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Abstract— An iterative algorithm to perform the J-spectral
factorization of a para-Hermitian matrix is presented. The
algorithm proceeds by computing a special kernel represen-
tation of an interpolant for a sequence of points and associated
directions determined from the spectral zeroes of the to-be-
factored matrix.

I. INTRODUCTION

The problem of polynomial J-spectral factorization is the
following: a real para-hermitian w × w polynomial matrix
Z in the indeterminate ξ (i.e. Z(−ξ) = Z(−ξ)T ) is given,
together with two integers n+ and n− such that n++n− = w.
It is required to find, if it exists, a w× w polynomial matrix
F such that

Z(ξ) = FT (−ξ)JF (ξ)

where

J =
[
In+ 0
0 −In−

]

and F is Hurwitz, i.e. has no singularities in the closed
complex right half-plane.

Polynomial J-spectral factorization arises in different ar-
eas of systems and control, for example in the case of
Wiener filtering, LQG theory, in the polynomial- and in
the behavioral approach to H∞-control and filtering (see
[13], [14], [15]. Many algorithms have been suggested for
the solution of such problem, especially in the case when
n− = 0, i.e. J = Iw (see [2], [4], [5], [6], [7], [8], [14],
[21]). In this paper we propose an algorithm based on the
J-unitary kernel representations of solutions to the subspace
Nevanlinna interpolation problem (see [20]), and on the
calculus of quadratic differential forms introduced in [23].
The theory of metric interpolation has been used in [6], [7]
for solving the problem of rational spectral factorization (i.e.
the case in which J = Iw and the entries of the matrix
Z consist of rational functions); however, the approach
proposed in this paper differs from that of [6], [7] in many
aspects. First, our approach arises in the theory of quadratic
differential forms (QDFs in the following), and uses two-
variable polynomial matrix algebra. This point of view allows
new insights in the nature of the problem. For example, an
important consequence of our reliance on the theory of QDFs
is that we are able to formulate necessary and sufficient
conditions for the existence of a J-spectral factorization
based on the signature of a Pick-type matrix derived from
Z and its singularities in C+, thus providing an original and
effective test alternative to the ones already known. Secondly,
our approach covers also the case when J �= Iw, which
is of special interest in H∞-control and filtering. Finally,

the functioning of the algorithm does not depend on the
assumptions underlying the algorithm proposed in [6], [7].

The paper is organized as follows: in section II we illus-
trate the basic features of modeling vector-exponential time
series. In section III we illustrate our procedure for J-spectral
factorization and we sketch the proof of its correctness.
In section IV we illustrate the results with two examples.
Section V is devoted to relating the results presented in sec-
tion III to existing approaches, and to discussing the current
extension of the results in several important directions.

Because of space limitations, we are forced to omit any
exposition of the behavioral approach to systems and control,
and of the theory of quadratic differential forms and the
associated calculus of two-variable polynomial matrices; the
interested reader is referred to [16], [23] respectively for a
thorough exposition.
Notation: The space of n dimensional real, respectively
complex, vectors is denoted by R

n, respectively C
n, and the

space of m×n real, respectively complex, matrices, by R
m×n,

respectively C
m×n. Whenever one of the two dimensions is

not specified, a bullet • is used. Given two column vectors
x and y, we denote with col(x, y) the vector obtained by
stacking x over y; a similar convention holds for the stacking
of matrices with the same number of columns. Given a
Hermitian matrix S ∈ C

w×w, we define its inertia as the triple
σ(S) := (σ−, σ0, σ+) where σ+ is the number of eigenvalues
of S with positive real part, σ− is the number of eigenvalues
of S with negative real part, and σ0 is the number of purely
imaginary eigenvalues of S. If A = [Aij ] ∈ C

p×m, then
A∗ := [Āji] ∈ C

m×p with¯denoting complex conjugate.
The ring of polynomials with real coefficients in the

indeterminate ξ is denoted by R[ξ]; the ring of two-variable
polynomials with real coefficients in the indeterminates ζ and
η is denoted by R[ζ, η]. The space of all n × m polynomial
matrices in the indeterminate ξ is denoted by R

n×m[ξ], and
that consisting of all n × m polynomial matrices in the
indeterminates ζ and η by R

n×m[ζ, η]. Given a matrix R ∈
R
n×m[ξ], we define R(ξ)∼ := R(−ξ)T ∈ R

m×n[ξ].
We denote with C∞(R, Rw) the set of infinitely often dif-

ferentiable functions from R to R
w. The exponential function

eλt is denoted with expλ.

II. Σ-UNITARY MODELING OF DUALIZED DATA
SETS

In this section we illustrate the basic features of modeling
dualized data sets, a concept introduced in [20] in the context
of the subspace Nevanlinna interpolation problem (SNIP in
the following). We put special emphasis on the structure
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of the J-unitary kernel representation of its solution, which
plays a central role in the algorithm for Σ-spectral factoriza-
tion illustrated in section III. The interested reader is referred
to [20] for a thorough exposition of the various aspects of
the SNIP and to [3], [22] for information on the notion of
Most Poweful Unfalsified Model and on how interpolation
problems can be cast in the framework of modeling vector-
exponential time-series.

A standard problem in modeling vector-exponential time
series is the following (see [3], [20]): we are given N distinct
points λi in the complex right half-plane, together with N
subspaces Vi ⊆ R

p+m, i = 1, . . . , N . It is required to find a
polynomial matrix R ∈ R

p×(p+m)[ξ], such that R(λi)v = 0
for all v ∈ Vi, i = 1, . . . , N ; such a matrix R is called
a solution to the interpolation problem. Often additional
requirements on R are given, for example that the transfer
function of the behavior ker(R( d

dt )) is stable and contractive,
as it happens in the SNIP.

In order to state the main result of this section we need
first to introduce a couple of important concepts. The first
one is that of data dualization. Define the matrix

Σ :=
[
Im 0
0 −Ip

]

We associate with each pair (λi,Vi) the set of trajectories

Vi expλi
:= {v expλi

|v ∈ Vi}
and we define its dual set as

V⊥
i exp−λ̄i

:= {w exp−λ̄i
|wΣv = 0 for all v ∈ Vi}

We call the set

∪N
i=1Vi expλi

∪V⊥
i exp−λ̄i

the dualized data set.
Next, we introduce the notion of Pick matrix associated

with the data {(λi,Vi)}i=1,...,N . Let Vi ∈ R
(p+m)×dim(Vi)

be a full column rank matrix such that Im(Vi) = Vi, i =
1, . . . , N . The (

∑N
i=1 dim(Vi))×(

∑N
i=1 dim(Vi)) Hermitian

matrix
T{Vi} :=

[
V ∗

i ΣVj

λ̄i+λj

]
i,j=1,...,N

is called the Pick matrix associated with {(λi,Vi)}i=1,...,N .
Of course T{Vi} depends on the particular basis matrices vi

chosen for Vi, but the signature of all such matrices is the
same. It is indeed the signature that plays an important role in
the algorithm for J-spectral factorization that will be stated
in the next section.

The following result can be proved in a way analogous to
that of Theorem 4.1 of [20].

Theorem 1: The following statements are equivalent:

1) The Hermitian matrix T{Vi} is nonsingular;
2) The Most Powerful Unfalsified Model for the dualized

data set ∪N
i=1Vi expλi

∪V⊥
i exp−λ̄i

has a kernel repre-
sentation of the form

R̂ :=
[
M∼Σ

R

]
(1)

where M ∈ R
(p+m)×m[ξ], R ∈ R

p×(p+m)[ξ] satisfy the
following properties:

(a) RM = 0
(b) R̂∼ΣR̂ = R̂ΣR̂∼ = pp∼Σ with p ∈ R[ξ] a

Hurwitz polynomial.
A matrix R̂ satisfying the property (b) in statement 2 of the
Theorem will be called a Σ-unitary matrix in the following.

It can be shown (see the proof of Theorem 4.1 in [20] for
details) that if the matrix TV = V ∗ΣV

λ̄+λ
is nonsingular, then

given a subspace V expλ, a Σ-unitary model R̂ satisfying
properties (a) − (b) of the Theorem can be computed as

R̂(ξ) := (ξ + λ̄)Ip+m − V T−1
V V ∗Σ (2)

where V ∈ R
(p+m)×dim(V) is such that Im(V ) = V and TV

is the Pick matrix associated with V , i.e. TV = V ∗ΣV
λ̄+λ

. The

partition (1) of R̂ is obtained defining M∼Σ and R as the
first m rows, respectively last p rows, of R̂.

Using the representation (2) for the model for one set of
trajectories V expλ and the notion of error trajectory defined
in [3], a recursive algorithm can be constructed that provides
a representation for the model for ∪N

i=1Vi expλi
∪V⊥

i exp−λ̄i

satisfying (a) − (b) of Theorem 1. See [20] for details.

III. THE ALGORITHM

In this section we illustrate an algorithm for the com-
putation of a J-spectral factor of a para-Hermitian matrix
Z ∈ R

(p+m)×(p+m)[ξ] based on the concept of Σ-unitary
modeling illustrated in the previous section. In the following
we present a simplified version of the algorithm for ease of
exposition; for pedagogical reasons we leave out many of
the technical details necessary in order to prove the general
case. See also the remarks in section V of this paper.

We assume that a symmetric two-variable polynomial
matrix Φ ∈ R

(p+m)×(p+m)
s [ζ, η] such that Φ(−ξ, ξ) = Z(ξ) ∈

R
(p+m)×(p+m)[ξ] has been computed, and that Φ(ζ, η) admits

the symmetric factorization (see [23] for details)

Φ(ζ, η) = KT (ζ)ΣK(η),

where Σ ∈ R
•×• is a nonsingular symmetric matrix, and

K = col(Q,P ), with Q ∈ R
m×(m)[ξ], P ∈ R

p×(m)[ξ], is such
that PQ−1 is a matrix of strictly proper rational functions.
Observe that often, and most notably in the context of H∞-
control and filtering applications, the para-Hermitian matrix
Z actually is already given in such a factorized form (see
for example [24], [25] and section 3 of [21], in particular
Lemma 3.1 therein).

Now let λi, i = 1, . . . , n be the singularities of Z in the
right half-plane, and let Vi ∈ R

•×• be full column rank
matrices such that Im(Vi) = Im(K(λi)), i = 1, . . . , n. In
the following we make the assumptions:

1) T =
[

V ∗
i ΣVi

λ̄j+λi

]n

i,j=1
is nonsingular;

2) deg(det(Q)) = n = 1
2 deg(det(Z)).

Now partition Σ as

[
Σ1 Σ2

ΣT
2 Σ3

]
compatibly with the par-

tition of K; under the assumptions stated above, it can be
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shown that the inertia σ(Z(iω)) is constant for all ω ∈ R, and
that it is the same as σ(Σ1). Observe that this implies that Z
admits a σ(Σ1)-spectral factorization Z = D∼σ(Σ1)D (see
[5]).

We now proceed first to state our algorithm for the
computation of a Σ1-spectral factorization of Z, i.e. of a
square, Hurwitz matrix D such that Z = D∼Σ1D. Observe
that once such factorization is known, the computation of
a σ(Σ1)-factorization of Z can be computed easily from a
factorization Σ1 = V T σ(Σ1)V obtained through standard
numerical procedures. After having stated the algorithm, we
will sketch the line of proof to follow in order to show the
correctness of the procedure.

Algorithm 2:

Input: Σ, K from a factorization K∼ΣK of Z
satisfying Assumptions 1 and 2.

Output: A Σ1-spectral factorization Z = D∼Σ1D, with
D square and Hurwitz.

Compute the singularities λi, i =
1, . . . , n of Z in C+;
Define K1 := K;
For i = 1, . . . , N do

Let Vi ∈ R
(p+m)×• be a full

column rank matrix such that
Im(Vi) = Im(Ki(λi));

Compute model (2) Ri ∈
R

(p+m)×(p+m)[ξ] for interpolation
problem with data (λi, Vi);

Define Ki+1(ξ) := Ri(ξ)Ki(ξ)
ξ−λi

;
end;

The following is the main result of this paper.
Theorem 3: Let Φ(ζ, η) = KT (ζ)ΣK(η) be given, with

K = col(Q,P ) ∈ R
(p+m)×m[ξ] such that PQ−1 is a matrix

of strictly proper rational functions. Denote the right half-
plane zeros of det(Φ(−ξ, ξ)) with λi, i = 1, . . . , n, and let
Vi ∈ R

•×• be a full column rank matrix such that Im(Vi) =
Im(K(λi)). Assume that conditions (1)-(2) are satisfied.

Then the matrix Kn+1 obtained at the end of Algorithm
2 is such that Kn+1 = col(D, 0), with D ∈ R

(m)×(m)[ξ] a
Hurwitz Σ1-spectral factor of Φ(−ξ, ξ), i.e.

Φ(−ξ, ξ) = D(−ξ)T Σ1D(ξ)
The proof of this result is rather lengthy and consequently
in the following we merely sketch it, glossing over the many
technical details.
Sketch of proof : First, it is shown that the nonsingularity

of the Pick matrix T =
[

V ∗
i ΣVi

λ̄j+λi

]n

i,j=1
is equivalent to the

nonsingularity of the Pick matrix associated with the error
subspace of the model (2) (see [3]) at the i-th iteration. This
implies that the one-step model (2) can be defined at each
iteration step.

The model (2) can also be shown to preserve the strict
properness of Ki+1 in the step Ki(ξ) → Ri(ξ)Ki(ξ)

ξ−λi
=

Ki+1(ξ) of the algorithm, in the following sense. If Ki

is such that Ki = col(Qi, Pi) with PiQ
−1
i strictly proper,

then also Ki+1 =: col(Qi+1, Pi+1) is such that Pi+1Q
−1
i+1

is strictly proper.
Now write Ki = K ′

iUi, with K ′
i right prime, and Ui ∈

C
•×•[ξ] a greatest common right divisor of Ki. Partition

K ′
i as K ′

i = col(Q′
i, P

′
i ). It can be shown that the degree

of the determinant of the denominator Qi associated with
the transfer function of Ki decreases with i. In particular,
it can be proved that deg(det(Q′

n+1) = 0, i.e. Qn+1 is a
unimodular matrix. The last conclusion, together with the
fact that the strict properness of of Ki is preserved, implies
that Pn+1 is the zero matrix.

It turns out that, due to the Σ1-unitariness of the model
(2), the matrix Ki generated at each step satisfies

KT
i (−ξ)ΣKi(ξ) = Φ(−ξ, ξ) = Z(ξ)

for i = 1 . . . n. Moreover, deg(det(Qi)) = deg(det(Q1)),
i = 1, . . . , n.

Now using the equation KT
i (−ξ)ΣKi(ξ) = Φ(−ξ, ξ) it

can be shown that Q′
n+1 satisfies Q′

n+1(−ξ)T Σ1Q
′
n+1(ξ) =

Σ1, i.e. Q′
n+1 is unimodular and Σ1-unitary. This implies

that the product of the greatest common right divisors
U := Πn

i=1Ui is Hurwitz, and consequently that the matrix
Qn+1 = Q′

n+1U is a (Σ1)-spectral factor of Φ(−ξ, ξ) =
Z(ξ) as stated in the claim of the Theorem.

IV. EXAMPLES

In this section we provide two examples of the application
of our results to J-spectral factorization. In the first one, Al-
gorithm 2 can be applied as it is, since the conditions on the
matrix K arising from a symmetric canonical factorization
of Φ are satisfied. In the second example, we show some of
the preprocessing steps that need to be performed in order
for the results to be applied to matrices not satisfying those
conditions.

Example 4: Consider

Z(ξ) =
[
1 − ξ2 ξ
−ξ 1 − ξ2

]

Note that Z(iω) has inertia (2, 0, 0) for all ω ∈ R. Pre-factor
Z(ξ) as

Z(ξ) =

⎡
⎢⎢⎣
−ξ 0
0 −ξ
1 0
0 1

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

1 0 0 −0.5
0 1 0.5 0
0 0.5 1 0

−0.5 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ξ 0
0 ξ
1 0
0 1

⎤
⎥⎥⎦

Observe that in this case m = p = 2, that Σ1 = I2, and
that n = 1

2 deg(det(Z)) = 2. Observe also that Z(ξ) has
0.86± i0.5 as singularities in C

+, and that since the inertia
of Σ1, the (1, 1)-block of the matrix Σ, is (2, 0, 0), there
exists a I2-spectral factorization of Z.

It can be easily verified that the Pick matrix associated
with the data is nonsingular. Consequently the model (2)
can be constructed at every step. We initialize

K1(ξ) =

⎡
⎢⎢⎣

ξ 0
0 ξ
1 0
0 1

⎤
⎥⎥⎦ ,
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and we compute K1(0.86 + i0.5). It is not difficult to see
that K1(0.86+ i0.5) has full column rank, and consequently
we can define

V1 = K1(0.86 + i0.5) =

⎡
⎢⎢⎣

0.86 + i0.5 0
0 0.86 + i0.5
1 0
0 1

⎤
⎥⎥⎦

In step i = 1, we proceed to compute a model R̂1(ξ) as in
(2) for the data pair (0.86 + i0.5, Im(V1)):⎡
⎣

−i0.6 + ξ −0.4 −0.8 − i0.34 0.34 + i0.2
0.4 −i0.6 + ξ −0.34 − i0.2 −0.8 − i0.34

−0.8 + i0.34 −0.34 + i0.2 −i0.4 + ξ 0.4
0.34 − i0.2 −0.8 + i0.34 −0.4 −i0.4 + ξ

⎤
⎦

This model yields K2(ξ) = R̂1(ξ)K1(ξ)/(ξ − 0.86 − i0.5).
It is easy to verify that K2(0.86 − i0.5) is also full column
rank, and consequently we can define V2 = K2(0.86− i0.5).

In step i = 2, we compute a model R̂2(ξ) as in (2) for
the data pair (0.86 − i0.5, Im(V2)):⎡
⎢⎣
−0.86 + i0.6 + ξ −0.1 −0.2 + i0.34 0.51 − i0.2

0.1 −0.86 + i0.6 + ξ −0.51 + i0.2 −0.2 + i0.34
−0.2 − i0.34 0.34 − i0.2 0.86 + i0.4 + ξ

0.1
−0.34 + i0.2 −0.2 − i0.34 −0.1 0.86 + i0.4 + ξ

⎤
⎥⎦

We then define

Kn+1(ξ) = K3(ξ) =
R̂2(ξ)K2(ξ)

ξ − 0.86 + i0.5
=

⎡
⎢⎢⎣

0.86 + ξ −0.5
0.5 0.86 + ξ
0 0
0 0

⎤
⎥⎥⎦

As stated in Theorem 3, the matrix Kn+1 has the last p rows
equal to zero.

Observe that Qn+1(ξ) =
[
0.86 + ξ −0.5

0.5 0.86 + ξ

]
has sin-

gularities in −0.86±i0.5, i.e. Qn+1 is Hurwitz. Moreover, as
stated in the last part of Theorem 3, Qn+1(−ξ)T Qn+1(ξ) =
Z(ξ), i.e. Qn+1 is a spectral factor of Z.

Example 5: The purpose of this example is to show that
the ideas presented in this paper can be used also for the
general case, provided certain preprocessing steps are carried
out. We consider an example of a mixed-sensitivity problem
from [15], Example 4.4.3, with parameters r = 0, c = 1,
and γ = 2.

Consider the matrix

Z(ξ) =

⎡
⎣ 1 −1 + ξ
−1 0
2 2ξ

⎤
⎦

T ⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦

⎡
⎣ 1 −1 − ξ
−1 0
2 −2ξ

⎤
⎦

=
[ −2 −1 + 3ξ
−1 − 3ξ 1 + 3ξ2

]

It can be shown that Z(iω) has inertia (1, 0, 1) for all ω ∈ R.
However, it can be readily verified that the transfer function
associated with the factorization above is not strictly proper.

In order to perform the spectral factorization, we write

N(ξ) =
[
2 −2ξ

]
=

[
2 0

] [−1 −1 − ξ
−1 0

]
+

[
0 2

]

and define

M ′(ξ) :=

⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦ M(ξ) =

⎡
⎣ 1 −1 − ξ
−1 0
0 2

⎤
⎦

Note that the transfer function corresponding to M ′ is strictly
proper. Note also that Z(ξ) = M ′(ξ)T Σ′M(ξ) where

Σ′ =

⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦
−T ⎡

⎣−3 0 2
0 1 0
2 0 −1

⎤
⎦

⎡
⎣ 1 0 0

0 1 0
−2 0 1

⎤
⎦
−1

It is easy to verify that M ′(1) has full column rank. We
can choose V1 = M ′(1) and proceed with the Σ′ unitary
modeling obtaining

R(ξ) =

⎡
⎣−3 + ξ −2 −2

2 1 + ξ 2
2 2 1 + ξ

⎤
⎦

and

R(ξ)M ′(ξ)
ξ − 1

=

⎡
⎣ 1 1 − ξ
−1 −2
0 0

⎤
⎦

Now define

F (ξ) =
[

1 1 − ξ
−1 −2

]

Observe that F is Hurwitz, and moreover that Z(ξ) =

F (−ξ)T

[−3 0
0 1

]
F (ξ).

V. COMMENTS

We discuss some of the issues pertaining to Algorithm 2
in a series of remarks centered around various aspects of the
result of Theorem 3.

Remark 6: As mentioned in the introduction to the previ-
ous section, in the illustration of out results we have decided
to concentrate on a special case for ease of exposition.
Observe for instance that in Example 5 we have considered
a matrix Z which did not satisfy the assumptions stated in
Theorem 3, and that with minimal adaptation Algorithm 2
has been shown to work even in that case. In a forthcoming
paper we will show that the only necessary and sufficient
condition for the existence of a Σ1-spectral factorization and
for the functioning of Algorithm 2 are Assumptions (1) and
(2). This provides a necessary and sufficient condition for the
existence of a Σ1-spectral factorization which, to the best of
the authors’ knowledge, is original and alternative to the ones
already known in the literature (see [5]).

Remark 7: It is well-known (see for example Theorem 1
of [19]) that the problem of J-spectral (rational) factorization
is related to that of solving algebraic Riccati equations with
indefinite input cost matrices R. In a forthcoming publication
we will pursue from the point of view adopted in this
paper this relationship and the application of interpolation
algorithms to the state-space case.

Remark 8: Algorithm 2 has a clear interpretation from the
point of view of QDFs and their calculus. In particular, it can
be shown that the model (2) corresponds to a very special,
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“matched” (in the sense of section 10 of [23]) basis of the
state space of ImK( d

dt ) and consequently of QΦ, and that the
iterations of the algorithm correspond to the determination
of special QDFs satisfying certain interpolation conditions.
These connections are the subject of a forthcoming publica-
tion.

Remark 9: The numerical and computational complexity
aspects of the implementation of Algorithm 2 are a topic of
considerable interest in its own right, as it is its comparison
with existing algorithms (see for example [14]); these issues
will be addressed elsewhere.

Remark 10: One of the most interesting aspects of Algo-
rithm 2 is the following. It can be shown that the iteration
produces, in the last p rows of the model R̂n+1, a kernel
representation of an optimal controller for an H∞-problem
associated with Σ and K of the symmetric canonical factor-
ization of Φ(ζ, η). This fact opens a new avenue of approach
to the solution of the kind of H∞-control problems arising in
the polynomial- and in the behavioral approach to control, an
approach based on vector-exponential time-series modeling,
or equivalently on interpolation. The connection of H∞-
control and interpolation problems has long been recognized
(see [9], [10], [11], [12]). The results presented in this paper
can be shown to have these well-known techniques developed
in the transfer function and in the state-space frameowrk as
special cases. The authors will pursue these ramifications in
a forthcoming paper, in which also concrete applications of
the results presented here to the design of H∞-controllers
will be considered.
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