
Decentralized Diagnosis of Discrete Event Systems using Unconditional
and Conditional Decisions

Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune

Abstract— The past decade has witnessed the development
of a body of theory, with associated applications, for fault
diagnosis of dynamic systems that can be modeled in a discrete
event systems framework. This paper first discusses the dual
problem of diagnosing the absence of faults in centralized and
decentralized settings. The paper then develops new definitions
of decentralized diagnosis in the context of a general decen-
tralized architecture that allows for the use of “conditional
decisions” by local diagnosers. The properties of these new
definitions of decentralized diagnosability are presented and
their relationship with existing work discussed. Corresponding
verification algorithms are also described.

I. INTRODUCTION

Fault diagnosis in Discrete Event Systems (DES) consists
of detecting unobservable fault events occurring in a system
by performing model-based inferencing driven by sequences
of observable events; see [1–3] and the references therein.
Decentralized and distributed diagnosis protocols become
necessary to deal with fault diagnosis in systems where the
information is decentralized. In decentralized architectures,
there are several local “sites” where sensors report their
data and diagnosers run at each site processing the local
observations and performing model-based inferencing on the
basis of the projection of the system model on the locally
observable events; see, e.g., [4]. Local diagnosers then report
their decisions about system faults; these decisions may or
may not be fused at a coordinating site, according to the
properties of the architecture. Generally speaking, distributed
architectures for fault diagnosis differ from decentralized
ones in terms of the local models used at the different sites
for model-based inferencing and in terms of the ability for
local diagnosers to communicate among each other in real-
time. Distributed and decentralized diagnosis problems have
received a lot of attention recently; see [5–14].

In this paper, we are interested in decentralized architec-
tures where diagnosers at local sites operate independently
(namely, without communicating among each other) and
where local decisions about (potential) system faults are
merged by simple memoryless Boolean operations, in the
spirit of the so-called Protocol 3 in [4]. Namely, in Section
IV and V, we consider “unconditional architectures” where

This research is supported in part by NSF grants CCR-0082784 and CCR-
0325571, by ONR grant N00014-03-1-0232, and by a grant from the Xerox
University Affairs Committee.

Y. Wang and S. Lafortune are with the Department of
Electrical Engineering and Computer Science, The University of
Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109–2122, U.S.A.,
{yinw,stephane}@eecs.umich.edu

T. Yoo is with Idaho National Laboratory, Idaho Falls, ID 83403-2528,
U.S.A., YOOTS@inel.gov

there is essentially no need for a coordinating site; i.e., the
decisions of the respective diagnosers will not require to
be merged other than trivially. In Section VI, we consider
“conditional architectures” where diagnosers can issue condi-
tional decisions about fault detection and isolation such as the
decision “Fault if no other site says No Fault.” Conditional
decisions have to be combined at a coordinating site, but the
fusion rule will be simple and memoryless. Our approach
builds on the results in [4] regarding Protocol 3 and is
inspired by recent work in [15, 16] on decentralized control
of DES, where conditional decisions are used to obtain more
powerful control architectures and relax the condition of
coobservability that arises in the necessary and sufficient
conditions for supervisor existence. The use of conditional
diagnosis decisions differentiates our approach from that
used in [4] to improve upon Protocol 3, namely our results
are different in nature from Protocols 1 and 2 in [4] which
employ fusion rules based on diagnoser state intersections
(with memory in the case of Protocol 1).

The paper begins with a brief review of the concept of
diagnosibility in Section II, followed by new results on
the diagnosis of the absence of faults in Section III. The
main results on decentralized diagnosis are then presented
in Sections IV to VI.

II. PRELIMINARIES

The system is modeled as a finite state automaton G =
(Q,Σ, δ, q0), where Q is the state space, Σ is the set of
events, δ is the partial transition function, and q0 is the initial
state. The model G accounts for normal and faulty behavior
of the system. The behavior of the system is described by the
prefix-closed language L(G) generated by G, denoted often
by L hereafter for the sake of simplicity. The event set is
partitioned as Σ = Σo∪Σuo for observable and unobservable
events, respectively. Let us first assume there is only one fault
event f ∈ Σuo. We will see later that extension to multiple
fault events is straightforward. A string or a trace s ∈ L is
called faulty if it contains f , i.e., if there exist u, v ∈ Σ∗

such that s = ufv. s denotes the set of all prefixes of trace
s. We denote by L/s the post-language of L after s, i.e.,
L/s = {t|st ∈ L}.

Given P the standard projection operation from Σ∗ to Σ∗
o

that erases unobservable events, we have that P−1(s) :=
{t ∈ Σ∗ : P (t) = s}. We introduce the notation E(s) =
P−1P (s)∩L to denote the set of “estimate traces”, assuming
s is executed by the system and P (s) is observed. Thus
t ∈ E(s) iff t ∈ L and P (t) = P (s). Therefore, E(s) is the

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThA01.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 6298



estimate of the behavior of the system consistent with the
model L after P (s) has been observed.

For the sake of simplicity, we make the following standard
assumptions:
A1 L(G) is live;
A2 Every cycle of G must contain at least one observable
event.
A1 can be relaxed easily at the expense of extra statements
regarding the diagnosability of terminating traces. A2 ensures
that the system will not generate arbitrarily long sequences
of unobservable events, which of course would prevent
diagnosis within bounded delays.

The following well-known definition [2, 3] is the starting
point for our development.

Definition 1: Language L is said to be diagnosable, F-
DIAG for short, w.r.t. f and P if the following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is faulty)(∀t ∈ L/s s.t. |t| ≥
k)(∀u ∈ E(st)) u is faulty.
This definition means the following. Let s be a faulty trace
and t be a sufficiently long continuation of s in L. Then any
trace in L indistinguishable from st is also faulty. F-DIAG

implies that all possible estimate traces of a sufficiently long
faulty trace are faulty. Therefore, it is possible to diagnose
the fault in s after observing P (st).

III. DIAGNOSING THE ABSENCE OF FAULTS

F-DIAG characterizes the ability to detect the occurrence
of the fault event f using on-line observations and based on
the system model. If we are interested in recognizing traces
not containing fault event f , i.e., diagnosing the absence of
f , the concept of no-fault diagnosis, NF-DIAG for short,
needs to be developed. There are many variations of this
concept; see the results in [11, 17]. We choose the following
definition for our development because it is equivalent to F-
DIAG and has nice properties when it is generalized to the
decentralized setting [17].

Definition 2: Language L is said to be NF-DIAG w.r.t. f
and P if the following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is not faulty)(∀t ∈ L/s s.t. |t| ≥ k
and st is not faulty)(∀uv ∈ E(st) s.t. P (u) = P (s)) u is
not faulty.
In words, let s be a fault-free trace in L and t be a
sufficiently long fault-free extension of s. Then any trace that
is indistinguishable from st must be fault-free right after its
observed prefix P (s). NF-DIAG implies that if the system
is running without faults, we are always able to infer that
some events ago, the system was not faulty.

Example 1: Consider the system described by the lan-
guage a∗fab∗. The only unobservable event is f . The system
is F-DIAG because f happens iff b is observed at most
two events after f . It is also NF-DIAG. The only fault-free
trace is st = an, resulting in E(st) = {an, anf, an−1fa},
u ∈ {an, anf, an−1fa}. Take k = 2, thus s = an−2. Since
P (s) = P (u), u must be an−2 as well, a fault-free trace.

The above example demonstrates the interesting property
that we are only able to infer the absence of faults in the
past. We have found that the other variations of NF-DIAG

considered in [11, 17] are not able to capture this property
and result in strictly smaller language classes.

Theorem 1: Language L is NF-DIAG w.r.t. fault event f
and projection P if and only if it is F-DIAG w.r.t. f and P .

Proof: ¬NF-DIAG⇒ ¬F-DIAG. Violation of NF-DIAG

implies there exists a trace uv ∈ E(st), where u is faulty and
P (u) = P (s). Then P (v) = P (t) and |t| ≥ k, where integer
k could be arbitrarily large. Since there is no unobservable
cycle, both v and t can be arbitrarily long. Therefore, u is
faulty with an arbitrarily long extension v, P (uv) = P (st),
where st is fault-free. Hence the system is not F-DIAG.

The other direction is similar and omitted.
Since NF-DIAG is equivalent to F-DIAG, verification

algorithms for F-DIAG, including diagnosers [2] and ver-
ifiers [18], can be used to verify NF-DIAG as well. We
are particularly interested in the verifier approach because
it has polynomial computational complexity and can be
easily generalized to decentralized settings [11, 19]. Online
diagnosis of the absence of faults can be done by diagnosers.
Details of these results are in [17].

IV. DECENTRALIZED DIAGNOSIS

Let us consider the decentralized architecture depicted in
Fig. 1 where there are n local sites jointly diagnosing the
system G by observing subsets of the set of observable
events Σo, denoted by Σo,1, ...,Σo,n, respectively. The blocks
P1, ..., Pn in the figure denote the projection operations from
Σ∗ to Σ∗

o,i. The decision fusion block in Fig. 1 is assumed
to be a simple memoryless Boolean function that merges
the diagnosis decisions of the local sites. As was mentioned
in the introduction, we do not consider more complicated
decision fusion blocks such as “coordinators” that would
receive state estimates from local sites and process them
in order to compute online the overall diagnosis decisions
(cf. Protocols 1 and 2 of [4]). In contrast, our objective is
to study the properties of decentralized architectures with
the simplest possible types of fusion of local, possibly
conditional, decisions.

Fig. 1. Decentralized Architecture

The notions of projection and estimate set are extended to
the above decentralized setting in a natural way. P−1

i (s) :=
{t ∈ Σ∗ : Pi(t) = s}, Ei(s) = P−1

i Pi(s) ∩ L.
The following definition of decentralized diagnosis is the

starting point for our development.

6299



Definition 3: Language L is said to be F-codiagnosable,
or F-CODIAG, w.r.t. f , P1,...,Pn, if the following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is faulty)(∀t ∈ L/s s.t. |t| ≥
k)(∃i ∈ {1, ..., n})(∀u ∈ Ei(st)) u is faulty.
In words, let s be a faulty trace and let t be a sufficiently
long continuation of s in L. Then there must exist at least one
local site i such that any trace in L indistinguishable from
st at site i is also faulty. This definition is exactly the same
as the definition in [4] of “diagnosability under Protocol 3,”
which is revisited in [11] under the name “co-diagnosability.”
We adopt here the name “F-codiagnosability” in order to
facilitate comparisons between our work and that in [15, 16]
for coobservability and decentralized control. It is important
to note that in F-CODIAG, the only local decision made by
diagnosers is “Fault,” and the system is diagnosed to be faulty
if and only if there is at least one diagnoser reporting “Fault.”
Thus, this architecture is closely analogous to the conjunctive
architecture considered in [15, 20] for decentralized control,
where “disable” is the only local decision employed and an
event is disabled if at least one site disables it. In the next
section, we will consider the dual problem of detecting the
absence of faults in a decentralized setting and introduce the
corresponding notion of NF-codiagnosability.

V. DECENTRALIZED DIAGNOSIS: ABSENCE OF FAULTS

A. Notions of Codiagnosability

Let us first look at a motivating example.
Example 2: Consider the system described by the lan-

guage (f + a + b)c∗, where Σo = {a, b, c} and Σuo = {f}.
There are two local sites, n = 2, Σo,1 = {a, c} and Σo,2 =
{b, c}. This system is not F-CODIAG because the arbitrarily
long faulty trace fcn is indistinguishable from fault-free trace
bcn at site 1 and indistinguishable from acn at site 2. Recall
that in the decentralized architecture corresponding to F-
CODIAG, sites are only allowed to issue “Fault” decisions.
A faulty trace can therefore be diagnosed only if some site
is certain about the occurrence of the fault. In this example,
to diagnose faulty trace fcn, cooperation between the two
sites would be necessary.

We observe that the fault-free traces in Example 2 can
be detected with certainty by the local sites. For instance,
observation of event a at site 1 is an indication that fault
event f has not occurred. Inspired by this observation, as well
as by the notion of “disjunctive architectures” for decentral-
ized supervisory control introduced in [15], we propose the
related concept of NF-codiagnosability, which allows local
sites to say “No Fault”. This leads to the following definition.

Definition 4: Language L is said to be NF-codiagnosable,
or NF-CODIAG, w.r.t. f , P1,...,Pn, if the following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is not faulty)(∀t ∈ L/s s.t. |t| ≥
k and st is not faulty)(∃i ∈ {1, ..., n})(∀uv ∈ Ei(st) s.t.
Pi(u) = Pi(s)) u is not faulty.
This definition is related to the ability to detect the absence
of a fault, i.e., if trace s is not faulty, and t is a sufficiently
long fault-free extension in L, there must exist one local site
i such that any trace in L indistinguishable from st at site i
was also fault-free up to the observation of P (s).

Definition 4 is the extension to the decentralized setting
of NF-DIAG, introduced in Definition 2. We note that based
on a variation of NF-DIAG, a similar notion of decentralized
diagnosis of absence of faults was independently proposed
in [11] and termed “strong codiagnosability”, which results
in a stronger notion than that in Definition 4 [17].

It is not difficult to verify that the system in Example 2
above is NF-CODIAG. The fault-free traces with sufficiently
long extensions are acn and bcn, n ≥ 0, and each one will
unambiguously be detected by sites 1 and 2, respectively.

Consider next the situation where instead of a single fault
event f , there is a set of fault events denoted by Σf ⊆ Σuo.
Assume there are m fault events, Σf = {f1, ..., fm}. A trace
s is called fi-faulty if it contains fault event fi. Definitions 3
and 4 are extended to this situation in the following manner.

Definition 5: Language L is said to be F-CODIAG w.r.t.
f1, ...fm, P1, ...Pn, if the following is true:

(∀j ∈ {1, ...m})(∃kj ∈ N)(∀s ∈ L s.t. s is fj-
faulty)(∀t ∈ L/s s.t. |t| ≥ kj)(∃i ∈ {1, ...n})(∀u ∈ Ei(st))
u is fj-faulty.

Definition 6: Language L is said to be NF-CODIAG w.r.t.
f1, ...fm, P1, ...Pn, if the following is true:

(∀j ∈ {1, ...m})(∃kj ∈ N)(∀s ∈ L s.t. s is not fj-
faulty)(∀t ∈ L/s s.t. |t| ≥ kj and st is not fj-faulty)(∃i ∈
{1, ...n})(∀uv ∈ Ei(st) s.t. Pi(u) = Pi(s)) u is not fj-
faulty.

If every fault event in Σf is F[NF]-CODIAG, then we say
that the system is F[NF]-CODIAG. However, it is possible
that some fault events will be F-CODIAG while others will
be NF-CODIAG. To account for this situation, we introduce
the notion of codiagnosability. Inspired by the notion of
coobservability in the context of the “general architecture”
in [15], we partition Σf as Σf = Σf,F ∪Σf,NF , where Σf,F

is the set of fault events whose occurrence can be diagnosed
and Σf,NF is the set of fault events whose absence can be
diagnosed.

Definition 7: Language L is said to be codiagnosable
w.r.t. Σf,F ,Σf,NF , P1, ...Pn, if
1. L is F-CODIAG w.r.t. Σf,F , P1, ...Pn;
2. L is NF-CODIAG w.r.t. Σf,NF , P1, ...Pn.

B. Properties of Codiagnosability

Theorem 2: F-CODIAG and NF-CODIAG are incompara-
ble w.r.t. the same fault event and projections P1, ...Pn.

Proof: One part of the theorem is proved by Example
2 above; the other part is proved by Example 3 below.

Example 3: Consider the system described by the lan-
guage c∗f(a + b)c∗, where Σo = {a, b, c} and Σuo =
Σf = {f}. There are two local sites with Σo,1 = {a, c}
and Σo,2 = {b, c}. The system is F-CODIAG because faulty
traces in c∗fac∗ and c∗fbc∗ will be unambiguously detected
by sites 1 and 2, respectively. It is not NF-CODIAG because
arbitrarily long fault-free trace cn is indistinguishable from
faulty trace fbcn at site 1 and indistinguishable from faulty
trace facn at site 2.

Theorem 3: F-CODIAG or NF-CODIAG implies codiag-
nosability w.r.t. the same set of fault events and projections.

6300



The reverse implication is not true in general.
Proof: The first part of the theorem is obvious from the

respective definitions; the other part is proved by Example 4
below.

Example 4: Consider the system G shown in Fig. 2, where
Σo = {a1, a2, b1, b2, c1, c2}, Σuo = Σf = {f1, f2}, and
where Σf is partitioned into two fault events, Σf,F =
{f1}, Σf,NF = {f2}. There are two local sites with Σo,1 =
{a1, a2, c1, c2} and Σo,2 = {b1, b2, c1, c2}. From Examples
2 and 3, we know that the system is codiagnosable with f1

F-CODIAG and f2 NF-CODIAG. It is neither F-CODIAG nor
NF-CODIAG for both fault events.

Fig. 2. Codiagnosable but not F(NF)-CODIAG

Theorem 4: Codiagnosability w.r.t. Σf,F , Σf,NF , Σo,1, ...
Σo,n implies centralized diagnosability w.r.t. every fault
event in Σf,F ∪ Σf,NF and projection corresponding to
Σo = Σo,1 ∪ ... ∪ Σo,n. The reverse implication is not true
in general.

Proof: By definition, fault events that are F-CODIAG

are also F-DIAG. Similarly, fault events that are NF-CODIAG

are NF-DIAG. Since NF-DIAG equals F-DIAG by Theorem
1, codiagnosability implies diagnosability.
The other part is proved by Example 5.

Example 5: Consider the system described by the lan-
guage fabc∗ + bac∗, where Σo = {a, b, c} and Σuo =
Σf = {f}. There are two local sites with Σo,1 = {a, c}
and Σo,2 = {b, c}. The system is not codiagnosable because
whether f happens or not, site 1 always observes ac∗ and
site 2 always observes bc∗. In a centralized setting however,
it is clearly diagnosable.

C. Verification of Codiagnosability

The verification of codiagnosability (especially NF-
CODIAG) can be done by extending verifiers [18] to the
decentralized setting and building on the results in [11] for
F-CODIAG.

Assume system G = (Q,Σ, δ, q0) is to be diagnosed by
two local sites (for the sake of simplicity) with observable
event sets Σo,1 and Σo,2, respectively. We construct verifier
Vdec = Acc(QVdec , Σ, δVdec , qVdec

0 ) for a single fault event f

as follows, where Acc stands for taking the accessible part.

QVdec = Q × {N,F}︸ ︷︷ ︸
s1

×Q × {N, F}︸ ︷︷ ︸
s2

×Q × {N, F}︸ ︷︷ ︸
s

qVdec
0 = (q0, N, q0, N, q0, N)

For the sake of readability, let q′i = δ(qi, σ). The transition
relation δVdec is defined as described below, for all cases
where the corresponding transitions are defined:

For σ ∈ Σo,1, σ ∈ Σo,2,
δVdec((q1, l1, q2, l2, q3, l3), σ) = {(q′1, l1, q′2, l2, q′3, l3)}
For σ ∈ Σo,1, σ /∈ Σo,2,

δVdec((q1, l1, q2, l2, q3, l3), σ) =
{

(q′1, l1, q2, l2, q
′
3, l3)

(q1, l1, q
′
2, l2, q3, l3)

For σ /∈ Σo,1, σ ∈ Σo,2,

δVdec((q1, l1, q2, l2, q3, l3), σ) =
{

(q1, l1, q
′
2, l2, q

′
3, l3)

(q′1, l1, q2, l2, q3, l3)
For σ ∈ Σuo and σ 	= f ,

δVdec((q1, l1, q2, l2, q3, l3), σ) =

⎧⎨
⎩

(q′1, l1, q2, l2, q3, l3)
(q1, l1, q

′
2, l2, q3, l3)

(q1, l1, q2, l2, q
′
3, l3)

For σ = f ,

δVdec((q1, l1, q2, l2, q3, l3), σ) =

⎧⎨
⎩

(q′1, F, q2, l2, q3, l3)
(q1, l1, q

′
2, F, q3, l3)

(q1, l1, q2, l2, q
′
3, F )

The verifier simulates three traces s1, s2 and s, where
s indicates the trace the system actually executes and si,
i = 1, 2, represents the trace that site i estimates. It satisfies
P1(s1) = P1(s) and P2(s2) = P2(s). The construction
of the transition rules is such that it captures all possible
trace triples (s1, s2, s) that satisfy P1(s1) = P1(s) and
P2(s2) = P2(s). A verifier state (q1, l1, q2, l2, q3, l3) is called
a (l1, l2, l3)-state. For example, the initial state qVdec

0 is an
(N,N,N)-state. A cycle is called an (l1, l2, l3)-cycle if every
state in the cycle is an (l1, l2, l3)-state.

The above construction can be extended to n local sites
naturally. Basically, we need to simulate n+1 traces and thus
the state has n+1 components; there are 2n+1×|Q|n+1 states
at most. At each state, event σ has at most n+1 transitions by
the transition rules, resulting in 2n+1×|Q|n+1×|Σ|×(n+1)
transitions at most. So the size of the verifier is polynomial in
the number of system states and exponential in the number
of local sites. For the case of multiple faults, we build a
separate verifier for each fault.

Testing of F-CODIAG or NF-CODIAG using the verifier
is based on the following theorem.

Theorem 5: L(G) is not F-CODIAG w.r.t. f if and only if
Vdec of G has an (N,N,F)-cycle. L(G) is not NF-CODIAG

w.r.t. f if and only if Vdec has an (F,F,N)-cycle.
Proof: Following the same strategy as in the proof of

Theorem 1 in [11]1, it can be proved that we can extract a
trace triple (s1, s2, s) from a path in Vdec by the transition
rules. The trace triple reaches state (q1, l1, q2, l2, q3, l3) in
Vdec if and only if:

1There is a technical difference in that fault languages instead of fault
events are used to characterize faulty behaviors in [11].

6301



1. s1, s2 and s reach states q1, q2 and q3 in G, respectively;
2. s1 (s2 or s) is faulty if and only if l1 (l2 or l3) = F ;
3. P1(s1) = P1(s) and P2(s2) = P2(s).

Based on this result, we complete the proof as follows.
(i) and (ii) (N,N,F)-cycle ⇔ not F-CODIAG. The proof of

this part is similar to the proof of Theorem 1 in [11] and
therefore omitted.

(iii) (F,F,N)-cycle ⇒ not NF-CODIAG. In Vdec, an (F,F,N)-
cycle means an arbitrarily long path from qVdec

0 . By the
above analysis, we know that this implies the existence
of three traces s1t

n
1 , s2t

n
2 , stn, where trace triple (s1, s2, s)

corresponds to the prefix of the path that reaches the cycle
from the initial state and (t1, t2, t) corresponds to the cycle.
Furthermore, stn is fault-free, and s1 and s2 are faulty. Since
P1(s1t

n
1 ) = P1(stn), P2(s2t

n
2 ) = P2(stn), fault-free trace

stn cannot be diagnosed by either site.
(iv) Not NF-CODIAG ⇒ (F,F,N)-cycle. Not NF-CODIAG

means there is a fault-free trace st, t is arbitrarily long, and
faulty traces u1 and u2 with extensions v1 and v2 such that
P1(u1v1) = P1(st) and P2(u2v2) = P2(st). By the above
result, these three traces should form a path in Vdec. Since t
could be arbitrarily long and Vdec has only a finite number
of states, there must be a cycle. Then u1, u2 faulty and st
fault-free imply that this cycle is an (F,F,N)-cycle.

VI. DECENTRALIZED DIAGNOSIS WITH CONDITIONAL

DECISIONS

In the architecture considered in Section V, each local
site makes “Fault” or “No Fault” decisions, and the global
decision fusion block simply takes the disjunction of these
local decisions. (In fact, no such fusion block is actually
needed.) Under this architecture, Example 2 is NF-CODIAG

but not F-CODIAG, which means that only fault-free traces
can be detected with certainty. To diagnose faults in Example
2, we consider a decentralized diagnosis architecture where
local diagnosis engines are allowed to make conditional
decisions such as “Fault if nobody says No Fault” and
“No Fault if nobody says Fault”. In analogy with [16], this
architecture is called the conditional architecture. The global
decision fusion block merges decentralized unconditional
and conditional decisions. Inspired by the work in [16], we
adopt the decision rules indicated in Table I.

As can be seen from Cases 3-8 in Table I, the conditional
decisions “Fault if nobody says No Fault” and “No Fault
if nobody says Fault” can be interpreted as “Fault” and
“No Fault” decisions, respectively, but with lower priority.
Namely, these conditional decisions take effect only if the
other sites are silent. The unconditional decisions “Fault”
and “No Fault” override conditional decisions. There is a
diagnosis conflict if and only if contradictory decisions of
the same priority occur, i.e., contradictory unconditional de-
cisions or contradictory conditional decisions. The properties
of conditional diagnosability introduced in the next section
will, by their very definitions, ensure that no such diagnosis
conflicts occur.

A. Notions of Conditional Codiagnosability

To draw parallels with the previous section and the
results in [16], we start by considering diagnosability
properties associated with two special cases of the con-
ditional architecture described in Table I: conditional F-
codiagnosability for the so-called conditional F-architecture
and conditional NF-codiagnosability for the so-called condi-
tional NF-architecture.

Under the conditional F-architecture, local sites have three
types of decisions to choose from: “Fault”, “No Fault”, and
“Fault if nobody says No Fault”. The fusion rules correspond
to cases 1, 2, 3, 4, 5 and 9 in Table I.

Definition 8: Language L is said to be conditionally F-
codiagnosable, or COND-F-CODIAG, w.r.t. f, P1, ...Pn, if the
following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is faulty)(∀t ∈ L/s s.t. |t| ≥
k)(∃i ∈ {1, ...n})(∀uv ∈ Ei(st) s.t. Pi(u) = Pi(s) and uv
is not faulty)(∃j ∈ {1, ...n})(∀xy ∈ Ej(uv) s.t. Pj(x) =
Pj(u)) x is not faulty.
In words, this definition means the following. For each
sufficiently long faulty trace st, there is a site i for which
st might have the same projection as fault-free trace uv, but
for every such fault-free trace uv that belongs to site i’s
estimate, there is a site j that can ensure that the system
was fault-free up to its observation of u. That is, site i can
infer that if a fault-free trace u, instead of s, has happened,
there is another site, j, that can recognize fault-free trace u
with certainty. Therefore, site i can use the “Fault if nobody
says No Fault” decision and site j will issue the “No Fault”
decision overriding site i if u was the trace that the system
actually executed.

Under the dual conditional NF-architecture, local sites
have three types of decisions to choose from: “No Fault”,
“Fault”, and “No Fault if nobody says Fault”. The fusion
rules correspond to cases 1, 2, 6, 7, 8 and 9 in Table I.

Definition 9: Language L is said to be conditionally NF-
codiagnosable, or COND-NF-CODIAG, w.r.t. f, P1, ...Pn, if
the following is true:

(∃k ∈ N)(∀s ∈ L s.t. s is not faulty)(∀t ∈ L/s s.t.
|t| ≥ k and st is not faulty)(∃i ∈ {1, ...n})(∀uv ∈ Ei(st)
s.t. Pi(u) = Pi(s) and u is faulty)(∃j ∈ {1, ...n})(∀w ∈
Ej(uv)) w is faulty.
Here, for each sufficiently long fault-free trace st, there is a
site i for which st might have the same projection as trace
uv, where u is faulty. But for every such faulty trace u that
belongs to site i’s estimate, there is a site j that can ensure
that uv is faulty. That is, site i can infer that if faulty trace
u, instead of s, has happened, there is another site, j, that
can recognize faulty trace u with certainty. Therefore, site
i can use the “No Fault if nobody says Fault” decision and
site j will issue the “Fault” decision overriding site i if u
has actually happened.

The two preceding definitions can be extended in a
straightforward manner to the case of multiple faults, as was
done in Definitions 5 and 6. We omit these definitions here
and proceed directly to the case of conditional codiagnos-
ability, the conditional version of Definition 7. Let us again

6302



Case Local Decision 1 Local Decision 2 Global Decision Architecture
1 Fault Nothing Fault F-CODIAG

2 No Fault Nothing No Fault NF-CODIAG

3 Fault if nobody says No Fault Nothing Fault
4 Fault if nobody says No Fault Fault Fault COND-F-CODIAG

5 Fault if nobody says No Fault No Fault No Fault
6 No Fault if nobody says Fault Nothing No Fault
7 No Fault if nobody says Fault Fault Fault COND-NF-CODIAG

8 No Fault if nobody says Fault No Fault No Fault

9 Nothing Nothing Nothing
10 Fault No Fault Diagnosis-conflict
11 Fault if nobody says No Fault No Fault if nobody says Fault Diagnosis-conflict

TABLE I

LOCAL DECISIONS AND THEIR FUSION IN DIFFERENT ARCHITECTURES

partition Σf as Σf = Σf,F ∪Σf,NF , where Σf,F is the set of
fault events whose occurrence can be diagnosed and Σf,NF

is the set of fault events whose absence can be diagnosed.
Definition 10: Language L is said to be conditionally

codiagnosable w.r.t. Σf,F , Σf,NF , P1, ...Pn, if
1. L is COND-F-CODIAG w.r.t. Σf,F , P1, ...Pn;
2. L is COND-NF-CODIAG w.r.t. Σf,NF , P1, ...Pn.

B. Properties of Conditional Codiagnosability

Theorem 6: If language L is codiagnosable w.r.t.
Σf,F , Σf,NF , P1, ...Pn, then it is COND-F-CODIAG and
COND-NF-CODIAG w.r.t. f, P1, ...Pn, ∀f ∈ Σf,F ∪ Σf,NF .
The reverse is not true in general.

Proof: The forward direction can be proved by showing
that F-CODIAG faults or NF-CODIAG faults are both COND-
F-CODIAG and COND-NF-CODIAG.

(i) F-CODIAG implies COND-F-CODIAG by definition, i.e.
site i itself recognizes faulty trace st.

(ii) F-CODIAG implies COND-NF-CODIAG. F-CODIAG

means there is an integer k such that for every faulty trace
s, extension t, |t| ≥ k, there exists site j, whose estimate
Ej(st) contains only faulty traces. By assumption, there
is no unobservable cycle; let d be the maximum number
of successive unobservable events. To see that the system
is COND-NF-CODIAG, let uv be a fault-free trace, |v| ≥
nk(d + 1). Thus v contains at least nk observable events,
not necessarily observed by one site though. However, by the
Pigeonhole principle, there exists a site i observing at least k
events of them. So Pi(v) ≥ k, ∀st ∈ Ei(uv), Pi(s) = Pi(u)
and Pi(t) = Pi(v) ≥ k, |t| ≥ k. If s is faulty, st must be
recognized by a site j because of F-CODIAG, i.e., Ej(st)
contains only faulty traces. Therefore, by definition, the
system is COND-F-CODIAG.

(iii) and (iv) NF-CODIAG implies both COND-F-CODIAG

and COND-NF-CODIAG. The proof is similar and omitted.
The reverse direction that COND-F-CODIAG or COND-

NF-CODIAG do not imply codiagnosability is proved by
Examples 6 and 7.

Example 6: Consider the system G shown in Fig. 3, with
two local sites, Σo,1 = {a1, a2, c}, Σo,2 = {b1, b2, c} and
Σuo = Σf = {f}. The system is not F-CODIAG because
faulty trace b1fcn is indistinguishable from cn at site 1 and

indistinguishable from b1a2c
n at site 2. It is not NF-CODIAG

because fault-free trace cn is indistinguishable from b1fcn at
site 1 and indistinguishable from a1fcn at site 2. The system
is COND-F-CODIAG however, because if faulty trace a1fcn

has happened, the estimate by site 1 is a1fcn itself or a1b2c
n,

but if a1b2c
n has happened, site 2 would know it for sure.

Therefore, the fault can be diagnosed this way: site 1 says
“Fault if nobody says No Fault” once it sees a1, and site 2
says “No Fault” to override site 1 if it sees b2. Similarly,
faulty trace b1fcn can be diagnosed.

Fig. 3. The system of Example 6

Example 7: In Fig. 4, there are two local sites. Σo,1 =
{a1, a2, c}, Σo,2 = {b1, b2, c} and Σuo = Σf = {f}.
Similarly with Example 6, the system can be shown to be
COND-NF-CODIAG but not F-CODIAG or NF-CODIAG.

Fig. 4. The system of Example 7

6303



Theorem 7: COND-F-CODIAG and COND-NF-CODIAG

are incomparable w.r.t. the same fault event and local pro-
jections.

Proof: The system in Example 6 is COND-F-CODIAG

but not COND-NF-CODIAG. The problem fault-free trace
is cn; it is indistinguishable from b1fcn at site 1 but
unfortunately site 2 cannot help on this faulty trace since
it is indistinguishable from b1a2c

n at site 2. Similarly cn

cannot be diagnosed by site 2 conditionally.
The other part is proved in a similar way by Example 7.

Theorem 8: COND-F-CODIAG or COND-NF-CODIAG

implies conditional codiagnosability with the same fault
events and projections. The reverse implication is not true
in general.

Proof: The forward direction is true by definition. The
reverse part can be proved by a counter-example, whose
construction is similar with Example 4 and omitted.

Theorem 9: Conditional codiagnosability w.r.t. Σf,F ,
Σf,NF , Σo,1, ...Σo,n implies centralized diagnosability w.r.t.
every fault event in Σf,F ∪Σf,NF and projection correspond-
ing to Σo = Σo,1 ∪ ...∪Σo,n. The reverse implication is not
true in general.

The proof and the counter-example are similar with those
for Theorem 4 and omitted.

In conclusion, the relationship among the different notions
of codiagnosability introduced above is shown in Fig. 5,
where a directed arc indicates “implies”.

Fig. 5. Relationship among notions of codiagnosability

C. Discussion

It can be shown that the technique presented in Section
V-C for verifying (unconditional) codiagnosability can be
extended to develop polynomial time algorithms for testing
conditional codiagnosability. The details are omitted due to
lack of space. The synthesis of special types of diagnosers to
implement conditional decisions is a more intricate problem
and is not discussed in this paper.

VII. CONCLUSION

This paper has outlined the main features of a strat-
egy for performing decentralized diagnosis of DES using
architectures where local sites can issue several types of
diagnosis decisions about the presence or absence of each
fault, including so-called conditional decisions of the type
“Fault if nobody says No Fault” and “No Fault if nobody

says Fault”. The use of such decentralized architectures
allows for diagnosing larger classes of systems that can be
diagnosed under the decentralized architecture corresponding
to Protocol 3 in [4]. Moreover, the various notions of
codiagnosability that characterize these new architectures are
verifiable in polynomial time in the size of the state space
of the system.

REFERENCES

[1] S. Lafortune, D. Teneketzis, M. Sampath, R. Sengupta, and K. Sin-
namohideen, “Failure diagnosis of dynamic systems: An approach
based on discrete event systems,” in Proc. 2001 American Control
Conf., June 2001, pp. 2058–2071.

[2] M. Sampath, R. Sengupta, K. S. S. Lafortune, and D. Teneketzis,
“Diagnosability of discrete event systems,” IEEE Trans. Automat.
Contr., vol. 40, no. 9, pp. 1555–1575, September 1995.

[3] ——, “Failure diagnosis using discrete event models,” IEEE Trans.
Contr. Syst. Technol., vol. 4, no. 2, pp. 105–124, March 1996.

[4] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentral-
ized protocols for failure diagnosis of discrete-event systems,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 10, no. 1-2,
pp. 33–86, Jan. 2000.

[5] A. Benveniste, S. Haar, E. Fabre, and C. Jard, “Distributed and
asynchronous discrete event systems diagnosis,” in Proc. 41st IEEE
Conf. on Decision and Control, Dec. 2003, pp. 3742–3747.

[6] R. Boel and J. van Schuppen, “Decentralized failure diagnosis for
discrete-event systems with costly communication between diag-
nosers,” in Proc. of the 2002 International Workshop on Discrete Event
Systems - WODES’02, Zaragoza, Spain, Oct. 2002.

[7] R. K. Boel and G. Jiroveanu, “Distributed contextual diagnosis for
very large systems,” in Proc. of the 2004 International Workshop on
Discrete Event Systems - WODES’04, Reims, France, 2004.

[8] E. Fabre, A. Benveniste, C. Jard, L. Ricker, and M. Smith, “Distributed
state reconstruction for discrete event systems,” in Proc. 39th IEEE
Conf. on Decision and Control, Dec. 2000, pp. 2252–2257.

[9] S. Genc and S. Lafortune, “A distributed algorithm for on-line di-
agnosis of place-bordered petri nets,” in Proc. of 16th IFAC World
Congress, 2005.

[10] G. Lamperti and M. Zanella, Diagnosis of active systems: principles
and techniques. Kluwer Academic Publishers, 2003.

[11] W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete
event systems,” in Proc. of the 2004 International Workshop on
Discrete Event Systems - WODES’04, Reims, France, 2004.

[12] R. Sengupta and S. Tripakis, “Decentralized diagnosability of regular
languages is undecidable,” in Proc. 40th IEEE Conf. on Decision and
Control, Dec. 2002, pp. 423–428.

[13] R. Su, W. Wonham, J. Kurien, and X. Koutsoukos, “Distributed
diagnosis for qualitative systems,” in Proc. of the 2002 International
Workshop on Discrete Event Systems - WODES’02, Zaragoza, Spain,
Oct. 2002, pp. 169–174.

[14] R. Su and W. Wonham, “Distributed diagnosis under global consis-
tency,” in Proc. 42nd IEEE Conf. on Decision and Control, Dec. 2004.

[15] T. Yoo and S. Lafortune, “A general architecture for decentralized su-
pervisory control of discrete-event systems,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 12, no. 3, pp. 335–377, July
2002.

[16] ——, “Decentralized supervisory control with conditional decisions:
supervisor existence,” IEEE Trans. Automat. Contr., vol. 49, no. 11,
pp. 1886–1904, Nov. 2004.

[17] Y. Wang and S. Lafortune, “Decentralized diagnosis of discrete
event systems: architectures based on unconditional and conditional
decisions,” University of Michigan, Ann Arbor, MI, Tech. Rep. CGR-
05-01, Jan. 2005.

[18] T. Yoo and S. Lafortune, “Polynomial-time verification of diagnosabil-
ity of partially-observed discrete-event systems,” IEEE Trans. Automat.
Contr., vol. 47, no. 9, pp. 1491–1495, September 2002.

[19] K. Rudie and J. C. Willems, “The computational complexity of
decentralized discrete-event control problems,” IEEE Trans. Automat.
Contr., vol. 40, no. 7, pp. 1313–1318, July 1995.

[20] K. Rudie and W. M. Wonham, “Think globally, act locally: decen-
tralized supervisory control,” IEEE Trans. Automat. Contr., vol. 37,
no. 11, pp. 1692–1708, November 1992.

6304


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




