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Abstract— This paper investigates the consensus problems
for networks of dynamic agents. The agent dynamics is
adopted as a typical point mass model based on the Newton’s
law. The average-consensus problem is proposed for such class
of networks, which includes two aspects, the agreement of
the states of the agents, and the convergence to zero of the
speeds of the agents. A linear consensus protocol for such
networks is established for solving such a consensus problem
that includes two parts, a local speed feedback controller and
the interactions from the finite neighbors. The convergence
analysis is proved and the protocol performance is discussed
as well. The simulation results are presented that are consistent
with our theoretical results.

I. INTRODUCTION

In recent years, decentralized control of communicating-

agent systems has emerged as a challenging new research

area. It has attracted multi-disciplinary researchers in a

widely range including physics, biophysics, neurobiology,

systems biology, apply mathematics, mechanics, computer

science and control theory. The applications of multi-

agent systems are diverse, ranging from cooperative con-

trol of unmanned air vehicles, formation control of mo-

bile robots, control of communication networks, design of

sensor-network, to flocking of social insects, swarm-based

computing, etc. A common characteristics of the relevant

analytical techniques is that they are deeply connected with

decentralized, or networked control theory.

Agreement and consensus protocol design is one of the

important problems encountered in decentralized control of

communicating-agent systems. It has been paid attention

for a long time by computer scientists, particularly in the

field of automata theory and distributed computation [1].

Agreement upon certain quantities of interest is required in

many applications such as multivehicle systems, multirobot

systems, groups of agents and so on.

In the past decade, quite a tremendous amount of interest-

ing results have been addressed for agreement and consen-

sus problems in different formulations due to different type

of agent dynamics and different type of tasks of interest.

In [2], the problem of cooperation among a collection of

vehicles performing a shared task using intervehicle com-

munication to coordinate their actions was considered. The

agents in the group were with linear dynamics. Tools from

algebraic graph theory were used to prove the formation

The authors are with the Center for Systems and Control, LTCS and
Department of Mechanics and Engineering Science, Peking University,
Beijing, 100871, China. E-mail: xiegming@mech.pku.edu.cn.

This work was supported by National Natural Science Foundation of
China (No. 10372002, No. 60404001 and No. 60274001) and National
Key Basic Research and Development Program (2002CB312200).

stability. In [3], a dynamic graph structure was provided as

a convenient framework for modelling distributed dynamic

systems where the topology of the interaction among its

elements evolves in time. Some promising directions were

highlighted as well.

Followed the pioneering work in [4], there are many

researchers have worked in analysis of swarms [5]-

[9],[13]-[24]. In [5], the stability analysis for swarms with

continuous-time model in n-dimensional space was ad-

dressed. Following this direction, stability analysis of social

foraging swarms that move in an n-dimensional space

according to an attractant/repellent or a nutrient profile was

addressed in [6]. The corresponding results in the case of

noisy environment was given in [7].

Different from the above disciplinary, in [8] and [9],

a model of coordinated dynamical swarms with physical

size and asynchronous communication was introduced and

analysis of stability properties of such swarms were pre-

sented with a fixed communication topology. A potential

application of these theoretical results is in the field of

the leader-follower formation control of multi-robot systems

[10]-[12].

In [13], a simple discrete-time model of finite au-

tonomous agents all moving in the plane with same speed

but with different heading was proposed. Moreover, the

concept of Neighbors of agents was introduced. Some simu-

lation results to demonstrate the nearest neighbor rule were

obtained. Based on this model, theoretical explanations

were first given in [14] for the simulation results in [13].

Some sufficient conditions for coordination of the system of

agents in the point of view of statistical mechanics. Another

qualitative analysis for this model under certain simplifying

assumption was given in [15].

In [16], a systematical framework of consensus problem

in networks of dynamic agents with fixed/switching topol-

ogy and communication time-delays was addressed. Under

the assumption that the dynamic of the agent is a simple

scalar continuous-time integrator ẋ = u, three consensus

problems were discussed. They are directed networks with

fixed topology, directed networks with switching topology

and undirected networks with communication time-delays

and fixed topology. Moreover, a disagreement function

was introduced for disagreement dynamics of a directed

network with switching topology. The undirected networks

case was discussed by the same authors in [17]. Some

other interesting results can be seen in [18]-[24] and the

references therein.

Meanwhile, there are many researchers in physics, bio-
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physics who consider a closely related to consensus prob-

lems on graphs, named as synchronization of coupled oscil-

lators where a consensus is reached regarding the frequency

of oscillation of all agents [25]-[34].

In this paper, we follow the work in [16][17] and consider

consensus problem for a more general class of networks. In

our network model, the dynamic of the agents is a type

of kinematic model, it can be viewed as an approximation

of a model with point mass which moves based on the

Newton’s law ma = F . Such a dynamic is more general

and complex than a scalar integrator in [16][17] and can

be used to model more processes in reality. The main

contribution in this paper is to pose and address consensus

problems for undirected networks of point mass dynamic

agents with fixed topology. Not only the convergence of the

topology is presented, but also the performance of reaching

an agreement is discussed. The case where the switching

topology is used is treated separately in another paper [36].

An outline of this paper is as follows. In Section II, we

recall the consensus problems on graphs. In Section III,

the control protocol is given. The convergence analysis and

performance discussion are presented in Sections IV and V,

respectively. The simulation results are presented in Section

VI. Finally, we conclude the paper in Section VII.

II. CONSENSUS PROBLEMS ON GRAPH

In this section, we introduce networks of dynamic agents

and consensus problems.

A. Algebraic Graph Theory

Let G = (V , E ,A) be a undirected graph with the set

of vertices V = {v1, v2, · · · , vM} , the set of edges E ⊆
V × V , and a weighted adjacency matrix A = [aij ] with

nonnegative adjacency elements aij . The node indexes of

G belong to a finite index set I = {1, 2, · · · , M}. An edge

of G is denoted by eij = (vi, vj). The adjacency elements

associated with the edges are positive, i.e., eij ∈ E ⇐⇒
aij > 0. Moreover, we assume aii = 0 for all i ∈ I. Since

the graph considered is undirected, it means once eij is an

edge of G, eji is an edge of G as well. As a result, the

adjacency matrix A is a symmetric nonnegative matrix.

The set of neighbors of node vi is denoted by Ni =
{vj ∈ V : (vi, vj) ∈ E}. A cluster is any subset J ⊆ V
of the nodes of the graph. The set of neighbors of a cluster

NJ is defined by

NJ =
⋃

vi∈J

Ni. (1)

The degree of node vi is the number of its neighbors |Ni|
and is denoted by deg(vi). The degree matrix is an M ×M
matrix define as ∆ = [∆ij ] where

∆ij =

{
deg(vi), i = j;
0, i �= j.

The Laplacian of graph G is defined by

L = ∆ − A (2)

An important fact of L is that all the row sums of L are

zero and thus 1M = [1, 1, · · · , 1]T ∈ R
M is an eigenvector

of L associated with the eigenvalue λ = 0.

A path between each distinct vertices vi and vj is

meant a sequence of distinct edges of G of the form

(vi, vk1
), (vk1

, vk2
), · · · , (vkl

, vj). A graph is called con-
nected if there exist a path between any two distinct vertices

of the graph.

Lemma 1: [35] The graph G is connected if and only if

rank(L) = M − 1.

By Lemma 1, for a connected graph, there is only one zero

eigenvalue of L, all the other ones are positive and real.

B. Consensus Problem on Network

Given a graph G, let xi ∈ R denote the state or

value of node vi. We refer to Gx = (G, x) with x =
(x1,2 , · · · , xM )T as a network with value x ∈ R

M and

topology G. Suppose each node of a graph is a dynamic

agent with dynamics

ẋi = vi

miv̇i = ui
(3)

where xi is aforementioned state of node vi, vi is the speed,

mi is the mass, and ui is the control input that will be used

for consensus problem. Moreover, we assume m1 = m2 =
· · · = mM = 1.

Let χ : R
M → R be a function of M vari-

ables x1, x2, · · · , xM and x0 = x(0), v0 = v(0) =
[v1(0), · · · , vM (0)]T denote the initial state and the initial

speed of the system, respectively. The χ-consensus problem
in a dynamic graph is distributed way to calcualted χ(x0)
by applying inputs ui that only depend on the states of node

vi and its neighbors. We say a state feedback

ui = ki(xj1, xj2, · · · , xjli) (4)

is a protocol with topology G if the cluster Ji =
{vj1, vj2, · · · , vjli , } of nodes with indexes j1, j2, · · · , jli ∈
I satisfies the property Ji ⊆ {vi}

⋃
Ni. In addition, if

|Ji| < M for all i ∈ I, (4) is called a distributed protocol.
We say protocol (4) asymptotically solves the χ-

consensus problem if and only if there exists an asymp-

totically stable equilibrium x∗ of the network satisfying

x∗
i = χ(x0) for all i ∈ I, and meanwhile, the speed of

each agent satisfying limt→∞ vi = 0, i ∈ I. Whenever the

nodes of a network are all in consensus, the common value

of all nodes is called the group decision value.

In this paper, we are interested in distributed solutions

of the special case with χ(x) = Ave(x) = 1/M(
∑M

i=1 xi)
which is called average-consensus. This is a very represen-

tative case with broad applications in distributed decision-

making for multi-agent system.

To solve such a average-consensus problem is a chal-

lenging task. It needs one to find suitable distributed state

feedback controller for each agent not only to solve the

agreement of the state of network but also to stabilize the

speed of the network.
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III. CONTROL PROTOCOL AND NETWORK

DYNAMICS

In this section, we present the control protocol that solve

the aforementioned average-consensus problem. We will use

a linear protocol with fixed topology and no communication

time-delays:

ui = ui1 + ui2 (5)

where

ui1 = kvi (6)

is the local speed feedback with feedback gain k to be

designed later, and

ui2 =
∑
j∈Ni

aij(xj − xi) (7)

is the part corresponding to the neighbors of node vi which

is constant in networks with fixed topology.

By using the above protocol (5), the agent dynamic is

given as follows:

ẋi = vi

miv̇i = kvi +
∑

j∈Ni
aij(xj − xi)

(8)

Denote

ξi = [xi, vi]
T , i ∈ I,

we have

ξ̇i = Aξi + BKξi + BF
∑

j∈Ni
aij(ξj − ξi) (9)

where

A =

[
0 1
0 0

]
, B =

[
0
1

]
,

K =
[

0 k
]
, F =

[
1 0

]
.

Furthermore, denote

ξ =

⎡
⎢⎢⎢⎣

ξ1

ξ2

...

ξM

⎤
⎥⎥⎥⎦ ,

the network dynamic is summarized as follows:

ξ̇ = Φξ (10)

where

Φ = IM ⊗ (A + BK) − L ⊗ BF

with L the aforementioned Laplacian associate with the

graph G.

IV. NETWORK WITH FIXED TOPOLOGY

In this section, we provide the convergence analysis of

the average-consensus problem for networks with fixed

topology.

Theorem 1: Consider a network with a fixed topology

G = (V , E, A) that is a connected graph, then for any neg-

ative gain k < 0, the protocol (5) globally asymptotically

solves the average-consensus problem.

Before giving the proof of Theorem 1, we first consider

the solution of limt→∞ exp(Φt).
Lemma 2: Assume the graph G is connected, then for

any k < 0,

lim
t→∞

exp(Φt) = wrw
T
l . (11)

where wl, wr are the left and right eigenvector of Φ asso-

ciated with the eigenvalue zero, respectively. Furthermore,

wr = wl =
1√
M

1M ⊗ [1 0]T , (12)

and wT
r wl = 1.

Proof.
First, we have

Φ 1√
M

1M ⊗ [1 0]T

= 1√
M

(
IM ⊗ (A + BK) − L ⊗ BF

)
1M ⊗ [1 0]T

= 1√
M

(
IM1M

) ⊗ (
(A + BK)[1 0]T

)
− 1√

M

(
L1M

) ⊗ (
BF [1 0]T

)
= 1√

M
1M ⊗ 02 − 1√

M
0M ⊗ [0 1]T

= 02M .

This means that wr = 1√
M

1M ⊗ [1 0]T .

Similarly, we have

1√
M

1
T
M ⊗ [1 0]Φ

= 1√
M

1
T
M ⊗ [1 0](IM ⊗ (A + BK) − L ⊗ BF )

= 1√
M

(
1

T
MIM

) ⊗ (
[1 0](A + BK)

)
−(

1
T
ML

) ⊗ (
[1 0]BF

)
= 1√

M
1

T
M ⊗ 0

T
2 − 1√

M
0

T
M ⊗ [1 0]

= 0
T
2M .

This means that wl = 1√
M

1M ⊗ [1 0]T as well.

Next, denote the eigenvalues of L are 0 = λ1 < λ2 ≤
· · · ≤ λM , there exists a orthogonal matrix W such that

W−1LW = diag{λ1, λ2, · · · , λM}. It follows that

(W−1 ⊗ I2)Φ(W ⊗ I2)
= IM ⊗ (A + BK) − diag{λ1, λ2, · · · , λM} ⊗ BF
= diag{A + BK, A + BK − λ2BF,

· · · , A + BK − λMBF}
Since

det(A + BK − λiBF ) = det(

[
0 1

−λi k

]
) = λi �= 0,

we have rank(A + BK − λiBF ) = 2, it follows that

rank((W−1 ⊗ I2)Φ(W ⊗ I2))

= rank(A + BK) +
∑M

i=2 rank(A + BK − λiBF )
= 1 + 2(M − 1) = 2M − 1.
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This implies that Φ has only one eigenvalue at zero.

Consider the eigenpolynomial of A + BK − λiBF

fi(s) = s2 − ks + λi,

the corresponding eigenvalues are

γi1 = (k +
√

k2 − 4λi )/2, γi2 = (k −
√

k2 − 4λi )/2

Since λi > 0, for any k < 0, we have

Re(γi2) ≤ Re(γi1) < 0,

for i = 2, · · · , M . This means that all the matrices A +
BK − λ2BF, · · · , A + BK − λMBF are Hurwitz stable.

Let J be the Jordan form associated with Φ, there exists

another nonsingular matrix S ∈ R
2M×2M such that

J = S−1(W−1 ⊗ I2)Φ(W ⊗ I2)S
= diag{0,−k, γ21, γ22, · · · , γM1, γM2},

We have

exp(Φt) = (W ⊗ I2)S exp(Jt)S−1(W−1 ⊗ I2).

It follow that

limt→∞ exp(Φt)
= (W ⊗ I2)S limt→∞ exp(Jt)S−1(W−1 ⊗ I2)
= (W ⊗ I2)SQS−1(W−1 ⊗ I2),

where Q = [qij ] with a single nonzero element q11 = 1.

Since S−1(W−1⊗I2)Φ = S−1(W−1⊗I2)J , the first row

of S−1(W−1⊗I2) is wT
l . Due to the fact that S−1(W−1⊗

I2)(W ⊗ I2)S = I2M , wl satisfies wT
l wr = 1.

This completes the proof.

Now we give the proof of Theorem 1.

Proof of Theorem 1. By Lemma 2, we have

ξ(t) = exp(Φt)ξ(0).

It follows that

limt→∞ ξ(t)
= limt→∞ exp(Φt)ξ(0)
= wrw

T
l ξ(0)

= (wT
l ξ(0))wr

= 1√
M

(wT
l ξ(0))1M ⊗ [1 0]T .

Since

1√
M

wT
l ξ(0)

= 1
M

(
1

T
M ⊗ [1 0]

)
[x1(0), v1(0), · · · , xM (0), vM (0)]

= 1
M

∑M

i=1 xi(0)
= Ave(x0)

and it is obvious that

lim
t→∞

vi(t) = 0, i = 1, 2, · · · , M.

This implies the protocol (5) globally asymptotically solves

the average-consensus problem.

This completes the proof.

V. PERFORMANCE DISCUSSION

In this section, we discuss performance issues of protocol

(5). We write ξ as

ξ = Ave(x0)1M ⊗ [1 0]T + δ (13)

where δ is called the disagreement vector. It is easy to verify

that δ satisfies the following disagreement dynamics

δ̇ = Φδ (14)

Defining the group disagreement function as

V (δ) = δT Pδ (15)

where P is a positive semi-definite matrix to be designed

in the following. We get

V̇ (δ) = δT (ΦT P + PΦ)δ (16)

In the following, we will determine such a positive semi-

definite matrix P such that

δT Pδ > 0,

δT (ΦT P + PΦ)δ < 0,

for any nonzero δ satisfying δT
1M ⊗ [1 0]T = 0.

In fact, noticing that the matrix

diag{k, A + BK − λ2BF, · · · , A + BK − λMBF}
∈ R

(2M−1)×(2M−1)

is Hurwitz stable, there exists a positive definite matrix P̂ ∈
R

(2M−1)×(2M−1) such that the matrix

diag{k, A + BK − λ2BF, · · · , A + BK − λMBF}T P̂

+P̂diag{k, A + BK − λ2BF, · · · , A + BK − λMBF}
is negative definite. It follows that

ηT diag{0, P̂}η > 0,

ηT
(

diag{A + BK, A + BK − λ2BF,

· · · , A + BK − λMBF}T diag{0, P̂}
+diag{0, P̂}diag{k, A + BK − λ2BF,

· · · , A + BK − λMBF}
)
η < 0,

for any nonzero η ∈ R
2M satisfying [1, 0, · · · , 0]η = 0. Let

P = (W−T ⊗ I2)diag{0, P̂}(W T ⊗ I2),

since

(W−1 ⊗ I2)Φ(W ⊗ I2)
= diag{A + BK, A + BK − λ2BF,

· · · , A + BK − λMBF},
we get

(
(W ⊗ I2)η

)T

P
(
(W ⊗ I2)η

)
> 0,

(
(W ⊗ I2)η

)T (
ΦT P + PΦ

)(
(W ⊗ I2)η

)T

< 0,
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for any nonzero η ∈ R
2M satisfying [1, 0, · · · , 0]η = 0.

Then the thing left is to prove that

{δ : 1
T
M ⊗ [1 0]δ = 0} = (W ⊗ I2){η : [1, 0, · · · , 0]η}

(17)

This statement is formulated as the following lemma.

Lemma 3: Give a connected graph G, then (17) holds.

Proof. See Appendix A.

As a result, we summarize the above analysis as the

following theorem.

Theorem 2: Consider a network with a fixed topology

G = (V , E, A) that is a connected graph, given protocol

(5), there exists a positive semi-definite matrix P such that

the smooth, positive definite and proper function (15) is

a valid Lyapunov function for the disagreement dynamics.

Furthermore, there exists a positive scalar κ such that

V (δ(t)) ≤ V (δ(0)) exp(−κt). (18)

Proof.
The existence of P has been shown as above. The existence

of κ is obvious. In fact, just let

κ = − min
δ �=0,1T

M
⊗[1 0]δ=0

δT (ΦT P + PΦ)δ

δT Pδ
. (19)

which satisfies (18).

VI. SIMULATIONS

In this section, we consider solving average-consensus

problem for graphs Ga and Gb shown in Fig.1 and the

adjacency matrices are limited to 0, 1 matrices. Fig. 2 and

Fig. 3 show the simulation results for the consensus protocol

(5) for a network with graph Ga with random set of initial

conditions. Fig.4 and Fig. 5 show the simulation results for

the consensus protocol (5) for a network with graph Gb with

random set of initial conditions.

(a)

(b)

Fig. 1. Undirected graphs used for consensus problems: a) Ga with
M = 6 nodes, and b) Gb with M = 10 nodes.

VII. CONCLUSION

In this paper, convergence analysis of a consensus pro-

tocol for a class of networks of dynamic agents with fixed

topology was presented. The agent dynamics is adopted as

a typical motion equation. The protocol contains two part,
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Fig. 2. State trajectories of the network on graph Ga .
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Fig. 3. Velocity trajectories of the network on graph Ga.

one part is the local speed feedback controller, the other is

the distributed state feedback from the neighbors. The case

where the switching topology is treated separately in [36].

APPENDIX A

Proof of Lemma 3.
Give a connected graph G, then we have

W−1LW = diag{0, λ1, · · · , λM}
and

L1M = 0

It follows that

Wdiag{0, λ1, · · · , λM}W−1
1M = 0

Since W is orthogonal, this implies that

W−1
1M = c[1, 0, · · · , 0]T ∈ R

M

where c is nonzero constant. It follows that

(W−1 ⊗ I2)1M ⊗ [1 0]T = c[1, 0, · · · , 0]T ∈ R
2M

This implies that

(W−1 ⊗ I2)span{1M ⊗ [1 0]T } = span{[1, 0, · · · , 0]T}
We can rewrite it as

span{1M ⊗ [1 0]T } = (W ⊗ I2)span{[1, 0, · · · , 0]T }
100
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Fig. 4. State trajectories of the network on graph Gb .
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Fig. 5. Velocity trajectories of the network on graph Gb.

Since W ⊗ I2 is orthogonal as well, it follows that

span{1M ⊗ [1 0]T }⊥ = (W ⊗ I2)span{[1, 0, · · · , 0]T }⊥,

which is nothing but (17).
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