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Lyapunov Adaptive Stabilization of Parabolic PDEs—
Part II: Output Feedback and Other Benchmark Problems

MIROSLAV KRSTIC

Abstract— We deal with parametric uncertainties in bound-
ary conditions or reaction terms involving boundary values.
We show how adaptive boundary control problems can be
solved using output feedback, for unstable PDEs with infinite
relative degree. Boundary sensing is employed, along with a
Kreisselmeier type adaptive observer. We also design adaptive
boundary controllers for a reaction-advection-diffusion system
with all three of the coefficients unknown. Our Lyapunov
approach yields parameter estimators that do not require the
measurement of any of the spatial derivatives of the controlled
variable, which are needed in other approaches. The designs in
this paper illustrate the requirement in the Lyapunov approach
that parameter projection be used in the update laws. Projection
is not used as a robustification tool but to prevent adaptation
transients that would require overly conservative restrictions
on the size of the adaptation gain.

I. INTRODUCTION

In this paper we first deal with benchmark problems that
contain parametric uncertainties in boundary conditions or
reaction terms involving boundary values. Both benchmark
plants are unstable. These two problems are solved first with
state feedback and then with output feedback, using scalar
sensing at the boundary, in which case the plant relative
degree is infinite. The output feedback designs employ adap-
tive observers which we construct as infinite-dimensional
extensions of Kreisselmeier-type filters used in [6].

While in [5] we introduced the idea of Lyapunov-based
adaptive boundary control on a benchmark example of a
reaction-diffusion system with only the destabilizing reaction
coefficient unknown, in this paper we also present an adap-
tive controller for a full reaction-advection-diffusion system
with all three of the coefficients considered unknown. The
Lyapunov estimators do not require the measurement of
spatial derivatives, which are needed in other approaches.

The benchmark problems in this paper expose a limitation
of the ‘log-Lyapunov paradigm:’ in general it requires not
only a restriction on the value of the adaptation gain ~ but
also the use of parameter projection. A small v is a tool
for preventing destabilizing transients. Projection is used to
make the restriction on « a priori verifiable.

The controllers we design are explicit functions of the pa-
rameter updates, the spatial variable, and the measured state.
The update laws involve gain functions given in quadratures.

II. PROJECTION
Let § denote the parameter estimate, to be kept within the

interval [Q, ﬂ and 7 the nominal update law. The standard
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projection operator is defined as

0, 6= Gand 7 <0
Projjy it} =74 0, =0 and7>0 (1)
1, else

Unfortunately, (1) is discontinuous. This presents two
problems: (1) it is possible to obtain only Filippov solutions;
(2) noise may induce frequent switching of the update law.
This issue is not as serious as controller switching in sliding
mode control because the projection operator does not drive
an actuator. Since the projection drives only the update law 6
there are no discontinuities in §(¢) and therefore no jumps in
the control action. However, not having to deal with Filippov
solutions is a good enough reason to consider continuous
projection where, instead of a hard switch, a boundary layer
of width § > 0 is introduced:

6-6+3

.5 _ 00
PI‘OJ[Q.E]{T} =T 94’%:*0’
1

f<@and <0
0+65and >0

’ @)
where the update law 7 is scaled linearly with 6 in the
boundary layer. With the help of [6, Lemma E.1] we get:
Lemma 1: The following is guarantee;
1) The operator is a locally Lipschitz function of 0,7 on
[Q—&Q—I—(S] x R.
2
2) (Proj‘fe 7 {T}) <72
3) For 6(0) € [0 — 6,0+ 6], the solution of 0 =
Proj‘[se é]{T} remains in [0 — 6,0 + 4.
4) —éproj‘[ﬂg g} < ~Or, 9 € [0-0,0+0],0¢€[0,0].
The properties in Lemma 1 except 1) also hold for (1)
(with § = 0). Projection (1) is preferable in implementation

because it is incorporated in the integrator block in Simulink.
Hence, to avoid clutter in our presentation, we employ (1).

I1I. BENCHMARK PROBLEM g
Consider the plant

w(0) = 0, @)

where g is a constant, unknown parameter and u(0,¢) is the
boundary value of u(z,t) at x = 0. This system is inspired
by a model of a thermal instability in solid propellant rock-
ets [3]. We will control this system via Dirichlet actuation,
u(1,t). In the absence of control, u(1,¢) = 0, the system
is unstable if and only if g > 2. We assume that this is
indeed the case, g > 2. Let us further assume that an upper
bound g on g is known to us. It is important to note that
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such an assumption was not made on A in [5]. We will

design an adaptive controller whose update law incorporates

the standard projection operator [6] to keep the parameter

estimate ¢ in the interval [2, ], while driving u(z, t) to zero.
A stabilizing control formula was designed in [10] as

u(1) = /01 ﬁsinh(\/é(lff)) u(@)dé.  (5)

Consider the variable change

w(z) = u(z) + /0 /g sinh (\/g(x - g)) w(€)de.  (6)

It can be shown that [13]
2 [7 sinh (\/5(55 - 6))
= Wgg + = d
w= i T e
+§w(0) cosh (@x) : )

with w;(0) = w(1) = 0, where § = g — §. Consider the
Lyapunov function candidate

1 U
V=3 log (1 + [Jw]] )+%g : ®)

Taking its time derivative we arrive at the update law

1
; g . ]
g= Wij[M] {w(O)/O w(x) cosh <\/§x) dx}(g.)

The derivative of the Lyapunov function is

. fol w(z) [ w(f)isinh(ﬁgz_g))dfdx

S 4 0 Vi |
1+ flwl? L+ flwll
(10)
It can be shown that
2
V<—(1—2 eWE)M. 11
< Y T+ [[w]? (11)
Stability is thus achieved whenever
1 _
v < 5e—W?. (12)

This condition highlights the key differences between the
design for the PDE in [5] and for the PDE (3). First, the
adaptation gain, which was limited by 1 in [5], needs to
decrease as g increases in (3). Second, the knowledge of
the parameter’s upper bound is needed for the plant (3).
Projection is used to keep the parameter within the a priori
bound, such that the condition (12) is sufficient to achieve
stability. It should also be noted that stability can be achieved
without projection, by selecting  to satisfy

v < %e_z( 2_‘7"!‘5}(0)"!‘("/IOg(l"I‘HwOHZ))l/‘l) , (13)
where wo(z) is determined using the initial state uo(z) and
the initial parameter estimate §(0). While it may be unusual
to choose the adaptation gain based on the initial state ug,
it is consistent with the Lyapunov function (8), yielding
estimates on ||u(t)|| and §(¢) that depend on ||ug|| and g(0).
However, in application one would prefer projection due to
its added assurance against drift.

One proves boundedness in maximum norm in a similar
manner as in [5, Section III]. A lengthy calculation yields

2l = el ~ w2 (1) [ge0sh (V/3) w0)

2 dt )
. sinh g(1l —x
4 A w(z) (*/5(5 ) dx]
Vi [ wtw) [ sion (Vate - ) wicar
—ggw(0) /0 1 w(z) cosh (\/gx) dz (14)
which can be majorized by
S ul? <8 (7 4 3) . (1)

Integrating (11) and (15) one gets boundedness of ||w,||.
Regulation is shown similar as in [5, Section III]. The results
in the u(x,t) variable follow from the inverse transformation

u(z) = wiz) +§ / “(a — u(E)de

Theorem 2: Suppose that the system (3)—(5), (9) has a
well defined classical solution for all ¢ > 0. Then, for
any initial condition uwy € H; and any §(0) € [2,9],
the solutions w(z,t) and §(¢) are uniformly bounded and
lim; o u(z,t) = 0 for all = € [0, 1].

(16)

IV. BENCHMARK PROBLEM ¢
Consider the plant

U = Uy 17

where ¢ is constant but unknown. This system is also inspired
by [3]. We use Dirichlet actuation via u(1, t). Without control
the system is unstable if and only if ¢ > 1. We assume that
g > 1 and that an upper bound g on ¢ is known. We use
projection to keep ¢ in the interval [1, gl.

A stabilizing control formula for this system is

u(l) = - / Geii-Ou(e)de. (19)

Consider the variable charfge
w(x) = u(z) + / ' el =y (€)de . (20)

It can be shown that [13] ’
W= Wer+d / Cw(©eie 9 @)
w0 = —qu(0) @)

with w(1) = 0, where ¢ = ¢ — §. Consider the Lyapunov
function candidate (8) with ¢ instead of g. Taking its time
derivative we arrive at the update law

A Y . 2
The derivative of the Lyapunov function is
1 T G(x—
Vo [|lw || Ly w(@) [ w()et@=Odedn 24)
1+ [Jwlf? 1+ [Jwl]? '
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With a lengthy, careful calculation, applying twice the
Cauchy-Schwartz inequality, one can show that

“wi) [ w©e 9 deda] < L o
IRCI v

Using projection and Agmon’s inequality, it then follows that

V<_<1_\@Weq>w
- 1+ [Jw]?

(25)

(26)

Stability is thus achieved whenever v < %e_q.
We have proved L stability and square integrability in ¢
for w. The same holds for u due to the inverse transform

u(z) = w(z) + 4 / " w(e)de.

Unfortunately, boundedness and regulation of u(z) are hard
to prove because of ¢ in (22). This difficulty is consistent
with observations in [1], although it was overcome in [§]
using a particular “nonlinear damping” feedback, which is
not possible here because we do not actuate at x = 0.
Theorem 3: Suppose that the system (17)—(19), (23) has
a well defined classical solution for all ¢ > 0. Then, for any
initial condition ug € Lo and any ¢(0) € [1, 4], the spatial
Ly norm ||u(t)|| remains bounded and the spatial H; norm
||ug(t)]] is square integrable over the infinite time interval.
Moreover, the estimate ¢(¢) is kept uniformly bounded.
The “frozen adaptation” version of (21) is exp. stable iff
G > q — 1, which justifies the nonnegative update law (23).

27)

V. OUTPUT-FEEDBACK DESIGNS
A. Benchmark g

As in Section III, we consider the plant (3). Suppose that
only «(0,t) is measured, whereas u(1,¢) is actuated. The
transfer function from u(1,¢) to w(0,¢) has infinitely many
poles and no zeros (the relative degree is infinite).

We employ an adaptive observer with input filter

7z(0) = 0 (29)
with n(1) = 0, the output filter
vy = Uge +u(0) (30)

with v,(0) = v(1) = 0 and an estimate of u(x) given by
gu(z) + n(x). Our adaptive controller employs the control

- [ Vasinh (Vi - 9) (o(©) + ) de.
€29)
and the update law

X Y .
= Proj, ;1 1v(0

x/ol( ()—l—gcosh(\[a:) )dx} (32)

where a and v are positive and sufficiently small. The
variable change (n,v) — w(z) is defined as

+ /Om /g sinh (\/5(;0 - g))
n(§)) dg . (33)

allv?

x (gu(§) +

Theorem 4: Suppose that (3), (31), (32), (28), (30) has
a well defined classical solution for all ¢ > 0. Then, there
exists a* > 0, such that for all a € (0,a*) there exists
v*(a) > 0 [where both a* and v*(a) can be a priori
estimated by the designer], such that for all v € (0,~7*) the
following holds: For any initial condition ug,np,vo € Hj
and any §(0) € [2,g], the solutions u(z,t),n(x,t),v(x,t)
t
]

and §(t) are uniformly bounded and lim; . u(x,
limy 00 (2, t) = limy—, o0 v(2,t) = 0 for all z € [0, 1].
Proof: We start by showing that [13]

we = e +§Q+geosh (Ve ) (e(0) +w(0)(34)

and w,(0) = w(1) =0, where § = g — g, signal Q is

Q) =)~ [ (Gote) +wien VIO e
0 Vi 35)
and e(x,t) is an observer error defined as
e=u—gv—r, (36)

and governed by e; = ey, e,(0) = e(l) = 0. Consider

V= || I”+ 5-g°

1
5 log (14 [[w]l* + allv]*) + fg , @7
where a € (0,1) and b are positive constants yet to be

defined. We note that

2 2
5 lell? = e G8)
and, with (36), (33), and (30), that
1d !
g0 = Il (0) +e(0) + g0(0) [ o(€)a.
(39)

With (37), (38), (39), and (34), we get
! {
L+ [Jw|* + aljv||?

+e(0) /01 (av x) + g cosh <\/§x) w(x)) dx
+aw(0) /01 v(z)dzr + g/ol w(x)Q(x)da:} — b|es]?

which can be majorized by

V:

~[lwz|* = aflve |

Vo<

1 a
—(1—8a werfvzz
e e L 8ol = Sl

—blles||* + €(0) /Olgcosh (\/§x> w(z)dx
+ae(0) /01 v(x)dz —I—g'/o1 w(m)Q(x)dx} . (40)

By applying Young’s inequality to e(0) terms, we get

1 2
S 2 2 {_ (1—8a— ) ||w:r||2
L+ [Jw][? +al[v]| 1

a 2 _
- (2 - Mz) [z = (b — 2490 — 2#152‘32\/‘5)

ealf 9 [ winQis}

<.

(41)
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where p11 and po are positive constants that we can arbitrarily
choose in our analysis. It can be shown that

1
| w@Q)ds] <267 (Julf + o) . @)
0
which can then be used to prove that
1
i [ w@)Qds| < 22e710(0)] (allo] + e u]) @)
0

With further calculations involving Young’s, Poincare’s, and
Agmon’s inequalities, and using that fact that a,y € (0,1),
one arrives at a conservative bound

5 / (@) Q) dr

Substituting this bound into (41), we get

. 1 3 2
VvV < —|-—8a— — wa
= 1+|w||2+a||v|2{ (4 m)” |

2 -
(52 - 805 o2

_ 1
<80 LMol + Jllws]? 44)

2 e a
— (b- 200 — 207 o} 45)
Selecting a* = &, 7% = &oe™8VI, 1y = 16,40 = 10, =

64 (a + 9262\/«5), for a € (0,a*] and v € (0,v*], we obtain

1 wal® + aflva]|? + 4b]lea |12
-8 I+ fulP+afelr

W conclude the boundedness of ||w]|, ||v|| and integrability
of [|wgl|?, ]Jv]/. It follows that ||Q]| is bounded and, with
Agmon’s inequality, that § is square integrable, which im-
plies that §||@|| is square integrable. Agmon’s inequality also
guarantees that g cosh (v/gz) (¢(0) + w(0)), which appears
in (34), is square integrable. These properties can be used
to show that ||w,| is bounded. With a similar argument,
showing that u(0) = w(0)+e¢(0)+gv(0) is square integrable,
one concludes that ||v, || is bounded. One can show next that
gQ+gcosh (v/gz) (e(0) + w(0)) and u(0) are bounded and
use that to prove that the time derivatives of ||w]|?, [|v]|? are
bounded. By Barbalat’s lemma this implies the regulation
of ||wl],||v||, and, by Agmon’s inequality, the regulation of
w(z),v(z) for all z € [0,1]. To obtain boundedness and
regulation results for u, we first use the inverse

n(z) = w(z) — gu(x) + § / @ Ouw©de @)

and then invoke (36). |
The conservative values of a* and v* are for the proof
only. In implementation one would use higher values.

1% (46)

B. Benchmark q

As in Section IV, we consider the plant (17)—(18), where
only u(0,t) is measured. The transfer function from (1, ¢)
to u(0,t) is unstable and of infinite relative degree.

Our output feedback adaptive controller uses the same
input filter (28), but with an output filter

V= Uy (48)
v(1) 0, (50

a control law

u(l) = — /O G109 (Gu(e) + n(€)) de.  (51)

and an update law

Y .
P i 0
Tl + a2 0

X (aU(O) +q (w(O) + q/ol e‘f””w(x)dx»} . (52)

The variable change (7, v) — w(z) is defined as

q;\:

wle) = qo(e) + nfa) + [ 410 (qul€) + nle)) de.
’ (53)

Theorem 5: Suppose that the system (17), (51), (52),
(28), has a well defined classical solution for all ¢ > 0.
Then, there exists a* > 0, such that for all a € (0,a*)
there exists 7*(a) > 0 [where both a* and v*(a) can
be a priori estimated by the designer], such that for all
v € (0,7*) the following holds: For any initial condition
ug, Mo, Vo € Lo and any ¢(0) € [1,q|, the spatial Lo
norms |[u(t)]|, |nll, ||v|| remain bounded and the spatial Hy
norms ||ug (¢)]], ||n= ()|, [lvz(t)|| are square integrable over
the infinite time interval. Moreover, §(t) is bounded.

To prove this result we first show that [13]

We + G {v + / "= (Gu€) + w(e)) dg}

v 0
3%t (¢(0) + qv(0) (54)
we(0) = ~d(e(0) +qv(0) (55)

with w(1) = 0, and proceed with (37), with ¢ instead of
g, going through inequalities as in Section V-A. The inverse
transform for deducing the properties of 7, u is

n(z) = w(z) - qo(x) + 4 / Cw(ede.  (56)

VI. DESIGN FOR SYSTEMS WITH UNKNOWN DIFFUSION
AND ADVECTION COEFFICIENTS

Consider the system

Ut = EUgy + DUy + Au 57)
with u(0) = 0, where €, b, A are unknown constants.
The control law for this system is [10]
. Lo /A1 —¢2
"Ate, bag ' ( ¢ ))
O - u(§)d,
’ 1=
(53)

where ¢, 13, ) are the estimates of €,b, A and ¢ > 0 is a design
gain. Using the transformation

wla) = (o)~ | k(e u() de

0

) I (/2 (a2 — g2
h(.§) = _A+Cfe*z%(rf£) ' (W)
’ é L—fC(l’Q _52)

(59)

» (60)
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and its inverse

uw) = wie)+ [ U (61)
0
. Jl( Ade( £2>>
Wz,6) = BRI , (62)
© Ave(y2 — g2)
we get [13]
wy = 5wm—|—bwm—cw—i—é/wgolwdgﬁ—l;/zgogwdg
0 0
+);\/wg03wd§—§<)\—fcw+lf/wgoz;wdf)
0 3 € Jo
45 [ el () de + 3w (63)
0
with w(0) = w(1) = 0, where
)\ b
P@8) = — el - Fea(e,6) (64)
_ 93—5
902(‘1:’5) - 2é k(ﬂf,f)
i [ - ok o). de (65)
2é 13
, _ £ lhaeg
p3(x,§) = 53¢ (66)
prle,§) = divk(w,€) + [ (@ivk(a,0)i(o,€)do (6T
¢
divk(z,6) = -—k(z, )+A+Ce%<zfe%+£
S\—i-c 9 9
x I . (22 — £2) (68)

Based on (63) and the Lyapunov function

~2 | 72 N2
E+b +)\> )

1
V= 5 <log(1 + [Jw]|?) + -

we choose the update laws

j\ =

Projjy x{7a (70)
b = yProjjy ;{m} (7
. (;\-i-c) T>\+8Tb
E o= APrOj g . ()

where
[|wl[?

N 73

(@) [y ealz, ©w(€) deda
no I+ ul? "

and the projection, defined in the Appendix, is used to keep
the parameter estimates within a priori bounds [\, A], [b, b],
and [g,&], where € > 0. As in the earlier problems, = is
limited by an upper bound which can be a priori computed.

Theorem 6: Suppose that the system (57)—(58), (70)—(72)
has a well defined classical solution for all ¢ > 0. Then,
there exists v* > 0 such that, for all v € (O,y*), for any
initial condition uo € Hy and any A(0) € [A, A], b(0) € [b, b],
and £(0) € [g, &], the solutions u(z,t) and A(t), b(t), £(t) are
uniformly bounded and lim;_, o u(x,t) = 0 for all z € [0, 1].

Proof: Tt can be shown that

. 1 . 2 2
V= o (—ellwn] = cllw|® + £y + bF, + Ay ) |
L+ [Jwl?
(75)

where Fj(x Jy w(@) [ i(w, Ew(€) déda for i =
1,2,3,4. By applymg the Cauchy-Schwartz inequality twice,
1 px 1/2
we get | < wl? (fy Jy e, €)2dédz)
functions ¢;(x,£) are continuous in x,g,éj), 5\7 over the
domain of their definition given by 7 X [g, &] x [b, b] X [A, A,
where ¢ > 0 and 7 = {2, e R0 < ¢ <z < 1}, it can
be shown that there exist continuous, nonnegative-valued,
nondecreasing functions M, : Ri — R such that

/ iu(m/O il E)w
(76)

The 51mp1est one among these functions is Mz =

1 —mdx |b],[b
et {IELIE1} | Erom (75)~(76), it follows that

. Because the

f)dfdl’ < Mi <;7 L) b

~lJw]|*

. 1
VIL—— | —clw 2_Cw2 — 0 5
s el - clog? + {2

14wl
‘)\‘ +c |B|
6 My + M4M1 + My Moy + Ms 77

where we emphasize the emergence of the fourth power of
|w]| in the last term of the first line of (77). By applying
Poincare’s inequality we obtain

e (1= /7") lwe|® + cflwlf?

V<-—
L4 [Jwlf?

) (78)

-1
Plre g, 4 Blagng + vy, + 1y

This establishes the boundedness of Hw|| for v < v*.
To prove the boundedness of ||w,||?, we show that

1d ECH N+ N\
2dt 3

where v* =

W [lm

lwal® = —ellweall® - lwo|”

1
—/ Wee ()G (z)d (79)
0

where

G(z) = wa—l—é/ cplwd§+l;/ powd€
0 0

L b £h
+A / pswde + 2 F / pawde . (80)
0 0
Next we note that ’5\’ < 7, l;’ < yMy, é‘ <
v M, Ei’géb < My, where
M, max{|A|,|5\|}+c+M4max{|Q|,|B|} @)
15
Ms = (82)

3174



With Young’s inequality we get

1
1
_/ oo (2)G(@)de < ellwee|® + G- (83)
0 4e

Let us denote

Hi(z) = /0 " il () de (84)

for ¢ = 1,2,3,4, for which, with the Cauchy-Schwartz
inequality, we get
[Hil| < MifJwl] - (85)

Then, from (80)—(85), with the triangle inequality and
Poincare’s inequality we obtain

1G> < 8[b+~ (MsMZ+ MM + M3)

+MeMZ] |Jwg || (86)
Substituting (86) into (83) and then into (79), we get
1d 9 9
——|Jwz||* < Nl||wg]||*, 87
5 alwall? < N, | 87)
where
2
N() = [+ (Ms M7 + MyM3 + M3) + MgM7 ]
_Ec+5§\+)\§ (88)

is bounded. With ||w|| bounded, from (78) we get that ||w, ||?
is integrable over infinite time. By integrating (87), it follows
that ||w, || is bounded. By Agmon’s inequality, w(x, ) is also
bounded for all ¢ > 0 and for all z € [0, 1].

To show regulation, we calculate

s lwll® = —ellw,|* = cllw]|* + EFy + bFy + AP

5\—&-0

—&

b - -
|lw|* + gF4 +bFy + Mw|?.

(89)

All the terms on the right hand side have been proved
bounded. Therefore 4 ||w||? is bounded. Since [|wl|? is also
integrable over infinite time, by Barbalat’s lemma ||w(t)|| —
0 as t — oo. Regulation in maximum norm follows from
Agmon’s inequality and the boundedness of ||w,||.

To infer the results for the original variable u(x,t) from
those for w(z,t), we recall the inverse transformation (61)—
(62), which is a bounded operator in both Ly, and H;. ®

While the Lyapunov design requires the use of projection
and a low adaptation gain, one of its remarkable properties is
that, even though the plant has parametric uncertainties mul-
tiplying u, and u,, the adaptive scheme does not require the
measurement of neither u, nor u,,. The update laws (70)—
(72) employ only the measurement of u. This is in contrast
with adaptive controllers in [1], [2], [4], [14] for reaction-
advection-diffusion systems which require the measurement
of u,, to estimate the unknown diffusion coefficient ¢.

The update laws employ ¢4(x,&) which is given in
quadratures. The integral in (67) would be calculated nu-
merically, just like the other integrals appearing in the update
laws and depending on the measured state u(z,t).

VII. FUTURE WORK

The need for projection and a bound on the adaptation
gain are the peculiarities of the Lyapunov approach. In
another paper on “estimation-based” approaches to adaptive
control of PDEs [13] we present methods without projec-
tion or limits on the adaptation gain. The methods employ
‘passivity/observer-based’ and ‘swapping-based’ identifiers
presented for finite-dimensional systems in [6]. However, in
the case of uncertain diffusion and advection coefficients,
these schemes require the measurement of u,(x,t) (and in
some cases of u.,(z,t)), like in [1], [2], [4], [14]. The
Lyapunov schemes in Section VI require only u(z,t).

While, for the sake of clarity, we chose to present our
design tools through benchmark problems, it is possible to
develop an adaptive controller for the class of systems

Ut =  EUgy + buy + Au+ gu(0)
u;(0) = —qu(0),

where €,b, A, g, ¢ are unknown.

We have not worked out yet an extension of Section VI to
output-feedback. Although boundary observers for this class
of systems were developed in [11] for &,b, A known, the
adaptive observer design will be more complex than for the
systems in Sections V-A and V-B.

It is possible to extend the results of this paper to arbitrary
dimension. For example, in 3D we can extend them to
rectangular parallelepiped domains with w4, in (90) replaced
by Au and bu, replaced by biu, + bauy + bsu..

(90)
O
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