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Abstract— Stationary and distributed consensus protocols for
a network of n dynamic agents under local information is
considered. Consensus must be reached on a group decision
value returned by a function of the agents’ initial state values.
As a main contribution we show that the agents can reach
consensus if the value of such a function computed over the
agents’ state trajectories is time invariant. We use this basic
result to introduce a protocol design rule allowing consensus
on a quite general set of values. Such a set includes, e.g., any
generalized mean of order p of the agents’ initial states. We
demonstrate that the asymptotical consensus is reached via a
Lyapunov approach. Finally we perform a simulation study
concerning the alignment maneuver of a team of unmanned
air vehicles.

I. INTRODUCTION

Distributed consensus protocols are local control policies
based on partial information that allow the coordination
of multi-agent systems. Agents implement a consensus
protocol to reach consensus, that is to (make their states)
converge to a same value, called consensus-value, or group
decision value [6].
Coordination of agents/vehicles is an important task
in several applications including autonomous formation
flight [7], [8], cooperative search of unmanned air-vehicles
(UAVs) [9], [10], swarms of autonomous vehicles or
robots [11], [12], multi-retailer inventory control [13], [14]
and congestion/flow control in communication networks
[15].
Actually, a central point in consensus problems is the
connection between the graph structure, defined by
the Laplacian Matrix, and delays or distortions in
communication links [16]. Switching topology and
directional communications are studied in [6], [17], [18],
[19], [20], [21], while cooperation based on the notion of
coordination variable and coordination function in [22],
[23]. There, coordination variable is referred to as the
minimal amount of information needed to effect a specific
coordination objective, whereas a coordination function
parameterizes the effect of the coordination variable on the
myopic objectives of each agent.
In this paper, n dynamic agents reach consensus on a
group decision value by implementing optimal, distributed
and stationary control policies based on neighbors’ state
feedback. Here, neighborhood relations are defined by
a time-invariant connected undirected communication
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giarre@unipa.it

topology. To generalize our results to systems with
switching topology and directional communications, we
introduce dwell time [17], [1] between switchings and
exploit an analysis tool for switched systems known as
common Lyapunov function [6], [2], [3], [4]. Similarly
to [6], [7], [24], the dynamics of the agents is a simple
first order one. We restrict the group decision value to be
a permutation invariant function of the agents’ state initial
values. Permutation invariance means that the value of the
function is independent of the agents indexes.
Our contribution to the study on consensus problems is to
show that consensus can be reached if the agents’ state
trajectories satisfy a certain time invariancy property. On
the basis of such a result, we prove that the group decision
values considered are sufficiently general to include any
mean of order p of the agents’ state initial values, such
as the arithmetic/min/max means usually dealt with in the
literature (see, e.g., [25]). Finally we argue that agents reach
asymptotically consensus on the desired group decision
value by studying equilibrium properties and stability of the
group decision value via Lyapunov theory.

II. THE CONSENSUS PROBLEM

We consider a system of n agents Γ = {1, . . . , n} and
model the interaction topology among agents through a time-
invariant connected undirected network (graph) G = (Γ, E).
The network is undirected since we assume the existence
of only bidirectional information exchange links between
pairs of agents. Then, each edge (i, j) in the edgeset E
means that agent i can receive information from agent j
and, vice versa, agent j can receive information from agent
i. The network is connected since we assume that for any
agent i ∈ Γ there exists a path, i.e., a sequence of edges in
E, (i, k1)(k1, k2) . . . (kr, j), that connects it with any other
agent j ∈ Γ. Finally, the network G is not complete since
each agent i exchanges information only with a subset of
other agents Ni = {j : (i, j) ∈ E} called neighborhood of i.
Each agent i has a (simplified) first-order dynamics con-
trolled by a distributed and stationary control policy

ẋi = ui(xi, x
(i)) ∀i ∈ Γ, (1)

where x(i) is the state vector of the agents in Ni with generic

component j defined as follows, x
(i)
j =

{
xj if j ∈ Ni,
0 otherwise.

and such that (1) has unique solutions. The policy is
distributed since, for each agent i, it depends only on the
local information available to it, which is xi and x(i). No
other information on the current or past system state is
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available to agent i. The policy is stationary since it does
not depend explicitly on time t. In other words, the policy
is a time invariant and memoryless function of the state.
Define the vector x(t) = {xi(t), i ∈ Γ} as the system state
and u(.) = {ui(.) : i ∈ Γ} as a distributed stationary
protocol or simply a protocol. Let χ̂ : IRn → IR be
a generic continuous function of n variables x1, . . . , xn

which is permutation invariant, i.e., χ̂(x1, x2, . . . , xn) =
χ̂(xσ(1), xσ(2), . . . , xσ(n)) for any one to one (permutation)
mapping σ(.) from the set Γ to the set Γ. Henceforth χ̂ is also
called agreement function. Putting together slightly different
definitions in [6], [5], [25], we can say that a protocol u(.)
makes the agents asymptotically reach consensus on a group
decision value χ̂(x(0)) if ‖xi− χ̂(x(0))‖ −→ 0 as t −→ ∞.
When this happens we also say that the system converges to
χ̂(x(0))1. Here and in the following, 1 stands for the vector
(1, 1, . . . , 1)T .
Notwithstanding each agent i has only a local information
(xi, x

(i)) about the system state x, we are interested in
making the agents reach consensus on group decision values
that are functions of the whole system initial state x(0). In
particular, we are interested in agreement functions verifying

min
i∈Γ

{yi} ≤ χ̂(y) ≤ max
i∈Γ

{yi}, for all y ∈ IRn. (2)

The above condition means that the group decision value
must be confined between the minimum and the maximum
agents’ initial state values.
Finally, we define an individual objective for an agent i, i.e.,

Ji(xi, x
(i), ui) = lim

T−→∞

∫ T

0

(
F (xi, x

(i)) + ρu2
i

)
dt (3)

where ρ > 0 and F : IR×IRn → IR is a nonnegative penalty
function that measures the deviation of xi from neighbors’
states. We say that a protocol is optimal if each ui optimizes
the corresponding individual objective.
In the above context, we face the following problem.

Problem 1: (Consensus Problem) Consider a network
G = (Γ, E) of dynamic agents with first-order dynamics.
For any function χ̂(.) determine a (distributed stationary)
protocol, whose components have the feedback form (1), that
makes the agents asymptotically reach consensus on χ̂(x(0))
for any initial condition x(0).
In the following, a protocol that solves the consensus prob-
lem is also referred to as a consensus protocol.

III. TIME INVARIANCY OF χ̂(x(t))
Initially, we show that if a protocol, which solves a

consensus problem, is distributed and stationary then the
system state trajectory enjoys the property that χ̂(x(t))
is time invariant. Then, we find a family of non trivial
protocols that guarantee such a property. We prove that
some of such protocols are consensus protocols with respect
to χ̂(x(0)) in the next section.

Lemma 1: (Time invariancy) Consider a network G =
(Γ, E) of dynamic agents with first-order dynamics. For any
function χ̂(.) implement a distributed stationary protocol

u(t), whose components have the feedback form (1), that
makes the agents converge to value χ̂(x(0)) for any initial
state x(0). Then the value of χ̂(x(t)) is time invariant, i.e.,
χ̂(x(t)) = χ̂(x(0)) for all t > 0.

In the above proof the key idea is that time-invariance
of the feedback protocol implies the time-invariance of the
decision values. Nevertheless, observe that there may exist
consensus protocols not implying the time invariancy of
χ̂(x(t)). However, such protocols must rely on additional
information about the whole system initial state x(0) or the
value of χ̂(x(0)). Unfortunately, in the case under study
the local information alone is in general not sufficient to
reconstruct either x(0) or χ̂(x(0)).

From continuity of function χ̂ and supposing that the state
trajectory reaches the point χ̂(x(0))1, the time invariancy
property stated in Lemma 1 implies also that χ̂(x(0)) =
χ̂(χ̂(x(0))1). Note that the last condition satisfies (2). Actu-
ally, (2) imposes that function χ̂(.) must be chosen such that
any point λ1, for all λ ∈ IR, is a fixed point, i.e., χ̂(λ1) = λ,
as it can be trivially derived assuming y = λ1.
With this consideration in mind, let us impose the time
invariancy of χ̂(x(t)). It holds χ̂(x(t)) = const when

dχ̂(x(t))
dt

= ∇xχ̂(x)·ẋ =
∑
i∈Γ

∂χ̂(x)
∂xi

ẋi =
∑
i∈Γ

∂χ̂(x)
∂xi

ui = 0.

(4)
The trivial protocol constantly equal to 0 leaves any value

χ̂(x(t)) time invariant, for any possible χ̂(.), but obviously
does not make the system converge. Consequently, it is no
longer considered hereafter.
Some other solutions of equation (4) can be obtained easily
when χ̂(x) presents a particular structure. A first possibility
is when the following condition holds

∂χ̂(x)
∂xi

ui = 0 ∀i ∈ Γ. (5)

For example, χ̂(x) = min{xi} and ui =
h(xi, minj∈Ni{xj}) satisfy the above condition, for
any h(x, y) : �2 → � such that h(x, y) = 0 when x = y.
Actually, ∂χ̂(x)

∂xi
	= 0 only for i such that xi = minj∈Γ{xj},

then, by definition of function h(.), it holds ui(xi) = 0 and
hence (5). The system converges to χ̂(x(0)) if we impose
the additional condition h(x, y) < 0 when x > y. Trivially,
analogous argument applies to χ̂(x) = max{xi}.
We specialize our study considering a more general family
of function χ̂(x).

Assumption 1: (Structure of χ̂(.)) Assume that the generic
agreement function χ̂(.) satisfies condition (2) and is such
that χ̂(x) = f(

∑
i∈Γ g(xi)), for some f, g : � → � with

dg(xi)
dxi

	= 0 for all xi.
A point of interest is that the above family of agreement

function is more general than the arithmetic/min/max means
already reported in the literature (see, e.g., Tab. I). In this
sense, observe that the structure of the agreement function
is general to the extent that any value in the range between
the minimum and the maximum agents’ initial state values
can be chosen as a group decision value. To see this, it is
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mean χ̂(x) f(y) g(z)

arithmetic
∑

i∈Γ
1
n

xi
1
n

y z

geometric n
√∏

i∈Γ
xi e

1
n

y log z

harmonic 1∑
i∈Γ

n
xi

n
y

1
z

mean of order p p

√∑
i∈Γ

1
n

xp
i

q
√

1
n

y zp

TABLE I

COMMONLY USED MEANS

sufficient to consider mean of order p with p varying between
−∞ and ∞.

Theorem 1: (Protocol design rule) For any agreement
function χ̂(.) as in Assumption 1, the non trivial protocol

ui(xi, x
(i)) =

1
dg(xi)

dxi

∑
j∈Ni

φ(xj , xi), for all i ∈ Γ (6)

lets the value χ̂(x(t)) be time invariant, if φ : �2 → � is
an antisymmetric function, i.e., φ(xj , xi) = −φ(xi, xj).

Consider the linear function φ(xj , xi) = α(xj − xi)
and the different means introduced in Tab. I. The arith-
metic mean is time invariant under protocol u(xi, x

(i)) =
α

∑
j∈Ni

(xj − xi); the geometric mean under protocol
u(xi, x

(i)) = αxi

∑
j∈Ni

(xj−xi); the harmonic mean under
protocol u(xi, x

(i)) = −αx2
i

∑
j∈Ni

(xj − xi); the mean of

order p under protocol u(xi, x
(i)) = α

x1−p
i

p

∑
j∈Ni

(xj −xi).
Obviously, due to the time invariancy of χ̂(x(t)) if the system
converges, it will converge to χ̂(x(0))1, but it does not
necessarily converge. As it turns out at the end of the next
section, for the cases in the example, the system converges
to χ̂(x(0))1 only if α > 0 (for the harmonic mean only if
α < 0). In addition, we must also assume that xi(0) > 0
for all i ∈ Γ, when we deal with means different from the
arithmetic one.

IV. SUFFICIENT CONDITIONS FOR CONVERGENCE

In the previous section, we find a family of protocols as
in (6) that guarantees the time invariancy of χ̂(x(t)). In this
section, we determine sufficient conditions on the structure
of functions g(.) and φ(.) such that a protocol of type (6)
makes the system converge to χ̂(x(0))1 for any agreement
function χ̂(.) and initial state x(0). In particular, we prove
that the system converges when the function g(.) is strictly
increasing and the function φ(.) is defined as follows:

φ(xj , xi) = αφ̂(ϑ(xj) − ϑ(xi)), (7)

where α > 0, function φ̂ : � → � is continuous, locally
Lipschitz, odd and strictly increasing, and function ϑ : � →
� is differentiable with dϑ(xi)

dxi
locally Lipschitz and strictly

positive.
Putting together (6) and (7) the resulting protocol is

ui(xi, x
(i)) = α

1
dg
dxi

∑
j∈Ni

φ̂(ϑ(xj) − ϑ(xi)), for all i ∈ Γ.

(8)

Initially, we study the stability of the system under proto-
col (8).

Lemma 2: Consider a network G = (Γ, E) of dynamic
agents with first-order dynamics and implement a distributed
and stationary protocol u(.) whose components have the
feedback form (8). Then, for any initial state x(0), the system
may not converge (asymptotically) to any equilibrium point
different from χ̂(x(0))1.

We are now ready to prove that the agents asymptotically
reach consensus on χ̂(x(0))1 when function g(.) is strictly
increasing, i.e., dg(y)

dy > 0 for all y ∈ IR.
Theorem 2: Consider a network G = (Γ, E) of dynamic

agents with first-order dynamics and implement a distributed
and stationary protocol whose components have the feedback
form (8). If function g(.) is strictly increasing, the agents
asymptotically reach consensus on χ̂(x(0))1 for any initial
state x(0).

It is possible to partially relax the assumptions of The-
orem 2 concerning the monotonicity of function g(.). The
reason is evident from the following theorem establishing
that all agents’ state trajectories are bounded.

Theorem 3: Assume all the conditions in Theorem 2 hold.
Then, condition (7) implies that for all i ∈ Γ and t ≥ 0

min
j∈Γ

{xj(0)} ≤ xi(t) ≤ max
j∈Γ

{xj(0)}. (9)

Trivially, condition (9) holds even if g(y) is
strictly increasing only in the subset of � defined by
minj∈Γ{xj(0)} ≤ y ≤ maxj∈Γ{xj(0)}, since the agents’
state trajectory values are bounded within the same set. The
boundedness of the agents’ state trajectories allows us to
partially relax the assumptions of Theorem 2 concerning the
monotonicity of function g(.). Theorem 2 still holds if g(.)
is strictly increasing in only a subset X ∈ �. However, in
this case, it must be true that xi(t) ∈ X , for all t ≥ 0 and
for all i ∈ Γ. Theorem 3 proves that the latter condition is
certainly satisfied if X is a connected subset and xi(0) ∈ X
for all i ∈ Γ. Theorem 2 holds even if g(.) is strictly
decreasing. However, in this case, α in (7) must be strictly
negative instead of positive.
An immediate consequence of the above considerations is
the following. Since the means introduced in Tab. I have the
component g(.) strictly increasing except the harmonic mean,
if we consider the linear function φ(xj , xi) = α(xj − xi),
the system converges to χ̂(x(0))1 for α > 0 except for
the harmonic mean where we need α < 0. Dealing with
means different from the arithmetic one we also need that
xi(0) > 0 for all i ∈ Γ, since g(y) is strictly monotone for
y > 0 but not in y = 0.

V. SIMULATION STUDIES: ALIGNMENT MANEUVER FOR

UAVS

We consider a team of 4 UAVs in longitudinal flight and
initially at different heights. Each UAV controls the vertical
rate without knowing the relative position of all UAVs but
only of neighbors according to the communication graph
topology depicted in Fig. 1. For instance, the 4th UAV
knows the position of only the 1st UAV, and the 1st UAV
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Fig. 1. The information flow in a network of 4 agents

knows the position of the 4th and 2nd UAV and so on.
In the above partial information context, we are interested
in determining a suitable distributed vertical rate control
strategy that allows the UAVs to align their paths according
to the path of a virtual leader, the formation center. In any of
the four simulated alignment maneuvers, the position of the
formation center is computed with respect to the positions of
all UAVs respectively as the i) arithmetic mean, ii) geometric
mean, iii) harmonic mean, iv) mean of order 2. The initial
height is x(0) = [5, 5, 10, 20]′. We stress once again that
the challenging aspect is that the UAVs know the heights
of only their neighbors and are required to align their paths
according to the path of the formation center, which in turns
depend on the unknown position of all UAVs. In case i), (see
e.g., [6], [7]) the UAVs implement the linear protocol

u(xi, x
(i)) =

∑
j∈Ni

(xj − xi) (10)

to asymptotically align on the arithmetic mean of x(0).
Figure 2 shows the simulation of the longitudinal flight
dynamics.
In case ii) the UAVs implement the protocol
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Fig. 2. Longitudinal flight dynamics converging to a) the arithmetic
mean under protocol (10); b) the geometric mean under protocol (11);
c) the harmonic mean under protocol (12); d) the mean of order 2 under
protocol (13).

u(xi, x
(i)) = xi

∑
j∈Ni

(xj − xi) (11)

to asymptotically align on the geometric mean of x(0).
Figure 2(a)) shows the simulation of the longitudinal flight
dynamics. In case iii) the UAVs implement the protocol

u(xi, x
(i)) = −x2

i

∑
j∈Ni

(xj − xi) (12)

to asymptotically align on the harmonic mean of x(0).
Figure 2(b)) shows the simulation of the longitudinal flight
dynamics. Finally, in case iv) the UAVs implement the
protocol

u(xi, x
(i)) =

1
2xi

∑
j∈Ni

(xj − xi) (13)

to asymptotically align on the mean of order 2 of x(0).
Figure 2(c)) shows the simulation of the longitudinal flight
dynamics.
Protocols (10)-(13) are characterized by different converging
times (see Figs. 2). These differences are due to the fact that
the protocols multiply the common term

∑
j∈Ni

(xj−xi) for
different powers of xi, respectively 1, xi, −x2

i and 1
2x−1

i .
Being xi ≥ 1 for all i ∈ Γ and t ≥ 0, the lower the power,
the higher the converging time. Consider the alignment to the
mean of power 2. To obtain a converging time comparable
with the one of the alignment to the arithmetic mean, we
modify the protocol so that it turns to be a ratio between
polynomials whose numerator is of an order greater than the
denominator as in the arithmetic mean case. As an example,
in Fig. 3(a)) results are reported with the protocol (13)
modified as

u(xi, x
(i)) =

1
2xi

∑
j∈Ni

(x2
j − x2

i ). (14)

An analogous result can be obtained if we multiply the
protocol (13) by twice an upper bound of maxi∈Γ{xi(0)}.
The resulting scaled protocol is

u(xi, x
(i)) =

maxi∈Γ{xi(0)}
2xi

∑
j∈Ni

(xj − xi) (15)

and the corresponding longitudinal dynamics is displayed
in Fig. 3 (b)). Observe that to implement protocol (15) the
UAVs must have an a-priori knowledge or at least a bound
of maxi∈Γ{xi(0)}.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5

10

15

20

time

he
ig

ht

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
5

10

15

20

time

he
ig

ht

a) b)

Fig. 3. Longitudinal flight dynamics converging to the mean of order 2:
a) under protocol (14); b) under protocol (15).

An example of alignment maneuver under protocol (15)
is displayed in Fig. 4.
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Fig. 4. Alignment to the mean of order 2 on the vertical plane.

VI. CONCLUSIONS

We have studied stationary and distributed consensus pro-
tocols for a network of n dynamic agents under local infor-
mation. Consensus is reached when the agreement function,
computed over the agents’ state trajectories, is time invariant.
We use this basic result to introduce a protocol design rule
allowing consensus on a quite general set of values. Such
a set includes, e.g., any generalized mean of order p of the
agents’ initial states. In future works, we will cast the above
consensus protocols within a game theoretic framework.
Under this perspective, consensus will be the result of a
mechanism design, where a supervisor imposes individual
objectives. Given the objective functions, the agents optimize
on a local basis and reach asymptotically consensus on the
desired group decision value.
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VII. APPENDIX

Proof of Lemma 1 The key idea is that the protocols
used are time invariant (so the system of differential equa-
tions (1) is autonomous) and such that the system has unique
solutions. Assume by contradiction that χ̂(x(t)) is not time
invariant under protocol u(.) and initial state x(0) = a. The
consensus protocol makes the system converge to χ̂(a). Let
be x(t0) = b the state at the first time instant t0 > 0 with
χ̂(a) 	= χ̂(b). Denote as ū(t) the realization of the protocol
for all t ≥ 0. Now consider the different situation in which
the protocol u(.) is implemented starting from the initial state
x(0) = b. In this case, the consensus protocol makes the
system converge to χ̂(b). Denote as ũ(t) the realization of
the protocol for all t ≥ 0 in this second situation. As for
each agent i, the control depends only on xi(t) and x(i)(t)
and no other information on the current or past system state,
it holds ũ(t) = ū(t + t0), for all t ≥ 0. Then, we obtain the
following contradictory result. In the two above situations,
the same controls applied starting from state b make the
system converge to two different group decision values, χ̂(a)
and χ̂(b).
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Proof of Theorem 1 A sufficient condition for χ̂(x(t))
being time invariant is that its argument

∑
i∈Γ g(xi(t)) is

time invariant, too. The latter condition means

∑
i∈Γ

dg(xi(t))
dt

=
∑
i∈Γ

dg(xi)
dxi

ẋi =
∑
i∈Γ

dg(xi)
dxi

ui = 0.

It is immediate to verify that protocol (6) satisfies condition∑
i∈Γ

dg(xi)
dxi

ui = 0 since the antisymmetry of φ guarantees
that

∑
i∈Γ

∑
j∈Ni

φ(xj , xi) = 0.

Proof of Lemma 2 First, we show that any equilibrium
point x∗ must have all its component equal, i.e., x∗ = λ1
where λ is a constant value. Then we prove by contradiction
that λ cannot be different from χ̂(x(0)).
Sufficiency. Since φ̂(.) is odd and strictly increasing, then
φ̂(ϑ(xj) − ϑ(xi)) = 0 if and only if ϑ(xj) − ϑ(xi) = 0. In
turn, since ϑ(.) is strictly increasing, ϑ(xj) = ϑ(xi) if and
only if xj = xj . Then, xi = λ, for all i ∈ Γ implies that the
control ui is null for all i ∈ Γ. Thus, the point x∗ = λ1 is
an equilibrium point.
Necessity. Assume that there exists an equilibrium point
x∗ 	= λ1. We prove that such an assumption implies the
existence of at least one agent i with ui < 0, and this last
result contradicts the definition of equilibrium for x∗. Define
I = {i ∈ Γ : x∗

i ≥ x∗
j , ∀j ∈ Γ} as the set of agents with

maximum state value. Trivially, I is included but not equal
to Γ, as x∗ 	= λ1. Then, i and j with (i, j) ∈ E such
that x∗

i 	= x∗
j exist, since the network G is connected. In

particular, we can always choose i ∈ I such that there exists
j ∈ Ni with x∗

j < x∗
i . Now observe that, since φ̂(.) is an

odd and strictly increasing and ϑ(.) is strictly increasing, then∑
j∈Ni

φ̂(ϑ(x∗
j )−ϑ(x∗

i )) < 0. Actually, all the terms of the
sum are non positive and at least one is strictly negative.
Since it also holds that α 1

dg
dxi

	= 0, the contradiction is

proved.
Non convergence. The above arguments show that χ̂(x(0))1
is an equilibrium point. Now, we prove, by contradiction, that
the system may not converge to equilibrium points different
from the χ̂(x(0))1. To do this, let us assume that the system
actually converges to a different equilibrium point x∗ =
λ1 	= χ̂(x(0))1. As χ̂(.) enjoys the fixed point property, we
have χ̂(x∗) = λ 	= χ̂(x(0)). Then, we obtain a contradiction
with the time invariancy of χ̂(x) under protocol (8).

Proof of Theorem 2 We follow a line of reasoning similar
to the one in [6]. First, observe that consensus reaching
corresponds to asymptotic stability of a new variable η =
{ηi, i ∈ Γ}, where ηi = g(xi)− g(χ̂(x(0))). The vector η is
a bijective function of the system state, since ηi is as strictly
increasing as g(.), and η = 0 corresponds to x = χ̂(x(0))1.
We prove the asymptotical stability (in the quotient space
�n/span{1}) of the equilibrium point η = 0 by introducing
a candidate Lyapunov function V (η) = 1

2

∑
i∈Γ η2

i . Trivially,
V (η) = 0 if and only if η = 0; V (η) > 0 for all η 	= 0. It
remains to prove that V̇ (η) < 0 for all η 	= 0.

V̇ (η) =
= 1

2

∑
(i,j)∈E(φ̂(ηji)η̇ji + φ̂(ηij)η̇ij) =

= 1
2

∑
(i,j)∈E(φ̂(ηji)(

dϑ(xj)
dxj

ẋj − dϑ(xi)
dxi

ẋi)

+φ̂(ηij)(
dϑ(xi)

dxi
ẋi − dϑ(xj)

dxj
ẋj)) =

= −∑
i∈Γ

dϑ(xi)
dxi

ẋi

∑
j∈Ni

φ̂(ηji) =
= −∑

i∈Γ
1
α

dg(xi)
dxi

dϑ(xi)
dxi

ẋi
α

dg(xi)
dxi

∑
j∈Ni

φ̂(ηji) =

= −∑
i∈Γ

1
α

dg(xi)
dxi

dϑ(xi)
dxi

u2
i

In the above expression we simply express ηi and η̇i in
terms of the state variables and their derivatives and we
reorder the terms and exploit the fact that j ∈ Ni if and
only if i ∈ Nj for each i, j ∈ Γ. We have V̇ (η) ≤ 0 for all
η and, in particular, V̇ (η) = 0 only for η = 0. Actually, as
α > 0 and g(.), φ̂(.), and ϑ(.) are strictly increasing, we have
that, for any (i, j) ∈ E, xj > xi implies g(xj)− g(xi) > 0,
ϑ(xj) − ϑ(xi) > 0 and φ̂(ϑ(xj) − ϑ(xi)) > 0. Hence, we
obtain α(g(xj) − g(xi))φ̂(ϑ(xj) − ϑ(xi)) > 0 if xj > xi.
Trivially, a symmetrical argument holds if xj < xi.

Proof of Theorem 3. Let α = minj∈Γ{xj(0)} and β =
maxj∈Γ{xj(0)}. The aim is to prove that all solutions stay
inside the hypercube [α, β]n. This can be shown by noticing
that, for each generic agent i, the state xi(t) is a continuous.
Observe, that on the faces of the polyhedron [α, β]n the
corresponding vector field does not point outwards. We prove
this briefly for the case in which there exists ĵ ∈ Ni,
such that, minj∈Γ{xj(0)} < xĵ < maxj∈Γ{xj(0)}. As
the inequalities are strict, we have that ui(α, x(i)) > 0
(and ui(β, x(i)) < 0) which follows immediately from the
definition of ui. When either one or both of the above
inequalities are weak it may occur that either ui(α, x(i)) = 0
or ui(β, x(i)) = 0, but in any case, by the definition of ui,
it is not possible that ui(α, x(i)) < 0 or ui(β, x(i)) > 0.
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