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Abstract— The problem of sequential detection of a change-
point in the density function of observations from a sequence of
independent random variables is considered when both before
and after a change-point this density function belongs to a
certain family of distributions, i.e. in the general situation of
composite hypotheses. A new quality criterion for change-point
detection is proposed. The asymptotic a priori lower bound
for this criterion is established for any method of change-point
detection. A method of change-point detection is proposed for
which this lower bound is attained asymptotically so that the
method can be called asymptotically optimal. In particular,
for the case of a simple hypothesis before a change-point,
this method coincides with the generalized cumulative sums
(CUSUM) method.

I. INTRODUCTION

The problem of sequential change-point detection has
first appeared in 1930s in connection with statistical quality
control tests. The first diagnostic test was proposed by
Shewhart (the so called ”Shewhart chart”, [1]). Shewhart
introduced the fundamental concept of a ”state of statistical
control”, in which the behavior of some suitable chosen
quality characteristic at time t has a given probability dis-
tribution. To detect significant departures from this state, he
introduced a process inspection scheme that takes samples
of fixed size at regular intervals of time and computes from
the sample at time t a suitably chosen statistic, which can
be presented graphically in the form of a control chart.

In 1950s Girshik and Rubin ([2]), and later Page ([3])
have proposed some more effective methods of sequen-
tial change-point detection (called nowadays the GRSh
(Girshick-Rubin-Shyriaev) and CUSUM (cumulative sums)
test respectively). These tests were based upon the modified
Wald theory of sequential hypotheses testing.

In works of Shyriaev (see [4]) the problem of sequen-
tial change-point detection was formulated as an extremal
problem both for discrete and continuous time and the
optimal solution of this problem was found. Lorden [5]
has found an asymptotically optimal method of sequential
change-point detection which minimizes the average delay
time in detection given an upper boundary for the average
time before a ”false alarm” without a priori assumptions
about the density function (d.f.) of a change-point. Pollak
([6]) proved that the method of Girshick and Rubin can
be obtained as a certain limit from the method proposed
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by Shiryaev. He also demonstrated that this method is
asymptotically optimal in the sense of Lorden’s criterion.
Moustakides ([7]) proved that Page’s CUSUM procedure
is strictly optimal (not only asymptotically) in Lorden’s
formulation of sequential change-point detection problem.
For continuous time this result was obtained by Shiryaev
([8]).

Lai ([9],[10],[11]) considered the change-point problem
in the more general situation of dependent random vari-
ables. In [9] it was shown that the Neyman–Pearson type
procedure with the ”moving window” of observations is
asymptotically optimal. In [10] different boundaries for
the ”false alarm” probability were introduced instead of
upper boundaries for the average time before the ”false
alarm” and the asymptotic optimality of Page’s CUSUM
method was proved. Lai ([11],[12]) developed information-
theoretic bounds for sequential multihypothesis testing and
fault detection in stochastic systems.

Different modifications and generalizations of the
CUSUM method can be found in [13] and [14]. In [15] the
sequential change-point problem in Bayesian statement was
investigated for dependent and non-stationary observations.

The case of composite hypotheses for the problem of
sequential change-point detection is the most interesting for
applications, especially for the so called fault detection (FD)
problem for dynamic systems. Real-time FD is a decision
problem in which the healthy or faulty state of a system
has to be inferred from the observation of the available
data. The main difficulty in FD is that the observed data
depend on nuisances (unknown or uncertain parameters,
unknown inputs, unknown initial conditions, unobservable
states). The FD problem for general non-linear dynamic
systems can be reduced (under natural assumptions) to
the change-point detection problem for two collections of
probabilistic distributions: one collection corresponds to
observable variables before the change-point and another
collection corresponds to the variables after the change-
point. The idea of such reduction (for the off-line problem)
can be found in [16].

A special variant of the change-point problem for com-
posite hypotheses (when the mathematical expectation of
observed Gaussian random variables changes from zero to
δ or −δ) was considered in [17]. For this problem, the
asymptotic optimality in Lorden’s sense of the generalized
likelihood ratio statistic was established. The general form
of this statistic can be found in Lai ([18]). The detailed
review of the literature on this topic can be also found there.

To the best of our knowledge, the sequential change-
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point detection problem in the general context of composite
hypotheses, when the d.f. of observations not only after the
change-point but also before it is unknown and belongs to
a certain family of distributions, was not considered in the
literature.

This paper has two major objectives:
1) to propose a new criterion of quality for sequential

change-point detection methods for composite hypothe-
ses. This criterion is based upon the a priori inequality
proved by Brodsky and Darkhovsky, [19] (see also [20]
and corresponds very well to the intuitive requirements
of effectiveness of sequential change-point detection (here
it is possible to derive an analogy with the classic Rao-
Cramer inequality for an arbitrary estimate of an unknown
parameter);

2) to propose an asymptotically optimal detection method
(based on the lower bound for the criterion of quality) for
the general change-point detection problem with a change of
one composite hypothesis to another composite hypothesis.
The detection method was earlier announced in our paper
[21].

II. PROBLEM STATEMENT. ASSUMPTIONS

A. Problem Statement

On the probability space (Ω,F ,P) a sequence of inde-
pendent random vectors {ξk}∞k=1 is considered. Let θ =
(θ0, θ1), θ ∈ Θ, θ0 ∈ Θ0, θ1 ∈ Θ1, where Θ is a certain
parametric set which belongs to some open set U in the fi-
nite dimensional space, Θ = Θ0

⋃
Θ1, Θ0

⋂
Θ1 = ∅. Sup-

pose that the density function (d.f.) ξ with respect to some
σ-finite measure µ is equal to f(θ0, x), θ0 ∈ Θ0 before an
unknown change-point, and is equal to f(θ1, x), θ1 ∈ Θ1

after this change-point. The d.f. f is known and defined for
all parameter values from U .

In what follows we denote by Pm,θ(Em,θ) the measure
(mathematical expectation) corresponding to a sequence
{ξk}∞k=1 with the change-point at the instant m and the
fixed value of the parameter θ = (θ0, θ1) (so the d. f. of
observations ξn is equal to f(θ0, x) if n < m and f(θ1, x) if
n ≥ m). Symbols P∞,θ(E∞,θ) correspond to an observed
sequence without change-points. Therefore, in our notations
for an arbitrary point θ = (θ0, θ1) the measure P∞,θ

corresponds to an observed sequence with d.f. f(θ0, x) and
the measure P1,θ corresponds to an observed sequence with
d.f. f(θ1, x).

The problem consists in sequential detection of a change-
point m in the sequence of independent random variables
for the case of composite hypotheses H0 and H1 about
the density function of observations before and after the
change-point respectively.

For all known methods of sequential change-point de-
tection, a certain ”large parameter” N can be defined (see
[20]). In what follows we consider the asymptotics of se-
quential methods as N → ∞. Below for the asymptotically

optimal method, this ”large parameter” N will be explicitly
defined.

Suppose a is a certain change-point detection method
(depending on N ) and da

N(n) is its decision function such
that da

N(n) = 1 (da
N(n) = 0) corresponds to the decision

about the presence (absence) of a change at the instant
n, τa

N = min{n : da
N(n) = 1} is the stopping time w.r.t.

the natural flow of σ-algebras generated by observations.
Let us introduce the following classes of such stopping

times (and corresponding methods of detection)

M = {τN : sup
θ1∈Θ1

E1,θτN < ∞} (1)

Consider tests generated by stopping times from the set
M. Suppose θ∗1 is an arbitrary point from the set Θ1.
Starting from the point θ∗1 we define the point θ∗0(θ∗1) =
θ∗0(·) as the argument of the maximum of the following
criterion

max
θ0∈Θ0

(∫
ln

f(θ∗1 , x)
f(θ0, x)

f(θ∗1 , x)dµ(x)
)−1

= I−1
01 (θ∗0(·), θ∗1))

(2)
(below we make assumptions which guarantee that this
maximum is attained). If the set of maximum points in this
criterion consists of more than one point, then we choose
an arbitrary point from this set as θ∗0(·) (we will see below
that this choice does not influence the optimality rule).

In the sequel we use the notation θ∗ = (θ∗0(·), θ∗1).

If the point θ∗1 is the true parameter of the 1-d.f. af-
ter the change-point, then the point θ∗0(·) corresponds to
the least favourable alternative before the change-point:
the Kullback-Leibler distance dist (P1,θ∗ ,P∞,θ∗) between
distributions P1,θ∗ and P∞,θ∗ is minimal in virtue of the
definition of θ∗0(·).

Define for any method of detection a and an arbitrary
point θ∗ = (θ∗0(·), θ∗1)

αa
N(θ∗) = sup

n
P∞,θ∗

{
da

N(n) = 1
}
. (3)

The value αa
N is correctly defined for an arbitrary ”true”

parameter θ∗1 of the d.f. after the change-point and can be
interpreted as the maximal (for the given point θ∗1 ∈ Θ1 and
for the given method a) probability of the false alarm under
the least favourable alternative before the change-point.

Now consider the following new criterion of quality in
sequential change-point detection:

Ka
N(θ∗,m) =

Em,θ∗(τa
N − m)+

| lnαa
N(θ∗)| (4)

(here and below x+ = max(x, 0)).
Let us explain the sense of this criterion. For all methods

of sequential change-point detection, the ”large parameter”
N can be chosen in such a way that the ”false alarm”
probability diminishes exponentially as N → ∞ (see
[20]). On the other hand, for an arbitrary θ = (θ0, θ1)
the average time before the false alarm E∞,θτ

a
N is of the

asymptotic order (αa
N(θ))−1 as N → ∞ (see details below).
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Therefore this criterion Ka
N(θ∗,m) represents the ratio (in

a certain scale) of the average delay time in change-point
detection to the average time before the false alarm for
the change-point m and the parameter θ∗. Remind that
the average delay time in change-point detection and the
average time before the false alarm are the main qualitative
characteristics of any method of sequential change-point
detection. Usually the problem of sequential change-point
detection is formulated as follows: to minimize the average
delay time given the lower constraint on the average time
before the false alarm (or the upper constraint on the false
alarm probability). However, in our opinion, the proposed
criterion Ka

N(θ∗,m) characterizes the quality of a change-
point detection method no worse than these conventional
criteria and corresponds very well to the pragmatic sense
of the change-point detection problem.

Moreover, the advantage of the proposed criterion con-
sists in the fact that it allows for the asymptotic lower bound
(as N → ∞) that depends on the parameter θ∗ only (here
it is possible to derive an analogy with the classic Rao-
Cramer inequality for an arbitrary estimate of an unknown
parameter). This fact in its turn enables us to formulate
the problem of the asymptotically optimal change-point
detection: to find a method for which the a priori lower
bound on Ka

N(θ∗,m) is attained as N → ∞.

B. Assumptions

For any θ = (θ0, θ1) consider the following random
sequence

ηn(θ) = ln
f(θ1, ξn)
f(θ0, ξn)

Everywhere below we assume that the following condi-
tions are satisfied:

1) Θ is a compact set1;
2) µ{x : f(θ1, x) �= f(θ2, x)} > 0 if θ1 �= θ2;
3) For µ-a.e. x the functions f(θ1, x), f(θ0, x) are con-

tinuous with respect to θ ∈ Θ and are not equal to zero;
4) The function

(E1,θ ηn(θ))−1 =
(∫

ln
f(θ1, x)
f(θ0, x)

f(θ1, x)dµ(x)
)−1

is continuous with respect to θ0 ∈ Θ0 for any θ1 ∈ Θ1;
5) For θ̃ = (θ̃0, θ̃1)

∞ > sup
θ̃1∈Θ1

sup
θ∈Θ

E1,θ̃ ηn(θ) ≥ inf
θ̃1∈Θ1

inf
θ∈Θ

E1,θ̃ ηn(θ) > 0;

6) For any θ ∈ Θ, θ̃ ∈ Θ the uniform (w.r.t. θ ∈ Θ)
Cramer condition is satisfied

sup
θ∈Θ

E∞,θ̃ exp{tη(θ)} < ∞ for |t| < H0(θ̃0)

where inf θ̃0∈Θ0
H0(θ̃0) > 0.

1this assumption is used only to simplify the description

7) For any θ∗0 ∈ Θ0 the function

κ(t, θ, θ∗0) = ln
∫ (

f(θ1, x)
f(θ0, x)

)t

f(θ∗0 , x)µ(dx)

has only two zeros: 0 and t∗(θ, θ∗0) > 0, the func-
tion t∗(·, θ∗0) is continuous for any θ∗0 ∈ Θ0 and
minθ∈Θ t∗(θ, θ∗0) > 0.

III. MAIN RESULTS

A. Basic inequality

Let a be a certain change-point detection method with the
”large parameter” N , the decision rule da

N and the stopping
time τa

N generated by this decision rule. Let θ∗ = (θ∗0(·), θ∗1)
be an arbitrary (defined above) point from Θ.

Theorem 1: Let for any point θ∗ ∈ Θ and any fixed m
there exist the limits

lim
N→∞

Em,θ∗ (τa
N − m)+

N
< ∞, lim

N→∞
| lnαa

N(θ∗)|
N

> 0

Then

Ka(θ∗,m) = lim
N→∞

Em,θ∗ (τa
N − m)+

| lnαa
N(θ∗)| ≥ I−1

01 (θ∗) (5)

Remark. In [20] it was shown that for all known methods
of sequential change-point detection, given the above-made
assumptions, there exist all limits mentioned in the formu-
lation of this Theorem. Therefore inequality (5) is valid
for all known methods of sequential change-point detection.
Besides, all these limits exist for mixing random sequences
and therefore the results can be generalized to this case.

Let us return to the question about the sense of the
criterion Ka(θ∗,m). In [22] it was demonstrated that if the
false alarm probability does not exceed ε then with ε → 0
the average time before the false alarm is estimated from
below by the value (2ε)−1 (1 + o(1)) and this estimate is
sharp. On the other hand, in [20] it was shown that the false
alarm probability tends to zero exponentially as N → ∞
for all known methods of change-point detection and, due
to above inequality, the average time before the false alarm
is asymptotically equivalent to exp N . Besides, in [20] it
was shown also that for all known methods of change-point
detection Em,θ∗ (τa

N − m)+ ∼ N as N → ∞. It follows
from here that the criterion Ka(θ∗,m) represents — in a
certain scale — the upper estimate for the limit ratio of
the average delay time for an arbitrary hypothesis θ∗1 ∈ Θ1

after the change-point to the average time before the false
alarm under the least favourable alternative for the point θ∗1
(i.e. for the nearest in sense of Kullback-Leibler distance
hypothesis θ∗0(·) ∈ Θ0) before the change-point)

Clearly, this ratio should be kept as small as possible
(i.e. the smallest delay time in detection and the largest time
before the false alarm). However, from Theorem 1 it follows
that for the proposed criterion there exists the a priori lower
bound that depends only on the pair θ∗ = (θ∗0(·), θ∗1) (the
situation here is similar to the classic Rao-Cramer inequality
with respect to arbitrary estimates of a parameter). It is
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natural to call a method of sequential change-point detection
adaptive asymptotically optimal if inequality (5) turns into a
strict equality for it. The term ”adaptive” here means that the
proposed quality criterion attains asymptotically its a priori
lower boundary for any (a priori unknown) hypothesis after
the change-point.

B. Asymptotically optimal detection method

Suppose b > 0 is an arbitrary number. Denote by
Θ(b) ⊂ Θ, Θ(b) = (Θ0(b), Θ1(b)) a finite 1/b-network
in Θ, #Θ(b) = R(b).

Put

L(n, θ) = max
1≤k≤n

n∑
i=k

ln
f(θ1, xi)
f(θ0, xi)

(6)

Define the stopping time

TN(b) = inf
{

n : L(n, b) = min
θ0∈Θ0(b)

max
θ1∈Θ1(b)

L(n, θ) > N

}
,

(7)
and the corresponding decision rule

dN(n, b) =
{

1 if L(n, b) > N
0 if L(n, b) ≤ N

(8)

Evidently, if the sets Θ0, Θ1 consist of one point, then
the just described method of change-point detection turns
into the classic CUSUM method. Therefore it is natural to
call it the minimax method of cumulative sums (MMCS).
Below we add the index MMCS to all objects relating
to this method (in particular, stopping time (7), decision
rule (8) and the corresponding false alarm probability). The
term MMCS reflects as well the fact that the corresponding
method minimizes the maximal (for any given parameter
θ∗1) asymptotic loss in quality (in the sense of above new
criterion) of change-point detection among all methods.

Note that in (7) we can interchange operations max and
min.

Denote

KMMCS

b (θ∗,m) = lim
N→∞

Em,θ∗ (T MMCS

N (b) − m)+

| lnαMMCS

N (θ∗)|
Theorem 2: Let θ∗ be any above-defined point in Θ.

Then for any ε > 0 there exist b(ε), ρ(ε) (b(ε) ↑ ∞, ρ(ε) ↓
0 as ε → 0) such that method dMMCS

N (n, ε), corresponding
to the stopping time T MMCS

N (b(ε)) = T MMCS
N (ε), satisfies

the relationship

I−1
01 (θ∗) + ρ(ε) ≥ KMMCS

ε (θ∗,m) ≥ I−1
01 (θ∗) (9)

Therefore, it follows from the Theorem that MMCS
method corresponding to the stopping time

T MMCS

N = inf
{

n : min
θ0∈Θ0

max
θ1∈Θ1

L(n, θ) > N

}
, (10)

is adaptive asymptotically optimal.
Note that if the hypothesis before the change-point is

simple (it means that the set Θ0 consists of one point),
then the proposed adaptive asymptotically optimal test turns

into the generalized likelihood ratio test (GLRT) (see,
for example, [12]). However, in the general case of two
composite hypotheses the GLRT test is not asymptotically
optimal.

IV. EXPERIMENTAL RESULTS

In this section some results of a small simulation study is
given in order to assess the efficiency of the proposed min-
imax CUSUM method of sequential change-point detection
in the general situation of composite hypotheses both before
and after a change-point.

The following data were analyzed. The Gaussian se-
quence was simulated with the d.f. N (θ, 1). Under the
null hypothesis H0: θ = θ0 ∈ [0, 1], under the alternative
hypothesis H1: θ = θ1 ∈ [2, 5]. The minimax method of
cumulative sums (MMCS) was analyzed.

The objective was to estimate characteristics of the
proposed method in two main regimes of change-point
detection:

– the ”false alarm” regime: here some value of θ0 from
the interval [0, 1] was fixed and the average time before the
”false alarm”: ET was estimated;

– the change-point detection regime: here the average
delay time in change-point detection for different values of
θ1 from the interval [2, 5] was estimated.

Each value in cells of these tables is obtained as the
average of 5000 Monte Carlo trials. Here ET is the average
time between ”false alarms” (which is asymptotically equal
to 1/p, where p is the probability of the error decision);
lnET is the logarithm of ET ; Eτ is the average delay time
in change-point detection; Eτ/ lnET is the ratio criterion
of efficiency.

Table 1.

N 2 3 4 5
θ0 ET 138.7 577.2 2203.2 8091.1
0.5 lnET 4.93 6.36 7.70 9.00
θ1 Eτ 3.89 5.53 7.34 9.30
2 Eτ/ lnET 0.79 0.86 0.95 1.03
θ1 Eτ 1.68 2.15 2.49 3.04
3 Eτ/ lnET 0.34 0.33 0.32 0.33
θ1 Eτ 1.15 1.33 1.49 1.63
4 Eτ/ lnET 0.23 0.20 0.19 0.18

Results presented in Table 1 allow us to conclude that the
proposed minimax method of cumulative sums is practically
efficient in the general situation of sequential change-point
detection under composite hypotheses both before and after
a change-point. The ratio Eτ/ lnET of the average delay
time in change-point detection to the logarithm of the
average time before a ”false alarm” tends to a certain limit
as the threshold N increases.
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V. CONCLUSION

The problem of sequential change-point detection under
composite hypotheses is considered. In the general situation
it is assumed that the density function of observations not
only after a change-point but also before it is unknown and
belongs to a certain family of distributions. This problem
is very important for applications, in particular, in the case
when it is necessary to detect faults in dynamical systems.
The problem of fault detection for dynamical systems can
be reduced to the change-point problem under composite
hypotheses which are characterized by a finite-dimensional
vector with such components as uncertain parameters of a
system, unknown inputs, unknown initial conditions, and
unknown states of this system. Therefore, the true hypothe-
sis before a change-point is unknown as well as the true
hypothesis after the change-point. The advantage of the
proposed criterion consists in the fact that it is possible
to prove the asymptotic lower bound for this criterion
and therefore to find the asymptotically optimal method of
change-point detection.

It should be emphasized that the case of composite hy-
potheses before and after a change-point was not considered
in the literature.

A new asymptotically optimal method of change-point
detection is proposed for which the a priori information-
theoretical lower bound for the main functional of quality
of change-point detection is attained. In a particular case
when the hypothesis before the change-point is simple the
proposed method turns into the generalized likelihood ratio
test but it is not true in the general case of two composite
hypotheses (before and after the change-point).
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