k → ∞. Therefore,
limk→∞ d(xk, Õ∞) = 0, because Õ∞ is the maximal set

of states for which the controller u = Fix if x ∈ Pi is

feasible. ♦

B. Robust MPC using a single QP problem

In this section we develop a new MPC scheme, such that

we solve on-line a single quadratic optimization problem.

Off-line step
In this step we compute off-line the set of initial states

and input correction sequences that steer these states to the

RPI set O∞ (cf. (21)) in N steps, using the controller (29).
This set is obtained recursively as follows:

X i
0 = Oi

∞, ∀i ∈ I, (34)

X i
k+1 =

⎧⎨
⎩

⎡
⎣x

c
c̃

⎤
⎦:

[
AFi

x + Bic ⊕ W
c̃

]
∈

⋂
j∈I X j

k

x ∈ Xc, Fix + c ∈ Uc

⎫⎬
⎭

k = 0, ..., N − 1 and i ∈ I. Note that a similar recursion
was proposed also in [11] in the context of gain scheduling

for nonlinear systems. Clearly X i
N ⊆ R

n+mN . We denote

with Xi
k the projection of X

i
k into the state space R

n. In

conclusion the set of initial states that can be steered to
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O∞ in N steps, using the semi-feedback controller (29)

is: XN = ∪i∈I(Xi
N ∩ Pi). Because Xc, Uc and W are

polytopes and initially X i
0 = Oi

∞, with Oi
∞ a polytope,

we obtain that X i
N ’s are polytopic sets. Hence, X i

N is a

polytope for any i ∈ I. So, XN is a union of polytopes.

Proposition 5.3: The set ∪i∈I(X i
N ∩ P̃i) is an RPI set

for the augmented system (31).

Proof: See [7]. ♦
Clearly, ∪i∈I(X i

N ∩ P̃i) ⊆ O∞,z . The evolution of (30)

under the input sequence (29), with the initial state x0 is:

xk+1 = AFi(k)
...AFi(0)

x0 (35)

+

k+1∑
j=1

AFi(k+1)
...AFi(j)

(Bi(j−1)cj−1+wj−1)

where AFi(k+1)
= I and i(0), ..., i(k) is any feasible switch-

ing sequence corresponding to state sequence x0, ..., xk.

On-line step
Assume x(k) ∈ Pi. At this stage, we solve on-line, at

each step k, the following QP problem:

J∗
N (k) = min

f
fT f, s.t. [xT

k fT ]T ∈ X i
N (36)

Then, according to the receding horizon strategy, the input

applied to the system at step k is given by: uk = Fixk +
c∗k. Once xk ∈ O∞, the MPC law is given by the local

controller uk = Fixk, which has the property that it keeps

the state inside this RPI set for any disturbance in W .
Theorem 5.4: If the free switching system x(k + 1) =

AFi
x(k) with i ∈ I is asymptotically stable and the initial

state x0 ∈ XN then the feedback MPC law uk = Fixk +c∗k
drives the state xk asymptotically to the RPI set O∞.

Proof: Similarly as in Theorem 5.2 we conclude that

c∗k → 0 as k → ∞. (37)

Let us now prove that d(xk,O∞) → 0 as k → ∞. Given
x0 ∈ XN there exists an xo

0 ∈ O∞ such that d(x0,O∞) =
‖x0 − xo

0‖ (since O∞ is a closed, convex set). Now x1 =
AFi(0)

x0 +Bi(0)c
∗
0 +w0. Let us define xo

1 = AFi(0)
xo

0 +w0.

From the definition of O∞ it is clear that xo
1 ∈ O∞ and

d(x1,O∞)≤ ‖x1 − xo
1‖ ≤ ‖AFi(0)

‖ ‖x0 − xo
0‖+‖Bi(0)c

∗
0‖

By induction, using (35), we can prove that

d(xk+1,O∞) ≤ ‖xk+1 − xo
k+1‖ ≤ ‖AFi(k)

...AFi(0)
(38)

(x0 − xo
0)‖ +

k+1∑
j=1

‖AFi(k+1)
...AFi(j)

Bi(j−1)c
∗
j−1‖,

for any feasible sequence of switches i(0), ..., i(k), where
xo

k+1 = AFi(k)
xo

k + wk ∈ O∞. Since the free switching

system x(k + 1) = AFi
x(k) with i ∈ I is asymptotically

stable, then for all x ∈ R
n we have ‖AFi(k)

...AFi(j)
x‖ → 0

for j finite and k → ∞. Using this and (37) in (38), we
obtain d(xk,O∞) → 0 as k → ∞. ♦

For a worked example of the two MPC schemes proposed

in this paper and an extension to PWA systems the reader

is referred to [7].

VI. CONCLUSIONS

In this paper we have designed two stable MPC algo-

rithms for perturbed PWL systems. First, a robustly stable

feedback min-max MPC scheme is introduced, that uses

the fact that the mode of the system is certain at each step.

We incorporate feedback in the control, in order to increase

the domain of the feasible control sequences. The second

stable MPC scheme is based on unknown mode, using a

semi-feedback controller. For this scheme we have to solve

on-line quadratic optimization problems.
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