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Abstract— In this contribution a numerical method for de-
riving an approximate input-output linearizing controller for
minimum phase systems is presented. The approach is based
on the derivation of a bilinear approximation model of higher
order, which approximates the considered system on a prespec-
ified multivariable state-space interval. By means of the exact
input-output linearizing state feedback of the bilinear model
an approximate input-output linearizing controller for the
original system with polynomial numerator and denominator
is determined. Local stability of the closed-loop system can
be assured by subsequently applying a suitable adjustment
procedure. The results of the paper are demonstrated by means
of a simple example.

I. INTRODUCTION

Exact input-output linearization (see [1]) is one of the

most commonly used methods of nonlinear control theory

in practical applications. Applying this approach a nonlin-

ear state feedback can be derived which achieves a linear

input-output behavior of the closed-loop system with easily

designable dynamics. However, apart from the restriction

that the system under consideration must have a stable

zero dynamics the derivation of the nonlinear controller

usually requires symbolic calculations, which often turn out

to be rather sophisticated (see e.g. [2]). Another drawback

is that the structure of the resulting input-output linearizing

feedback may be very complicated and therefore unsuitable

with respect to implementation.

As remedy for these problems several methods have been

developed based on approximate and/or numerical calcula-

tions. One possibility is the computation of the exact lineariz-

ing control law by automatic differentiation (see [3]). This

approach computes the values of the control input generated

by the input-output linearizing controller numerically. Kang

[4] showed how an approximate input-output linearizing

controller can be obtained using a Taylor expansion of

the model nonlinearities. Recently, Deutscher [5] proposed

another numerical approach applying multivariable Legendre

polynomials to achieve an exact algebraic expression for

the exact linearizing feedback. In general, however, state

space embedding of nonpolynomial nonlinearites must be

accomplished beforehand, which is only feasible by means

of symbolic evaluation.

In this paper an alternative way of using multivariable

Legendre polynomials is described, which from the begin-

ning allows the efficient use of numerical software tools

for deriving an approximation of the input-output linearizing

controller for minimum phase SISO systems. To this end,

the ideas of [6] are used to derive a bilinear approximation

model of higher order, which approximates the behavior of

the original system on a prespecified multivariable state-

space interval. Based on the exact input-output linearizing

feedback law for the bilinear system, which is given in

an explicit form, an approximation for the corresponding

linearizing controller of the original model with polynomial

numerator and denominator is determined. Local stability of

the closed-loop system can be guaranteed by adjusting the

resulting control law such that its linearization coincides with

a suitable linear stabilizing reference controller. Note that

the quality of the derived approximation is nearly equally

good on the entire predefined state-space interval. This

represents a significant advantage compared to Kang’s [4]

approach, which is only suitable for small deviations of the

operating point due to the local character of the Taylor series

expansion.

After briefly introducing multivariable Legendre polyno-

mials the derivation of the bilinear approximation model and

the computation of its relative degree are explained in Section

II. Section III shows the calculation of the approximate input-

output linearizing feedback followed by a systematic adjust-

ment procedure, which guarantees local stability. Finally, the

proposed method is applied to a simple example in Section

IV.

II. L2-OPTIMAL BILINEARIZATION

A. Multivariable Legendre polynomials

The proposed bilinearization method is based on the use

of multivariable Legendre polynomials, which are briefly

introduced in the following (for further details see e.g. [6]).

It is well known that the Legendre polynomials ϕ1(xν) in

one variable xν represent an orthogonal set on the space

L2([−1, 1]) of Lebesgue-measurable, square-integrable func-

tions. The set of multivariable Legendre polynomials in n
variables xν , ν = 1, 2, . . . , n, can be introduced according

to

ϕk1···kn(x) = ϕ1
k1

(x1) · . . . · ϕ1
kn

(xn) (1)

where the degree of ϕk1···kn(x) is defined as k =
n∑

ν=1
kν and

kν = deg
(
ϕ1

kν
(xν)

)
. As shown in [6] the polynomials (1)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB02.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 4903



fulfill the orthogonality relation

〈ϕj1···jn(x), ϕk1···kn(x)〉 =

=
∫

Ipol

ϕ1
j1(x1)ϕ1

k1
(x1) · . . . · ϕ1

jn
(xn)ϕ1

kn
(xn)dx

=

⎧⎨
⎩

n∏
ν=1

2
2kν+1 : jν = kν

0 : jν �= kν

∀ ν = 1, 2, . . . , n (2)

on Ln
2 (Ipol) with Ipol = [−1, 1]n. In order to achieve a com-

pact notation for the subsequent calculations all multivariable

Legendre polynomials are comprised in the nΦ-dimensional

vector

Φ(x) =
[
Φ1(x) Φ2(x) . . . ΦnΦ(x)

]T
(3)

of all polynomials up to degree Ndeg, where nΦ =
(
n+Ndeg

n

)
and Φ1(x) = 1. Using (3) as a basis within the set of

polynomials up to degree Ndeg another important property

of multivariable Legendre polynomials can be specified,

namely that by introducing the operational matrices for

multiplication Mµ, µ = 1, 2, . . . , nΦ, and for differentiation

Dν , ν = 1, 2, . . . , n, according to

Φµ(x)Φ(x) ≈ MµΦ(x) (4)

∂Φ(x)
∂xν

= DνΦ(x) (5)

any differentiation and multiplication operation can be ac-

complished by simple matrix manipulations. However, since

the multiplication Φµ(x)Φ(x) with µ > 1 results in a vector

containing polynomials of degrees higher than Ndeg the

relationship (4) only means the best feasible approximation

with polynomials up to degree Ndeg in an L2-error norm

sense.

Remark 1: In the sequel the notation ”≈” always denotes

an approximation in the minimal L2-error norm sense.

B. Derivation of the bilinear approximation model

Consider the nth order nonlinear SISO system

ẋ = f(x) + g(x)u (6)

y = h(x) (7)

It is assumed that f(x) and g(x) are elements of the space

Ln
2 (Iaprx) with

Iaprx = [x1,min, x1,max] × . . . × [xn,min, xn,max] (8)

and h(x) is an element of the space L2(Iaprx). In the follow-

ing an approximation procedure for the L2-approximation of

the system (6)–(7) on a prespecified interval Iaprx in the state

space is outlined. For further details the reader is referred to

[6].

Step 1 (interval transformation):: Before the multivariable

Legendre polynomials can be applied, the approximation

interval Iaprx (see (8)) of the nonlinear system (6)–(7) must

be adjusted to the interval Ipol = [−1, 1]n on which the

multivariable Legendre polynomials (1) are defined. This can

be achieved by the linear affine state transformation

xν =
xν,max − xν,min

2
x̃ν +

xν,max + xν,min

2
(9)

ν = 1, 2, . . . , n, which results in the state space model

˙̃x = f̃(x̃) + g̃(x̃)u (10)

y = h̃(x̃) (11)

with the associated approximation interval Ipol = [−1, 1]n.

Remark 2: This simple transformation represents the only

operation which requires symbolic evaluation techniques. All

succeeding steps of the proposed controller design process

can be performed by purely numerical calculations.
Step 2 (L2-approximation of the nonlinearities):: Next,

the nonlinearities on the right hand side of (10)–(11) are

approximated by multivariable Legendre polynomials in an

L2-optimal way. For lack of space this is only shown for

the vector function f̃(x̃) in the following (see (10)). After

choosing a suitable approximation degree Ndeg , the vector

field f̃(x̃) is approximated by the polynomial vector function

f̃(x̃) ≈ FΦ(x̃) (12)

where the (n, nΦ) coefficient matrix F has to be determined

such that the L2-norm error

e = ‖f̃(x̃) − FΦ(x̃)‖ 2

=
〈
f̃(x̃) − FΦ(x̃), f̃(x̃) − FΦ(x̃)

〉 1
2

(13)

is minimized. As described in [6] the solution to the stated

problem is given by

F =
〈
f̃(x̃), ΦT (x̃)

〉 〈
Φ(x̃), ΦT (x̃)

〉−1
(14)

where
〈
f̃(x̃), ΦT (x̃)

〉
and

〈
Φ(x̃), ΦT (x̃)

〉
denote the asso-

ciated Gram matrices, which can be evaluated by numerical

integration. Applying the same procedure to compute the

coefficient matrix G and the coefficient vector hT with

respect to g̃(x̃) and h̃(x̃) in (10)–(11) an approximate system

description of the form

˙̃x ≈ f̂(x̃) + ĝ(x̃)u (15)

y ≈ ĥ(x̃) (16)

with the solely polynomial nonlinearities f̂(x̃) = FΦ(x̃),
ĝ(x̃) = GΦ(x̃) and ĥ(x̃) = hT Φ(x̃) is obtained.

Step 3 (bilinear approximation model):: Finally, based on

the system representation (15)–(16) a bilinear approximation

model of higher order can be derived by state space em-

bedding of the Legendre polynomials up to degree Ndeg.

Introducing the (nΦ − 1)-dimensional state vector z of the

bilinear system according to[
1
z

]
= Φ(x̃) (17)
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and differentiating (17) with respect to time lead to the

expressions

d

dt

[
1
z

]
≈ ∂Φ(x̃)

∂x̃
(FΦ(x̃) + GΦ(x̃)u) (18)

y ≈ hT

[
1
z

]
(19)

with the Jacobian matrix
∂Φ(x̃)

∂x̃ . Applying the relations (4)–

(5) to (18) and performing some basic manipulations yield

d

dt

[
1
z

]
≈ AΦΦ(x̃) + NΦΦ(x̃)u (20)

with the matrices

AΦ =
(
D1 ⊗ eT

1 F + . . . + Dn ⊗ eT
nF

)
M (21)

NΦ =
(
D1 ⊗ eT

1 G + . . . + Dn ⊗ eT
nG

)
M (22)

where ”⊗” denotes the Kronecker tensor product (see e.g.

[7]) and eν means the νth unit vector. The matrices M =
[MT

1 . . .MT
nΦ

]T and Dν are given by (4) and (5). Defining

the partitions

AΦ =
[

0 0T

a0 A

]
, NΦ =

[
0 0T

b N

]
, hT =

[
c0 cT

]
(23)

in (21)–(22), omitting the trivial first equation in (20) and

setting ”=” instead of ”≈” finally leads to the affine bilinear

approximation model

ż = fb(z) + gb(z)u (24)

y = hb(z) (25)

(i.e. with right hand sides affine in z) where fb(z) = Az+a0,

gb(z) = b + Nz and hb(z) = cT z + c0.

C. Relative degree of the approximation model

In this section a simple algorithm for computing the

relative degree of the bilinear approximation model (24)–

(25) at a point z0 in the state space is presented and its

connection to the relative degree of the original system (10)–

(11) is established.

The relative degree rb of (24)–(25) at z0 is determined by

Lgb
Li

fb
hb(z) = cT Ai(b + Nz)=0

∀z ∈ Uz0 , i = 0, 1, . . . , rb − 2 (26)

Lgb
Lrb−1

fb
hb(z)

∣∣
z=z0

= cT Arb−1(b + Nz0)�=0 (27)

(see [1]) where Uz0 means a neighborhood of z0 and Lgb
,

Lfb
denote the Lie derivatives along gb and fb, respectively.

Obviously, in the case of cT AiN �= 0T (26) describes an

(nΦ −2)-dimensional hyperplane in the state space meaning

that a neighborhood Uz0 of solutions to (26) does not exist.

Consequently, (26) can only be fulfilled in Uz0 if

cT Aib = 0
cT AiN = 0T

}
∀i = 0, 1, . . . , rb − 2 (28)

Thus, the relative degree rb of the bilinear approximation

model at a point z0 can easily be calculated by finding the

smallest i for which one of the equations in (28) is violated

and subsequently checking the condition (27) for rb = i+1.

If the latter is not fulfilled, the relative degree at z0 is not

well-defined. This result is also valid for the underlying

nonlinear system (10)–(11), if its input-output behavior is

described satisfactorily by the associated bilinear approxi-

mation. This can be assumed for an adequate approximation

order Ndeg and a sufficiently small approximation interval

Iaprx. On that condition the relative degree r of (10)–(11) at

a point x̃0 can directly be related to rb at the corresponding

point

z0 = [Φ2(x̃0) . . . Φnφ
(x̃0)]T (29)

(see (17)). Actually, it can be shown that a system with

polynomial nonlinearities of the form (15)–(16) and its

corresponding bilinear approximation model share the same

relative degree r̂ = rb if the approximation order Ndeg

for the state space embedding (see step 3 in Section II-B)

satisfies

Ndeg ≥ deg(ĝ) + lr̂−1 − 1 (30)

where

li = deg(ĥ) + i deg(f̂) − i (31)

and the operator deg(·) applied to a vector function means

the greatest degree of all elements. This is briefly verified

by evaluating the general conditions

LĝL
i
f̂
ĥ(x̃) = 0 ∀ x̃ ∈ Ux̃0 , i = 0, 1, . . . , r̂ − 2 (32)

LĝL
r̂−1

f̂
ĥ(x̃)

∣∣
x̃=x̃0

�= 0 (33)

for the relative degree r̂ of (15)–(16) at x̃0. At first, consider

the Lie derivative

Lf̂ ĥ(x̃) = hT ∂Φ(x̃)
∂x̃

FΦ(x̃) (34)

Comparing (34) to (18) and (20) leads to the expression

Lf̂ ĥ(x̃) = hT AΦΦ(x̃) (35)

which is exact as long as the approximation degree Ndeg ≥
deg(ĥ) + deg(f̂) − 1 ensures that no error is involved by

applying the operational matrices Mµ for multiplication (4).

Proceeding to Lie derivatives of higher order the relationship

LĝL
i
f̂
ĥ(x̃) = hT Ai

ΦNΦΦ(x̃) (36)

can be derived, which is valid for

Ndeg ≥ deg(ĝ) + li − 1 (37)

with li given by (31). Finally, replacing AΦ, NΦ and hT by

(23) yields

LĝL
i
f̂
ĥ(x̃) = [cT Aib cT AiN ]Φ(x̃) (38)

After substituting (38) into (32)–(33) and replacing Φ(x̃)
by (17) the equivalence of the conditions (32)–(33) and the

corresponding relations (26)–(27) for the associated bilinear

approximation model with suitable approximation degree

(30) becomes obvious.
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III. L2-OPTIMAL I/O-LINEARIZATION

A. Approximate I/O-linearizing feedback

On the basis of the bilinear approximation model an

approximate expression for the exact input-output linearizing

feedback of the original system (10)–(11) in a neighborhood

of an operating point (x̃0, u0) can be determined provided

that the relative degree r of the original system is well-

defined at x̃0 and the corresponding bilinear approximation

model shares the same relative degree rb = r at the

associated point z0 (see (29)). To this end, consider the exact

input-output linearizing feedback

u =
1

Lgb
Lrb−1

fb
hb(z)

(
−

rb∑
i=0

αiL
i
fb

hb(z) + α0w

)
(39)

for the bilinear system (24)–(25) with αrb
= 1 and the new

input w (see [1]). Applying the feedback law (39) to (24)–

(25) results in the linear closed-loop input-output dynamics

y(rb) + αrb−1y
(rb−1) + . . . + α0y = α0w (40)

which can easily be assigned by means of the constant

parameters αi. Substituting the nonlinearities fb, gb and hb

according to (24)–(25) into (39) and successively evaluating

the Lie derivatives (27) and

Li
fb

hb(z) = cT Ai−1a0 + cT Aiz (41)

i = 1, 2, . . . , rb, yield the explicit formula

u =
−α0c0 − cT

rb−1∑
i=0

αi+1A
ia0 − cT

rb∑
i=0

αiA
iz + α0w

cT Arb−1(b + Nz)
(42)

for the exact input-output linearizing feedback of the bilinear

approximation model. For applying (42) to the original

system (10)–(11) [1 zT ]T is replaced by (17) which leads

to the controller

u =
1

qT Φ(x̃)
(
pT Φ(x̃) + α0w

)
(43)

with polynomial numerator and denominator determined by

the nΦ-dimensional coefficient vectors

pT =

[
−α0c0 − cT

rb−1∑
i=0

αi+1A
ia0 − cT

rb∑
i=0

αiA
i

]
(44)

qT =
[
cT Arb−1b cT Arb−1N

]
(45)

For implementation the feedback law (43) must be expressed

in terms of the original coordinates x by applying the inverse

of the state transformation (9), since x is supposed to be

measured.

Again a precise statement about the accuracy of the

approximate controller (43) is feasible for state space models

of the type (15)–(16) with polynomial nonlinearites. In that

case the input-output linearizing law (43) is exact if the

approximation degree Ndeg for the state space embedding

process (see Section II-B, step 3) is chosen according to

Ndeg ≥ max(deg(ĝ) + lr̂−1 − 1, lr̂) (46)

with li given by (31) (see [5]).

B. Assuring local stability

A drawback of L2-optimal approximation methods is the

fact that in general the behavior of the original system is

not met exactly at the operating point. In the following, a

remedy for this problem is presented based on an adjustment

of the approximate control law (43). To this end, consider the

linearization of the exact input-output linearizing feedback

for (10)–(11)

∆ulin = kT
∆x̃ + m∆w (47)

with ∆x̃ = x̃ − x̃0 and ∆w = w − h̃(x̃0), which can easily

be calculated by means of the Jacobian linearization of (10)–

(11) about (x̃0, u0). In the sequel, the feedback (47) is taken

as a kind of local reference controller. Setting w = w0 =
h̃(x̃0) (i.e. ∆w = 0) and linearizing the nonlinear feedback

(43) about (x̃0, u0) lead to

∆unl =
∂u(x̃, w0)

∂x̃

∣∣∣
x̃=x̃0

·∆x̃ + u(x̃0, w0) − u0

=
(
pT P + sT

)
∆x̃ + v (48)

with ∆unl = u−u0, the constant offset error v = u(x̃0, w0)−
u0, the vector

sT =
α0w0

[qT Φ(x̃0)]2
qT ∂Φ(x̃)

∂x̃

∣∣∣
x̃=x̃0

(49)

and the (nΦ, n) matrix

P =

(
[qT Φ(x̃0)]InΦ − Φ(x̃0)qT

) ∂Φ(x̃)
∂x̃

∣∣
x̃=x̃0

[qT Φ(x̃0)]2
(50)

where
∂Φ(x̃)

∂x̃

∣∣
x̃=x̃0

= [D1Φ(x̃0) . . . DnΦ(x̃0)] (see (5)),

pT and qT are given by (44)–(45) and InΦ denotes the

(nΦ, nΦ) identity matrix. Comparison between (47) and (48)

for ∆w = 0 shows that for local exactness in a neighborhood

of (x̃0, u0) the nonlinear controller (43) must satisfy the

conditions

v = 0 (51)

pT P = kT − sT (52)

However, if (51)–(52) are not fulfilled the control (43) may

be replaced by

û =
1

qT Φ(x̃)
(
p̂T Φ(x̃) + α0w

)
+ v̂ (53)

with the adjusted numerator coefficient vector p̂T and the

constant offset correction v̂. Local exactness of (53) in

terms of (51)–(52) can be guaranteed with minor changes

compared to the control law (43) by determining p̂T and

v̂ as follows. After replacing pT by p̂T and assuming fixed

denominator coefficients qT the relation (52) can be regarded

as an under-determined linear system of equations, which is

always solvable since it can be verified that rank(P ) = n.

The general solution to (52) reads

p̂T = λT BT + κT (54)

with κT = (kT − sT )(P T P )−1PT where all remaining de-

grees of freedom are comprised in the (nΦ−n)-dimensional
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vector λT and the columns of the (nΦ, nΦ − n) matrix B
represent a basis of the null space of P T . Next, the parameter

vector λT is chosen such that the numerator polynomial

functions of (43) and (53) match in the minimum L2-error

norm sense on Ipol = [−1, 1]n, i.e.

‖p̂T Φ(x̃) − pT Φ(x̃)‖2 =

‖λT BT Φ(x̃) − (pT − κT )Φ(x̃)‖2
!= min (55)

Using the results of [6] the solution to this problem is given

by

λT = (pT − κT )
〈
Φ(x̃), ΦT (x̃)

〉
B

(
BT

〈
Φ(x̃), ΦT (x̃)

〉
B

)−1

(56)

with the Gram matrix
〈
Φ(x̃), ΦT (x̃)

〉
, which has already

been computed during the derivation of the bilinear approx-

imation model (see (14)).

Remark 3: The inverse on the right hand side of (56) al-

ways exists since the positive definiteness of
〈
Φ(x̃), ΦT (x̃)

〉
and rank(B) = nΦ−n imply the positive definiteness of the

matrix BT
〈
Φ(x̃), ΦT (x̃)

〉
B.

Finally, the condition (51), which with respect to (53) is

equivalent to

û(x̃0, w0)
!= u0 (57)

is satisfied by setting

v̂ = u0 − 1
qT Φ(x̃0)

(
p̂T Φ(x̃0) + α0w0

)
(58)

If the linear approximation of the zero dynamics of (10)–

(11) is asymptotically stable, then the linear feedback (47)

stabilizes the operating point (x̃0, u0) of (10)–(11) (see [1]).

Thus, applying the adjusted controller (53) to (10)–(11)

also yields a closed-loop system with asymptotically stable

operating point (x̃0, u0), since the linear approximation of

(53) coincides with (47).

IV. EXAMPLE

Consider the 2nd order nonlinear system

ẋ1 = −x1 + 1
x2+2 + u

ẋ2 = −x2 + (x2
1 + 1)u

(59)

y = x2
1 + x2 (60)

defined on the approximation interval x ∈ Iaprx = [−1, 1]2.

The operating point is given by x0 = [ 12 , 0]T and u0 = 0.

The bilinear approximation model associated with (59)–(60)

can be derived for the approximation degree Ndeg = 2
by proceeding as proposed in Section II-B. However, since

Iaprx = Ipol no interval transformation is necessary and

the first step can be omitted. Before the second step is

accomplished, the basis

Φ(x) =
[
1 x1 x2

1
2 (3x2

1 − 1) x1x2
1
2 (3x2

2 − 1)
]T

(61)

(see (3)) within the set of Legendre polynomials in two

variables up to degree two must be established. Using (61)

the L2-optimal polynomial approximations of the nonlinear-

ities on the right hand side of (59)–(60) are determined by

evaluating (14) as well as the corresponding expressions for

g̃ and h̃. Applying the results of step 3 in Section II-B yields

the matrices and vectors

A =

⎡
⎢⎢⎢⎢⎣

−1 −0.296 0 0 0.106
0 −1 0 0 0

1.648 0 −2 −0.888 0
0 0.592 0 −2 −0.197
0 0 0 0 −2

⎤
⎥⎥⎥⎥⎦

b =
[

1 1.333 0 0 0
]T

N =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0.667 0 0
3 0 0 0 0

1.6 1 0 0 0
0 4 0 0 0

⎤
⎥⎥⎥⎥⎦

a0 =
[

0.549 0 −1 0.099 −1
]T

cT =
[

0 1 0.667 0 0
]

c0 = 0.333 (62)

of the 5th order bilinear approximation model (24)–(25)

associated with (59)–(60). Based on that an approximate

input-output linearizing controller is calculated. First, it

is verified by means of (27) that the bilinear model

has the relative degree rb = 1 at the point z0 =[
0.5 0 −0.125 0 −0.5

]T
corresponding to x0 in view

of (29). Assuming that the linear closed-loop input-output

behavior

ẏ + α0y = α0w (63)

(see (40)) with α0 = 1 is required the coefficient vectors

pT =
[ −α0c0− cTa0 −α0c

T− cTA
]

=
[

0.333 −1.099 0 0.667 0.592 0
]

(64)

qT =
[

cT b cT N
]

=
[

1.333 2 0 0.667 0 0
]

(65)

determining the approximate input-output linearizing feed-

back (43) are calculated by applying (44) and (45). It is

readily seen that the linearization of the calculated control

law for w0 = 1
4 (see (48)) violates the conditions for local

exactness (51)–(52). Thus, the linearization of the nonlinear

feedback must be matched to the linear reference controller

(47) with kT = [0 0.111] designed on basis of the Jacobian

linearization of (59)–(60). This leads to a linear system of

two equations for the adjusted numerator coefficient vector

p̂T (see (52)) with the general solution of the form (54). By

means of (56) the special solution

p̂T =
[
0.331 −1.097 −0.026 0.682 0.552 0.006

]
(66)

is determined which ensures the smallest possible change

with respect to the L2-optimal nonlinear controller (43) in

terms of (55). Finally, after evaluating the offset correction

v̂ = 0.025 according to (58) and replacing Φ(x) by (61) the
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Fig. 1. Step responses of the closed-loop system

adjusted feedback law (53) reads

u = 1.023x2
1+0.552x1x2+0.009x2

2−1.097x1−0.026x2−0.013
(x1+1)2

+ 1
(x1+1)2 w, x1 �= −1 (67)

In Figure 1 step responses of the closed-loop system applying

the approximate input-output linearizing controllers with

and without local adjustment are compared to the required

linear dynamics (63) and to the input-output characteristics

obtained by employing the linear state feedback (47). Obvi-

ously, the application of both nonlinear feedback laws results

in a suitable performance with small steady state errors.

As expected, ideal behavior around the operating point is

achieved using the proposed local adjustment algorithm.

Furthermore, in contrast to the linear controller the system

responses do not worsen significantly when far-off inputs

with respect to the nominal value w0 = 1
4 are considered.

It can also be shown that the performance of both nonlinear

controllers will improve, if an higher approximation degree

Ndeg is chosen. Actually, the corresponding step responses

for Ndeg = 4 with and without local adjustment coincide

with the required theoretical step responses in terms of

plotting accuracy. Finally, it should be mentioned that all

necessary calculations for deriving the approximate input-

output linearizing feedbacks could be accomplished numer-

ically using MATLAB.

V. CONCLUSIONS

In this paper an efficient procedure for the computa-

tion of an approximate input-output linearizing feedback

for nonlinear SISO systems was presented, which can be

completely accomplished using numerical software tools.

Moreover, local stability of the resulting closed-loop system

could be guaranteed by means of a systematic adjustment of

the resulting nonlinear controller.
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