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Abstract— This paper considers H∞-control of infinite-
dimensional systems whose transfer functions are expressible
as the cascade connection of a rational transfer matrix and
a scalar (possibly irrational) inner function. This class of
systems is very suitable for describing many control problems
in practice, when weighting functions are rational and plants
have at most finitely many unstable modes. We show that
this problem can be reduced to two (matrix-valued) Riccati
equations and additional rank conditions. Furthermore, the
obtained controller structure is completely characterized by the
inner function and controllers for the finite-dimensional part.
A numerical example is given to illustrate the result.

I. INTRODUCTION

Since mid-1980’s the H∞-control of infinite-dimensional

systems, such as delay-differential systems, have been stud-

ied extensively. For example, solutions via operator equations

have been given in [1], [15]. From the computational point

of view, the skew-Toeplitz approach and the so-called AAK

(Adamjan-Arov-Krein) theory are more attractive in that they

yield finitary rank conditions for optimality [5], [7], [10],

[14], [16], [18]. The crux of the theory lies in the assumptions

that

• the weighting functions are rational, and

• the plant have only finitely many unstable poles1.

In particular, for the one-block problem of finding

inf
Q∈H∞

‖W + mQ‖∞ (1)

for an inner function m and a stable rational function

W , a beautiful formula, the so-called Zhou-Khargonekar

formula, has been established; see Section IV, [16], [18] and

references therein. This Hamiltonian-based formula gives a

finite rank condition for the one-block problem, in spite of

its infinite-dimensionality.

It is well-known that a large class of H∞ control problems

for systems with finitely many unstable poles and rational

weights reduce to the one-block problem above [5]. However,

required performances of the obtained overall system are

not originally given in the form of the one-block problem.

Hence we are required to reduce the original problem to

the standard one to apply the formula. This reduction step

sometimes includes complicated manipulations of weighting
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1In [7], the plants with infinitely many unstable poles and finitely many
unstable zeros are considered.

functions. Moreover, this computation may make unclear the

structure of resulting controllers.

In view of this, we attempt to capture the H∞-control of

infinite-dimensional systems in a more general framework.

If we employ an infinite-dimensional generalized plant in

which the finiteness assumptions noted above are not im-

posed, similar simple results will not be obtained, i.e., it is

inevitable that two operator-valued Riccati equations appear

[15]. In this paper, to make use of this finite-dimensionality

explicitly, we consider a system consisting of a rational

transfer matrix and a scalar, but not necessarily rational,

inner function. A large class of control problems of infinite-

dimensional systems can be described by such systems. In

Section II, we formulate the H∞ control problem for a class

of infinite-dimensional systems in this framework. In Section

III, we show that this problem can be separated into a finite-

dimensional H∞ control problem and a specific one-block

problem. Finite rank conditions for this one-block problem

are derived in Section IV.

NOTATION AND CONVENTION
As usual, Hp and Hp

− denote the Hardy spaces on the

open right- and left-half complex plane, respectively. The

orthogonal projections from L2(jR) := H2 ⊕ H2
− to H2

(H2
−) are denoted by π+ [·] (π− [·]). Let q (̃s) := q(−s). For

an inner function m, H(m) is the orthogonal complement

of mH2 on H2. It is known ([8]) that

H(m) = {x ∈ H2 : m˜x ∈ H2
−}. (2)

The maximal singular value of a matrix is denoted by ‖ · ‖.

For a linear mapping T , Im T and T ∗ represent the image

subspace and the adjoint operator, respectively. For two

subsets X,Y of a set, X/Y := {x ∈ X : x /∈ Y }.

Definition 1: Let m(s) be an inner function. Then the set

of matrices A ∈ R
n×n such that m (̃s) is analytic in a

neighborhood of every eigenvalue of A is denoted by Mn×n
m ,

or Mm when the size is clear from the context.

Preliminary results on matrix functions are in Appendix.

Definition 2: Let G1 and G2 be transfer matrices whose

sizes are (m1 + m2)× (p1 + p2) and p2 ×m2, respectively.

We say that G2 internally stabilizes G1, if the nine transfer

matrices2 from w, u1 and u2 to z, v1 and v2 in Figure 1 are

all in H∞. The transfer function from w to z is denoted by

Fl (G1, G2) .

II. PROBLEM FORMULATION

The problem investigated in this paper is as follows:

2In particular, when m1 = p1 = 0, we say that G2 internally stabilizes
G1 if four transfer matrices from u1 and u2 to v1 and v2 belong to H∞.
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Fig. 1. Block diagram for the definition of the internal stability

Problem 1: Given a rational transfer matrix Σ

Σ(s) =
[

Σ11 Σ12

Σ21 Σ22

]
=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ , (3)

an inner function m(s) and a prespecified performance level

γ > 0, determine whether there exists a controller C which

internally stabilizes Σinf given by

Σinf(s) :=
[

Σ11 Σ12

Σ21 Σ22

] [
I

mI

]
(4)

and guarantees

‖Fl (Σinf , C)‖∞ < γ. (5)

If such a controller exists, find all admissible controllers.

� [
Σ11 Σ12

Σ21 Σ22

]
mI

�

�

� C

Σinf

Fig. 2. Block diagram for Problem 1

This rational Σ encompasses into one weighting functions

and unstable modes of the plant to be controlled, which

are assumed to be finite-dimensional in the skew-Toeplitz

approach. In this framework, we can formulate various

H∞ problems for infinite-dimensional systems with finitely

many unstable poles and rational weights. To see this, let

us consider the mixed sensitivity optimization problem for

plants which can be factorized as

P (s) = Pr(s)m(s)Po(s) (6)

where m is inner, Po is outer and Pr is rational. Note that

any plant of this form has at most finitely many unstable

poles. Then, for stable rational weights Ws and Wt, the

corresponding weighted mixed sensitivity is[
Ws(1 − PC)−1

Wt(1 − PC)−1PC

]
= Fl (Σinf , C) , (7)

where Σinf is given by (4) with

Σ(s) :=

⎡
⎣ Ws WsPr

0 WtPr

1 Pr

⎤
⎦ .

Here we ignored the outer part Po which can be absorbed

into controllers. It should be stressed that other reduction

preprocess as in conventional results is not needed.

This formulation is the same as in [11], [12], [13], [17]

when m(s) = e−hs for h > 0. In this case, Problem

1 represents the H∞-control of finite-dimensional systems

with delayed measurements and/or control inputs, and has

been studied extensively. In [11], [13], [17], the delay is re-

garded as constraints on causality of the controller, and then

a Hamiltonian-based solution is obtained for this problem.

The result in this paper can be viewed as a generalization

of this result. While the discussion here is parallel to that in

[11], [13], [17], the generalization is not trivial, since e−hs

is a special inner function which is an entire function with

no unstable zeros and hence free from some issues such as

unstable pole-zero cancellations.

Hereafter we impose the following standard assumption

on system matrices in Σ.

Assumption 1 ([3]):
1) (C2, A,B2) is stabilizable and detectable.

2)

[
A − jωI B2

C1 D12

]
and

[
A − jωI B1

C2 D21

]
are of

row- and column-full rank for any ω ∈ R, respectively.

3) DT
12

[
C1 D12

]
=

[
0 I

]
and

[
B1

D21

]
DT

21 =[
0
I

]
.

4) D11 = 0 and D22 = 0.

These assumptions except for 1) are easily removed by

standard techniques. Under this assumption, Problem 1 with

m(s) = 1 is solvable as follows [3]:

Theorem 1: Given Σ in (3) satisfying Assumption 1.

Define two Hamiltonian matrices given by

H :=
[

A γ−2B1B
T
1 − B2B

T
2

−CT
1 C1 −AT

]
,

J :=
[

AT γ−2CT
1 C1 − CT

2 C2

−B1B
T
1 −A

]
.

Then a controller K(s) which internally stabilizes Σ and sat-

isfies ‖Fl (Σ,K)‖∞ < γ exists if and only if the following

three conditions hold:

1) H ∈ dom(Ric) and X := Ric(H) ≥ 0.

2) J ∈ dom(Ric) and Y := Ric(J) ≥ 0.

3) ρ(XY ) < γ2.

Moreover, when these conditions hold, all such controllers

are given by

K(s) = Fl (M, Q) , (8)

where Q ∈ H∞ satisfies ‖Q‖∞ < γ and

M =

⎡
⎣ Â −ZL ZB2

F 0 I
−C2 I 0

⎤
⎦ , (9)

with

Â := A + γ−2B1B
T
1 X + B2F + ZLC2,

F := −BT
2 X,

L := −Y CT
2 ,

Z := (I − γ−2Y X)−1.

2458



� � � Σ22
�

����C�� �

�
mI�

�
K

u1

v1

v2

u2

u3

v3

Fig. 3. Block diagram for the proof of Lemma 1

In [3], the free parameter Q ∈ H∞ in (8) is rational to

obtain finite-dimensional controllers. In this paper, we admit

irrational Q, since we do not assume the finite-dimensionality

of obtained controllers. Concerning stabilizability of Σinf , we

impose another assumption.

Assumption 2: The matrix A belongs to Mm.

This guarantees that there exist no unstable pole-zero

cancellations between Σ and m. In fact, this assumption

along with Assumption 1, 1) gives a sufficient condition for

the existence of an internally stabilizing controller of Σinf .

III. STRUCTURE OF CONTROLLERS

In this section, we show that Problem 1 can be separated

into Problem 1 with m(s) = 1 and an additional one-block

problem.

A. Internal stability

First, it is easily verified

Fl (Σinf , C) = Fl (Σ,mC) . (10)

Hence (5) is equivalent to ‖Fl (Σ, K)‖∞ < γ where K =
mC. For the constraints on the internal stability, we can show

the following:

Lemma 1: A controller C internally stabilizes Σinf if and

only if K := mC internally stabilizes Σ and

G32 := (I − mCΣ22)−1C ∈ H∞. (11)

Proof: Let Gji(i, j = 1, 2, 3) denote the transfer

matrices from ui to vj in Figure 3. We first show the

following three conditions are equivalent.

1) For any pair of i, j(i, j = 1, 2, 3), Gji ∈ H∞,
2) For any pair of i, j(i, j = 2, 3), Gji ∈ H∞,
3) For any pair of i, j(i, j = 1, 2), Gji, G32 ∈ H∞.

By straightforward computations, we can show that

• if G3i ∈ H∞ then G1i ∈ H∞,

• if Gi1 ∈ H∞ then Gi3 ∈ H∞,

for i = 1, 2, 3 and G11 = G33. We show 2)=⇒1) only,

since 3)=⇒ 1) follows similarly. It is sufficient to show that

G21 and G31 belong to H∞. Since G22 is stable, if G21 =
(I + G22)Σ22 has unstable poles, they are poles of Σ22,

i.e., eigenvalues of A. On the other hand, G23 = mG21 is in

H∞. This means that all unstable poles of G21, if one exists,

must be canceled by the multiplication by mI . However, by

the assumption A ∈ Mm, no eigenvalue of A is a zero

of m. Therefore G21 has no unstable poles and belongs to

H∞. Similarly G31 ∈ H∞ follows from G31 = G32Σ22 =
m˜G33.

�
M

� m Ĩ �

�Q

�

Fig. 4. Structure of controllers

The equivalence of 2) and 3) claims that C internally

stabilizes mΣ22 if and only if K = mC internally stabilizes

Σ22 and G32 ∈ H∞. As is well-known, Σ is internally

stabilized by K if and only if so is Σ22. Similarly we

can show that C internally stabilizes Σinf if and only if C
internally stabilizes its (2,2)-block mΣ22 [9].

From this lemma and (10), we can conclude as follows:

• The three conditions in Theorem 1 are necessary for the

existence of a controller required in Problem 1.

• The controller C is, if one exists, given by

C = m˜Fl (M,Q) (12)

for Q ∈ H∞ such that ‖Q‖∞ < γ; see Figure 4.

• In comparison to the case m(s) = 1, the optimal

performance is deteriorated by m, because G32 ∈ H∞

is required.

Therefore we hereafter assume that the three conditions in

Theorem 1 are all satisfied.

B. Constraints on admissible controllers

In this subsection, we show what constraints are imposed

on C by (11). Intuitively, (11) is a condition which guaran-

tees that C is causal and that there exist no unstable pole-zero

cancellations between C and m. To discuss this in detail, we

introduce the following definition.

Definition 3: Let m be an inner function and ε be a

positive constant. Then

Nm(ε) := {λ ∈ C+ : |m(λ)| < ε}. (13)

Roughly speaking, Nm(ε) is a neighborhood of zeros of

m. Hence, the following lemma is a direct consequence of

Definition 1 [9]:

Lemma 2: Let m be an inner function and A ∈ Mm. For

any given positive constant δ, there exists ε > 0 such that in

Nm(ε), (sI − A)−1 is analytic and

ε‖(sI − A)−1‖ < δ.
Under these notations, we obtain the following:

Lemma 3: Suppose that C is given by (12) for Q ∈ H∞

such that ‖Q‖∞ < γ. Then (11) holds if and only if there

exists ε > 0 such that C is analytic and bounded in Nm(ε).
Proof: (Necessity) Solving (11) for C yields

C = G32(I + mΣ22G32)−1. (14)

From Lemma 2, we can take positive ε and δ such that Σ22

is analytic and

ε‖G32‖∞‖Σ22‖ < δ < 1

2459



in Nm(ε). Therefore the desired result follows3, according

to equation (14) and ‖mΣ22G32‖ < δ < 1 in Nm(ε).
(Sufficiency) Since C is in the form of (12), G11, G12 ∈

H∞ from Theorem 1. Hence m˜G12 and (I + G11)C, both

of which are equal to G32, are analytic and bounded in

C+\Nm(ε) and in Nm(ε), respectively. This means G32 ∈
H∞.

This lemma, as expected, claims that C must be analytic

in a neighborhood of every zero of m(s), i.e., C is causal

and any unstable pole of C is not canceled by the plant.

C. Reduction to one-block problem

Lemma 3 will leads us further into a consideration of the

class of admissible controllers, that is, constraints imposed

on Q in order that the corresponding C satisfy the condition

in Lemma 3. We now define two functions that play a crucial

role in the following discussions.

Definition 4: Let m be an inner function and (A,B,C, 0)
with A ∈ Mm be a realization of W . Then we define

W (m) :=
[

A m (̃A)B
C 0

]
(15)

and

πm [W ] := W − mW (m). (16)

When m = e−hs for h > 0, πm [·] is same as the h-
truncation in [11], [13], [17]. The h-truncation is the operator

which truncates the impulse response to its restriction on

[0, h]. As another example, take

m(s) =
s − 2
s + 2

, W (s) =
[

1 1
1 0

]
=

1
s − 1

.

Clearly the A-matrix of W is in Mm. By Definition 4,

πm [W ] =
1

s − 1
+

s − 2
s + 2

· 3
s − 1

=
4

s + 2
.

In this case, πm [W ] is stable and belongs to H(m). More

generally, the following lemma ([9]) is a consequence of

Lemma 6 in Appendix.

Lemma 4: Under Definition 4, Im(πm) ⊂ H(m) ∩ H∞.

Remark 1: For stable W ∈ H2, we have W (m) ∈ H2 and

then W − πm [W ] = mW (m) is in mH2. Therefore πm [·]
gives the orthogonal projection from H2 to H(m).

By invoking this πm [·], we derive a one-block problem

equivalent to that of finding Q satisfying the conditions in

Lemma 3. Equality (12) can be rewritten as

Q = Fl (N,mC) (17)

where

N :=
[

N11 N12

N21 N22

]
=

[
0 I
I 0

]
M−1

[
0 I
I 0

]

=

⎡
⎣ Ā ZL −ZB2

F 0 I
−C2 I 0

⎤
⎦

3If a square matrix ∆ of complex functions is analytic and ‖∆‖ < δ < 1
in a domain, then (I − ∆)−1 is analytic and ‖(I − ∆)−1‖ < 1/(1 − δ)
in the same domain.

and

Ā := Â − ZLC2 − ZB2F.

We now make a technical assumption.

Assumption 3: The three matrices Ā, Ā+ZLC2 and Ā+
ZB2F belong to Mm, and

N11 =
[

Ā ZL
F 0

]

gives a minimal realization of N11.

Under the assumption that Ā ∈ Mm, we have

Q = N11 + mN12C(I − mN22C)−1N21

= πm [N11] + mφ (18)

where

φ := N
(m)
11 + N12C(I − mN22C)−1N21. (19)

Another assumption that Ā + ZLC2, Ā + ZB2F ∈ Mm

is used in the following lemma. The minimality of the

realization of N11 will be invoked in the next section.

Lemma 5: Under Assumption 3, suppose that Q ∈ H∞.

Then there exists ε > 0 such that C given by (12) is analytic

and bounded in Nm(ε) if and only if φ in (19) is in H∞.

Proof: Note that mφ belongs to H∞ by Lemma 4, (18)

and Q ∈ H∞.

(Necessity) Four transfer matrices N
(m)
11 , N12, N21 and

N22 are rational and have the common A-matrix Ā which

belongs to Mm by Assumption 3. By a similar argument to

the proof of Lemma 3, we can show that there exists ε such

that φ in (19) is analytic and bounded in Nm(ε). Therefore,

the desired claim follows from the fact mφ ∈ H∞.

(Sufficiency) From (19), C can be rewritten as{
mN−1

12 (φ − N
(m)
11 )N−1

21 N22 + I
}−1

N−1
12 (φ−N

(m)
11 )N−1

21 .

(20)

It suffices to show that we can take ε > 0 such that C in

this form is analytic and bounded in Nm(ε). Similarly to

the proof of Lemma 3, the desired result follows from the

fact that N12 and N21 are invertible and their realizations

are given by

N−1
12 =

[
Ā + ZB2F ZB2

F I

]
,

N−1
21 =

[
Ā + ZLC2 ZL

C2 I

]
,

whose A-matrices are in Mm by Assumption 3.

This lemma means that C given by (12) internally stabi-

lizes Σinf if and only if ‖Q‖∞ < γ and Q = πm [N11]+mφ
for some φ ∈ H∞. Thus Problem 1 reduced to a specific

one-block problem as follows:

Problem 2: Given γ > 0, Σ in (3) and an inner function

m(s) satisfying Assumptions 1 and 2. Assume that three

conditions in Theorem 1 and Assumption 3 are satisfied.

Then determine whether there exists φ ∈ H∞ such that

‖πm [N11] + mφ‖∞ < γ. (21)
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IV. SOLUTION TO THE SPECIFIC ONE-BLOCK PROBLEM

We have shown that γ is achievable in Problem 1 if and

only if three conditions in Theorem 1 are satisfied and

inf
φ∈H∞

‖πm [N11] + mφ‖∞ < γ.

Hence let us consider the following:

Problem 3: Let m be an inner function and (A,B,C, 0)
with A ∈ Mm be a minimal realization of W . Then find

ρopt := inf
φ∈H∞

‖πm [W ] + mφ‖∞. (22)

When W is stable, W (m) is also stable by its definition.

Then, by taking φ′ = φ + W (m) ∈ H∞, we can easily

show that ρopt in (22) is equal to the infimum in (1). In

this case, we can compute ρopt by the Zhou-Khargonekar

formula: Define the ρ-dependent Hamiltonian matrix Hρ by

Hρ :=
[

A BBT /ρ
−CT C/ρ −AT

]
. (23)

and suppose that Hρ ∈ Mm. Then ρopt is the maximum

ρ that makes m (̃Hρ)|22 singular, where M |22 denotes the

(2, 2)-block of matrix M . We attempt to extend this for

unstable W .

When m(s) = e−hs with h > 0, ρopt in (22) is given by

L2[0, h]-induced norm of W . For the computational issue of

this L2[0, h]-induced norm, see [2], [11] for the Hamiltonian-

based method or [4] for the bisection algorithm based on the

Fourier series expansion of L2[0, h].
For simplicity, we denote Θ := πm [W ] ∈ H(m) ∩ H∞.

Recall that ρopt is given by the operator norm of the Hankel

operator Γm˜Θ : H2 → H2
− : x 
→ π−[m˜Θx]. It is shown

that this operator norm is the maximal singular value of

Γm˜Θ under a mild assumption [5]. Therefore we consider

singular value equations of this operator. It follows from (2)

that ImΓm˜Θ ⊂ m˜H(m) and Im(Γm˜Θ)∗ ⊂ H(m).
Theorem 2: Let x ∈ H(m) and y ∈ m˜H(m). Then y =

Γm˜Θx and x = (Γm˜Θ)∗y if and only if there exist ξ, ζ ∈
R

n satisfying

y = m˜Wx − C(sI − A)−1ξ (24)

x = mW ỹ − BT (sI + AT )−1ζ. (25)

Proof: We show only the equivalence of y = Γm˜Θx
and (24). We can obtain the equivalence of x = (Γm˜Θ)∗y
and (25) similarly.

(Necessity) Denote B =
[

B1 · · · Bl

]
and x(s) =[

x1 · · · xl

]T
where xi ∈ H(m). We can show4 that

ξ =
l∑

i=1

(m˜xi)(A) · Bi ∈ R
n (26)

satisfies

m˜Wx − C(sI − A)−1ξ ∈ m˜H(m) ⊂ H2
− (27)

and

W (m)x − C(sI − A)−1ξ ∈ H(m) ⊂ H2. (28)

4This follows from Lemma 6 in Appendix; see [9] for the detailed proof.

Therefore we have

y = π−
[
m˜Wx − W (m)x

]
= π− [

m˜Wx − C(sI − A)−1ξ
]

−π−
[
W (m)x − C(sI − A)−1ξ

]
,

and hence (24) follows from (27) and (28).

(Sufficiency) Suppose that there exists ξ ∈ R
n satisfying

(24). Note that (27) holds, since my ∈ H(m). Furthermore it

can be proved ([9]) that (28) holds for any ξ ∈ R
n satisfying

(27). By the converse argument of the proof of the necessity,

y = Γm˜Θx is obtained.

Theorem 2 characterizes the Schmidt pair x and y by two

finite-dimensional vectors ξ and ζ. Furthermore this result

is exactly the same as that in the case of the one-block

problem of finding infimum in (1), i.e., Proposition 2.8 in

[16]. Hence, by the same discussion in [16], we obtain the

following theorem. The proof is omitted for the brevity; see

[9] for its proof.

Theorem 3: Let ρ > 0. Assume that Hρ defined by (23)

is in Mm. Then ρ is a singular value of the Hankel operator

Γm˜Θ if and only if m (̃Hρ)|22 is not of full rank.

We can now propose a solution to the the standard H∞

control problem posed in Problem 1. The following is the

main result of this paper.

Theorem 4: Given a prespecified performance level γ >
0, a rational transfer matrix Σ in (3) and an inner function

m(s) satisfying Assumptions 1 and 2. The three conditions

in Theorem 1 are necessary for the existence of a controller

C which internally stabilizes Σinf and satisfies (5). Suppose

that these conditions and Assumption 3 are satisfied. Suppose

also that

Hρ :=
[

Ā ρ−1ZLLT ZT

−ρ−1FT F −ĀT

]
∈ Mm

for any ρ ≥ γ. Then there exists such C if and only if

the essential norm ([5]) of Γm π̃m[N11] is less than γ and

m (̃Hρ)|22 is of full rank for any ρ ≥ γ. Moreover, when

these conditions are satisfied, all such controllers are given

by (12) and (18) for arbitrary φ ∈ H∞ satisfying (21).

Remark 2: We do not need to verify the rank condition

for all ρ ≥ γ. This is because m (̃Hρ)|22 is automatically of

full rank for ρ > ‖πm [N11] ‖∞.

V. EXAMPLE

Consider the mixed sensitivity optimization problem in

(7). Weighting functions and plant are same as in [7], i.e.,

Ws =
0.1s + 1
s + 0.4

, Wt = 0.5

and

P = Pr · m =
s + 3
s − 3

· (s + 1) + 2(s − 3)e−0.5s

(s − 1)e−0.5s + 2(s + 3)
.

Here m is an inner function with infinitely many unstable

zeros [7].

We now solve this problem according to Theorem 4. Fig-

ures 5 and 6 show the minimal singular values of m (̃Hρ)|22
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for ρ ≥ γ, when γ = 2.80, 2.90. According to Theorem 4,

γ = 2.80 is not achievable, since there exists a ρ > γ for

which m (̃Hρ)|22 is not of full rank. On the other hand,

γ = 2.90 is achievable, since m (̃Hρ)|22 is nonsingular for

any ρ ≥ γ.

Remark 3: The optimal mixed sensitivity given in [7] is

0.5584, which does not satisfy the estimate above. This is

because a wrong upper bound for the achievable performance

was employed in [7]. However, the formulae in [7] are

all correct. In fact, searching for the optimal value with

an appropriate performance bound yields an optimal mixed

sensitivity around 2.85.
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Fig. 5. Minimal singular values of m (̃Hρ)|22 versus ρ for γ = 2.80
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Fig. 6. Minimal singular values of m (̃Hρ)|22 versus ρ for γ = 2.90

VI. CONCLUSION

In this paper, we formulated the H∞ control problems for

a class of infinite-dimensional systems in terms of rational

transfer matrix and a scalar (possibly infinite-dimensional)

inner function. This representation maintains the advantage

of the finiteness of both the weighting functions and also

the number of unstable modes of the given plant. We have

shown that this problem can be reduced to two (matrix-

valued) Riccati equations and additional rank conditions.

The obtained controller structure is completely characterized

by the inner function and the finite-dimensional controllers

given in [3].
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APPENDIX

A. Matrix functions

When a scalar function f(s) is analytic in a neighborhood

of any eigenvalue of a matrix A ∈ R
n×n, we can define5

a matrix f(A) ∈ R
n×n. Therefore, when x ∈ H(m) and

A ∈ Mm, matrix functions m (̃A) and (m˜x)(A) are both

well-defined.

Lemma 6: Let m be an inner function, X ∈ Mn×n
m and

M1, M2 ∈ R
n×p. Then

Φ(s) := (sI − X)−1(M1 − m(s)M2)

is analytic in a neighborhood of every eigenvalue of X if

and only if

m (̃X)M1 = M2.
Proof: This result can be shown by the same argument

as in the proof of Theorem 2.3 in [16]; see [9] for the detailed

proof.

5There are several equivalent ways of defining f(A); see e.g. [6].
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