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Abstract— The first part of this paper develops a linear
characterization for the space of the Petri net markings
that are reachable from the initial marking, M0, through
bounded-length fireable transition sequences. The second
part discusses the practical implications of this result for the
liveness and reversibility analysis of a particular class of Petri
nets known as process-resource nets with acyclic, quasi-live
and strongly reversible process subnets.
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I. INTRODUCTION

There is a general agreement in the Petri net-related
literature that the exact characterization of the reachability
space of any given Petri net (PN) through a set of linear
inequalities might require a set of constraints that is of non-
polynomial size with respect to the size of the considered
net, where the latter is defined by the number of its places
and its transitions, and also, the total number of tokens in
its initial marking. As a result, the superset of the markings
satisfying the net state equation1 is typically used as a con-
venient convex approximation of the original reachability
space. In this paper, we show that, for certain PN classes, it
is possible to obtain an exact linear characterization of the
reachability space which employs a number of variables
and constraints that are polynomially related to the size
of the underlying net. Our results are motivated by some
observations made in [1], a work that sought to improve
the aforementioned characterization of the net reachability
space based on the state equation. Beyond their theoretical
interest, the presented results can have significant practical
implications for the structural analysis of certain widely
used PN classes; as a case in point, the second part of
the paper establishes that the presented results enable the
strengthening of some computational tests regarding the
liveness and reversibility of a particular PN class known as
process-resource nets with acyclic, quasi-live and strongly
reversible process subnets [2], by converting these tests
from sufficient to necessary and sufficient conditions.

The rest of the manuscript is organized as follows:
Section II reviews the basic concepts of the PN theory

A more refined version of these results can be found in: S. Reveliotis,
”A necessary and sufficient condition for the liveness and reversibility of
process-resource nets with acyclic, quasi-live, serialisable and reversible
process subnets”, IEEE Trans. on Automation Science and Engineering
(to appear).

1All the technical concepts are systematically introduced in the subse-
quent sections of the paper.

employed in this work. Section III develops the first result
of the presented work, i.e., a linear characterization of
the PN reachability space that is accessible from the net
initial marking through fireable transition sequences, the
length of which does not exceed a pre-specified bound,
K. Subsequently, Section IV explores the practical implica-
tions of this characterization, by demonstrating how it can
strengthen the liveness and reversibility analysis of process-
resource nets with acyclic, quasi-live and strongly reversible
process subnets. Finally, Section V concludes the paper and
suggests directions for future work.

II. PETRI NET PRELIMINARIES

a) Petri net Definition: A formal definition of the Petri
net model is as follows:

Definition 1: [3] A (marked) Petri net (PN) is defined by
a quadruple N = (P, T, W, M0), where

• P is the set of places,
• T is the set of transitions,
• W : (P × T ) ∪ (T × P ) → Z+

0 is the flow relation,2

and
• M0 : P → Z+

0 is the net initial marking, assigning to
each place p ∈ P , M0(p) tokens.

Also, for the purposes of the subsequent analysis, the size
of PN N = (P, T, W, M0) is defined as |N | ≡ |P |+ |T |+∑

p∈P M0(p).
The first three items in Definition 1 essentially define a

weighted bipartite digraph representing the system struc-
ture that governs its underlying dynamics. The last item
defines the system initial state. A conventional graphical
representation of the net structure and its marking depicts
nodes corresponding to places by empty circles, nodes
corresponding to transitions by bars, and the tokens located
at the various places by small filled circles. The flow relation
W is depicted by directed edges that link every nodal pair
for which the corresponding W -value is non-zero. These
edges point from the first node of the corresponding pair to
the second, and they are also labelled – or, “weighed” – by
the corresponding W -value. By convention, absence of a
label for any edge implies that the corresponding W -value
is equal to unity.

2In this work, Z
+

0
denotes the set of nonnegative integers, and � denotes

the set of reals.
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b) Some structure-related PN concepts: For compu-
tational purposes, the net flow relation W is also encoded
by two |P | × |T | matrices, Θ+ and Θ−, with Θ+(p, t) =
W (t, p) and Θ−(p, t) = W (p, t). The difference Θ+ −Θ−

is known as the net flow matrix and it is denoted by Θ. A
PN is said to be pure if and only if (iff ) ∀p ∈ P, ∀t ∈
T, Θ−(p, t)Θ+(p, t) = 0.

Given a transition t ∈ T , the set of places p for which
(p, t) > 0 (resp., (t, p) > 0) is known as the set of input
(resp., output) places of t. Similarly, given a place p ∈ P ,
the set of transitions t for which (t, p) > 0 (resp., (p, t) > 0)
is known as the set of input (resp., output) transitions of p.
It is customary in the PN literature to denote the set of
input (resp., output) transitions of a place p by •p (resp.,
p•). Similarly, the set of input (resp., output) places of a
transition t is denoted by •t (resp., t•). This notation is
also generalized to any set of places or transitions, X , e.g.
•X =

⋃
x∈X

•x.
The ordered set X =< x1 . . . xn > ∈ (P ∪T )∗ is a path

iff xi+1 ∈ x•
i , i = 1, . . . , n − 1. Furthermore, a path X is

characterized as a circuit iff x1 ≡ xn.
The particular class of PN’s with a flow relation W

mapping onto {0, 1} are characterized as ordinary. An
ordinary PN with |t•| = |•t| = 1, ∀t ∈ T , is characterized
as a state machine, while an ordinary PN with |p•| = |•p|
= 1, ∀p ∈ P , is characterized as a marked graph.

c) Some dynamics-related PN concepts: In the PN
modelling framework, the system state is represented by the
net marking M , i.e., a function from P to Z+

0 that assigns a
token content to the various net places. The net marking M
is initialized to marking M0, introduced in Definition 1, and
it subsequently evolves through a set of rules summarized in
the concept of transition firing. A concise characterization
of this concept has as follows: Given a marking M , a
transition t is enabled iff for every place p ∈ •t, M(p) ≥
W (p, t), or equivalently, M ≥ Θ−(·, t), and this fact is
denoted by M [t〉. t ∈ T is said to be disabled by a
place p ∈ •t at M iff M(p) < W (p, t), or, equivalently,
M(p) < Θ−(p, t). Given a marking M , a transition t can be
fired only if it is enabled in M , and firing such an enabled
transition t results in a new marking M ′, which is obtained
from M by removing W (p, t) tokens from each place p ∈
•t, and placing W (t, p′) tokens in each place p′ ∈ t•. The
marking evolution incurred by the firing of a transition t
can be concisely expressed by the state equation:

M ′ = M + Θ · 1t (1)

where 1t denotes the unit vector of dimensionality |T | and
with the unit element located at the component correspond-
ing to transition t.

Given a PN N , a sequence of transitions, σ =
t1t2 . . . tn, is fireable from some marking M iff
M [t1〉M1[t2〉M2 . . . Mn−1[tn〉Mn; we shall also denote
this fact by M

σ
→ Mn. The length of σ is defined by the

number of transitions in it, and it will be denoted by |σ|.
Also, the Parikh vector of σ is a |T |-dimensional vector, σ̄,
with each component σ̄(t), t ∈ T , stating the number of
appearances of transition t in σ.

The set of markings reachable from the initial marking
M0 through any fireable sequence of transitions is denoted
by R(N ,M0) and it is referred to as the net reachability
space. Equation 1 implies that a necessary condition for

M ∈ R(N , M0) is that the following system of equations
is feasible in z:

M = M0 + Θz (2)

z ∈ (Z+
0 )|T | (3)

A PN N = (P, T, W, M0) is said to be bounded iff all
markings M ∈ R(N , M0) are bounded. N is said to be
structurally bounded iff it is bounded for any initial marking
M0. N is said to be reversible iff M0 ∈ R(N , M), for all
M ∈ R(N , M0). A transition t ∈ T is said to be live
iff for all M ∈ R(N , M0), there exists M ′ ∈ R(N ,M)
such that M ′[t〉; non-live transitions are said to be dead
at those markings M ∈ R(N , M0) for which there is no
M ′ ∈ R(N , M) such that M ′[t〉. PN N is quasi-live iff for
all t ∈ T , there exists M ∈ R(N , M0) such that M [t〉; it is
weakly live iff for all M ∈ R(N , M0), there exists t ∈ T
such that M [t〉; and it is live iff for all t ∈ T , t is live.

d) Siphons: A siphon is a set of places S ⊆ P such
that •S ⊆ S•. A siphon S is minimal iff there exists no
other siphon S′ such that S′ ⊂ S. A siphon S is said to
be empty at marking M iff M(S) ≡

∑
p∈S M(p) = 0.

S is said to be deadly marked at marking M , iff every
transition t ∈ •S is disabled by some place p ∈ S. It is
easy to see that, if S is an empty (resp., deadly marked)
siphon at some marking M , then (i) ∀t ∈ •S, t is a dead
transition in M , and (ii) ∀M ′ ∈ R(N , M), S is empty
(resp., deadly marked).

e) PN semiflows: PN semiflows provide an analytical
characterization of various concepts of invariance under-
lying the net dynamics. Generally, there are two types, p
and t-semiflows, with a p-semiflow formally defined as a
|P |-dimensional vector y satisfying yT Θ = 0 and y ≥ 0,
and a t-semiflow formally defined as a |T |-dimensional
vector x satisfying Θx = 0 and x ≥ 0. In the light
of Equation 2, the invariance property expressed by a p-
semiflow y is that yT M = yT M0, for all M ∈ R(N ,M0).
Similarly, Equation 2 implies that for any t-semiflow x,
M = M0 + Θx = M0.

Given a p-semiflow y (resp., t-semiflow x) its support
is defined as ‖y‖ = {p ∈ P | y(p) > 0} (resp., ‖x‖ =
{t ∈ T | x(t) > 0}). A p-semiflow y (resp., t-semiflow x)
is said to be minimal iff there is no p-semiflow y′ (resp.,
t-semiflow x′) such that ‖y′‖ ⊂ ‖y‖ (resp., ‖x′‖ ⊂ ‖x‖).

f) PN merging: We conclude our general discus-
sion on the PN concepts and properties to be employed
in the subsequent parts of this work, by introducing a
merging operation of two PN’s: Given two PN’s N1 =
(P1, T1, W1, M01) and N2 = (P2, T2, W2, M02) with T1 ∩
T2 = ∅ and P1 ∩ P2 = Q 
= ∅ such that for all
p ∈ Q, M01(p) = M02(p), the PN N resulting from the
merging of the nets N1 and N2 through the place set Q,
is defined by N = (P1 ∪ P2, T1 ∪ T2, W1 ∪ W2,M0) with
M0(p) = M01(p), ∀p ∈ P1\P2; M0(p) = M02(p), ∀p ∈
P2\P1; M0(p) = M01(p) = M02(p), ∀p ∈ P1 ∩ P2.

III. CHARACTERIZING THE PN MARKINGS REACHABLE
THROUGH FIREABLE TRANSITION SEQUENCES OF

UNIFORMLY BOUNDED LENGTH

In this section we provide a linear characterization of the
set of markings that are reachable from the initial marking,
M0, of a PN N = (P, T, W, M0), through fireable transition
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sequences, the length of which is bounded by a pre-specified
value, K. Our main result is stated and proven as follows:

Theorem 1: Consider a marked PN N = (P, T, W, M0)
with reachability space R(N ,M0). Also, let RK(N , M0)
denote the set of markings M ∈ R(N ,M0) that are reach-
able from M0 through some fireable transition sequence σ
with |σ| ≤ K, K ∈ Z+

0 , and LK(N ,M0) denote the set
of vectors M ∈ �|P | that are part of a solution to the
following system of linear inequalities, in variables M and
ei, i ∈ {1, . . . , K}:

M = M0 + Θ ·
K∑

i=1

ei (4)

M0 + Θ ·
i−1∑
j=1

ej ≥ Θ− · ei, ∀i ∈ {1, . . . , K} (5)

(1, 1, . . . , 1) · ei ≤ 1, ∀i ∈ {1, . . . , K} (6)

ei ∈ {0, 1}|T |, ∀i ∈ {1, . . . , K} (7)

Then, RK(N ,M0) = LK(N ,M0).
Proof: First we show that RK(N ,M0) ⊆ LK(N , M0).

Consider a marking M1 ∈ RK(N ,M0). The definition of
RK(N ,M0) implies that there exists a fireable transition
sequence, σ, such that |σ| ≤ K and M0

σ
→ M1. Sequence

σ defines the following solution for the system of Equa-
tions 4–7: M = M1; ei = 1σ(i), ∀i ∈ {1, . . . , |σ|}; and
ei = 0, ∀i ∈ {|σ| + 1, . . . , K}. In the above pricing, 1σ(i)

denotes a |T |-dimensional unit vector, with the unit element
corresponding to the i-th transition in fireable sequence σ.
Also, 0 denotes the |T |-dimensional zero vector. Clearly,
this pricing satisfies Equations 6 and 7 by construction.
Equation 5 is satisfied by the fact that σ constitutes a fireable
transition sequence, while Equation 4 is satisfied by the fact
that M0

σ
→ M1. Hence M1 ∈ LK(N ,M0).

Next we show that LK(N ,M0) ⊆ RK(N , M0). Let
M ∈ LK(N ,M0). Then, the definition of LK(N , M0)
implies that there exist vectors ei, i = 1, . . . , K, such that
(MT , eT

1 , . . . , eT
K)T constitutes a solution to the system of

Equations 4–7. The sequence of vectors ei, i = 1, . . . , K
defines the following string σ ∈ T ∗: ∀i ∈ {1, . . . , K},
σ(i) = ε, if ei = 0, and σ(i) = arg maxt∈T ei(t),
otherwise. In the above definition, T ∗ denotes the Kleene
closure of T and ε denotes the null string. Clearly, |σ| ≤
K. Furthermore, Equation 5 implies that σ is a fireable
transition sequence for N , while Equation 4 implies that
M0

σ
→ M . Hence, M ∈ RK(N ,M0). �

Notice that if we ignore Equation 7, which characterizes
the binary nature of the variable vectors ei, i = 1, . . . , K,
the remaining system of equations – i.e., Equations 4–6
– involves (|P | + 1)K + |P | constraints in |T |K binary
and |P | unrestricted variables. In the particular case that
every marking M ∈ R(N ,M0) can be reached from the
initial marking M0 through a fireable transition sequence
σ of length |σ| ≤ K, RK(N ,M0) = R(N , M0), and
therefore, the system of Equations 4–7 provides an exact
linear characterization of R(N ,M0) that involves a number
of variables and constraints that is a polynomial function
of |P |, |T | and K. If K also happens to be a polynomial

o
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Fig. 1. The process net structure of Definition 2

function of |N |, then, the system of Equations 4–7 provides
a linear characterization of R(N , M0) involving a number
of variables and constraints that are polynomially related to
|N |. We summarize the above discussion in the following
corollary:

Corollary 1: Consider a PN N = (P, T, W, M0) and
suppose that every marking M ∈ R(N , M0) can be reached
from M0 through a fireable transition sequence σ, the
length of which is bounded uniformly by a polynomial
function f(|N |), of the net size |N |. Then, R(N ,M0) =
Lf(|N |)(N , M0) and the corresponding system of Equa-
tions 4–7 constitutes an exact linear characterization of
R(N , M0) involving a number of variables and constraints
that are polynomially related to |N |.

The next section (i) establishes that the class of process-
resource nets with acyclic, quasi-live and strongly reversible
process subnets [2] satisfies the requirements of Corollary 1,
and (ii) explores the implications of this result for the
analysis of the liveness and reversibility of these nets.

IV. IMPLICATIONS FOR THE STRUCTURAL ANALYSIS OF
PROCESS-RESOURCE NETS WITH ACYCLIC, QUASI-LIVE

AND STRONGLY REVERSIBLE PROCESS SUBNETS

Process-resource nets with acyclic, quasi-live and
strongly reversible process subnets [2] aggregate a number
of PN classes that have been extensively used in the
literature for modelling the contest of concurrently execut-
ing processes for a finite set of reusable resources. They
are formally characterized through the following series of
definitions.

Definition 2: A process (sub-)net is an ordinary Petri net
NP = (P, T, W, M0) such that:

i) P = PS ∪ {i, o} with PS 
= ∅;
ii) T = TS ∪ {tI , tF , t∗};

iii) i• = {tI}; •i = {t∗};
iv) o• = {t∗}; •o = {tF };
v) t•I ⊆ PS ; •tI = {i};

vi) t•F = {o}; •tF ⊆ PS ;
vii) (t∗)• = {i}; •(t∗) = {o};

viii) the underlying digraph is strongly connected;
ix) M0(i) > 0 ∧ M0(p) = 0, ∀p ∈ P\{i};
x) ∀M ∈ R(NP , M0), M(i) + M(o) = M0(i) =⇒

M(p) = 0, ∀p ∈ PS .
The PN-based process representation introduced by Def-

inition 2 is depicted in Figure 1. Process instances waiting
to initiate processing are represented by tokens in place i,
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while the initiation of a process instance is modelled by the
firing of transition tI . Similarly, tokens in place o represent
completed process instances, while the event of a process
completion is modelled by the firing of transition tF .
Transition t∗ allows the token re-circulation – i.e., the token
transfer from place o to place i – in order to model repetitive
process execution. Finally, the part of the net between
transitions tI and tF , that involves the process places PS ,
models the sequential logic defining the considered process
type. In particular, places p ∈ PS correspond to the various
processing stages of the modelled process, while the net
connectivity among these places expresses the sequential
logic characterizing the process flow. As it can be seen in
Definition 2, this part of the process subnet can be quite
arbitrary. However, the subnets considered in this work are
further qualified by the next three definitions.

Definition 3: A process net is characterized as acyclic,
if the removal of transition t∗ from it renders it an acyclic
digraph.

Definition 4: A process net is characterized as quasi-live,
if the corresponding PN is quasi-live for M0(i) = 1.

Definition 5: A process net is characterized as strongly
reversible, if its initial marking M0 can be reached from
any marking M ∈ R(NP ,M0), through a fireable transition
sequence that does not contain transition tI .

The modelling of the resource allocation associated with
the process stage corresponding to any place p ∈ PS ,
necessitates the augmentation of the process subnet NP ,
defined above, with a set of resource places PR = {rl, l =
1, . . . , m}, of initial marking M0(rl), l = 1, . . . , m, equal
to the available capacity, Cl, of the corresponding resource,
and with the flow sub-matrix, ΘPR

, expressing the alloca-
tion and de-allocation of the various resources to the process
instances as they advance through their processing stages.
The resulting PN is characterized as a resource-augmented
process (sub-)net, and it is formally defined as follows:

Definition 6: A resource-augmented, acyclic, quasi-live
and strongly reversible process (sub-)net, NP = (PS ∪
{i, o}∪PR, T,W,M0), is an acyclic, quasi-live and strongly
reversible process net, NP = (PS ∪ {i, o}, T, W, M0),
augmented with a set of places PR, such that:

i) ∀rl ∈ PR,M0(rl) ≡ Cl > 0;
ii) (t∗)• ∩ PR = •(t∗) ∩ PR = (tI)

• ∩ PR = •(tF ) ∩
PR = ∅;

iii) ∀l ∈ {1, . . . , |PR|}, there exists a p-semiflow yrl
such

that: (a) yrl
(rl) = 1; (b) yrl

(rj) = 0, ∀j 
= l; (c)
yrl

(i) = yrl
(o) = 0; (d) ∀p ∈ PS , yrl

(p) = number
of units from resource Rl required for the execution
of the processing stage modelled by place p;

iv) The PN obtained from NP by setting its initial
marking to M0(i) = 1; M0(rl) = Cl, ∀rl ∈ PR;
and M0(p) = 0, ∀p ∈ PS ∪ {o}, is quasi-live.

Finally, the next definition provides the complete charac-
terization of the class of process-resource nets considered
in this work.

Definition 7: A process-resource net with acyclic, quasi-
live and strongly reversible process subnets is a PN N
= (P, T,W, M0) that is obtained by merging a number
of resource-augmented, acyclic, quasi-live and strongly
reversible process nets, NPj

= (Pj , Tj ,Wj ,M0j
), j =

1, . . . , n, through their common resource places.
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Fig. 2. The process-resource net structure considered in this work

The basic structure of a process-resource net with acyclic,
quasi-live and strongly reversible process subnets is de-
picted in Figure 2. Next we show that for a process-resource
net, N , with acyclic, quasi-live and strongly reversible pro-
cess subnets, every marking M ∈ R(N , M0) is reachable
from the initial marking, M0, through a fireable transition
sequence, σ, the length of which is uniformly bounded by
a value, K, that is a polynomial function of |N |. We prove
this result in two steps, starting with the following lemma.

Lemma 1: Consider a process-resource net N =
(P, T, W, M0) with acyclic, quasi-live and strongly re-
versible process subnets. Then, every marking M ∈
R(N , M0) is reachable by a fireable transition sequence
σ with σ̄(t∗j ) = 0, ∀j.

Proof: Consider a marking M ∈ R(N , M0) and a
transition sequence τ such that M0

τ
→ M . We shall show

that there exists a subsequence σ of τ such that σ̄(t∗j ) =

0, ∀j, and M0
σ
→ M . Clearly, if τ does not contain any

transition t∗j , j = 1, . . . , n, then, σ = τ . In the opposite
case, let t∗j(1) denote the first transition t∗j , j = 1, . . . , n,

appearing in τ . Also, let ρ(1) denote the prefix of string
τ up to and including transition t∗j(1) , and ρ(1) denote the
remaining suffix of it. The ordinary nature of PN NPj(1)

,
together with items (iv), (vii) and (ix) of Definition 2, imply
that ρ(1) contains at least one instance of transition tFj(1)

; let

tlFj(1)
denote the last such instance appearing in ρ(1). Items

(viii) and (ix) of Definition 2 subsequently imply that for
every place p ∈• tlFj(1)

there exists at least one transition

t ∈ •p in the prefix of ρ(1) up to transition tlFj1
. Picking

the element of •p that appears last in the prefix of string
ρ(1) up to transition tlFj1

, for each place p ∈ •tlFj(1)
, and

repeating the same argument on this new set of transitions,
we can establish the existence of a subsequence w(1) =
tIj(1)

t1t2 . . . tFj(1)
t∗j(1) of ρ(1), the elements of which are

monotonically non-decreasing with respect to the partial
order defined by the acyclic digraph obtained by net NPj(1)

after the removal of transition t∗j(1) , and which constitutes
a minimal sequence of transitions that enables t∗j(1) in the
process subnet NPj(1)

with M0(ij(1)) = 1 and M0(p) = 0

for every other place p ∈ Pj(1) . Let M0
ρ(1)

−→ M (1) in PN
N , and also let σ(1) denote the string obtained from ρ(1)

by removing every element in w(1). Next we show that
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M0
σ(1)

−→ M (1) in N .
First consider the PN N ′ obtained from net N by remov-

ing the resource places PR and their incident arcs. Also,
let M ′ denote the marking of N ′ obtained from marking
M of N by removing its components corresponding to

places p ∈ PR. We claim that in N ′, M ′
0

σ(1)

−→ (M (1))′.
Indeed, the above definition of strings w(1) and σ(1), when
combined with (i) the structure of net N ′, that is implied
by Definitions 2–7, and (ii) the exchange lemma of PN

theory (c.f. [4], pg. 23), imply that M ′
0

σ(1)w(1)

−→ (M (1))′.
The construction of w(1) implies that it is fireable in NPj(1)

,
under the initial marking defined in item (ix) of Definition 2.
Furthermore, w̄(1) is a (minimal) t-semiflow in NPj(1)

,

since, otherwise, the execution of sequence w(1) in NPj(1)
,

starting from the aforementioned initial marking, would
violate item (x) of Definition 2. But then, Definition 7
implies that w̄(1) is also a t-semiflow of the entire net N ′.

Hence, M ′
0

σ(1)

−→ (M (1))′. Moreover, the fact that w̄(1) is a t-
semiflow of net N ′, combined with item (iii) of Definition 6,
imply that w̄(1) is a t-semiflow for the original net N .
Hence, M (1) = M0 + Θ · ρ̄(1) = M0 + Θ · (σ̄(1) + w̄(1)) =
M0 + Θ · σ̄(1). In the light of this result, in order to show

that M0
σ(1)

−→ M (1) in N , it is adequate to show that the
string σ(1) is feasible in N with respect to resource places
rl ∈ PR, when the marking of these places is initiated to
M0(rl) = Cl, ∀rl ∈ PR. This feasibility is established by
noticing that the construction of the strings σ(1) and w(1)

from string ρ(1), when combined with items (ii) and (iii) of
Definition 6, imply that, upon the firing of every transition
t ∈ σ(1), the marking of every place rl ∈ PR is greater than
or equal to the marking of these places upon the firing of
the same transition in the original string ρ(1).

Recapitulating the above discussion, we have shown
that for any marking M ∈ R(N ,M0), the existence of
a fireable transition sequence, τ , such that M0

τ
→ M ,

implies the existence of another sequence τ (1) ≡ σ(1)ρ(1)

such that M0
τ(1)

→ M and the appearances of transitions
t∗j , j = 1, . . . , n, in string τ (1) have been reduced by
one compared to the corresponding appearances in string
τ . Since |τ | is finite, the number of appearances of the
transitions t∗j , j = 1, . . . , n, in τ will be finite, let’s say
ν. But then, consecutive application of the above argument

ν times, will result to a string τ (ν) with M0
τ(ν)

→ M and
no transitions t∗j , j = 1, . . . , n, in it. The entire proof
concludes by setting σ = τ (ν). �

Theorem 2: Consider a process-resource net N =
(P, T,W,M0) with acyclic, quasi-live and strongly re-
versible process subnets. Then, every marking M ∈
R(N ,M0) is reachable by a fireable transition sequence,
σ, the length of which is uniformly bounded by a value,
K, that is a polynomial function of |N |.

Proof: Consider a marking M ∈ R(N ,M0). Then,
according to Lemma 1, there exists a transition sequence
σ such that M0

σ
→ M and σ̄(t∗j ) = 0, ∀j. The length of

any such transition sequence σ is maximized by pushing as
many tokens as possible in places oj , j = 1, . . . , n. Let Kj

denote the maximal number of tokens that can be brought

to place oj , j = 1, . . . , n, by such a fireable transition
sequence σ; we claim that Kj = O(M0(ij)) for every place
oj , j = 1, . . . , n. Indeed, Kj cannot exceed M0(ij), since,
otherwise, items (i)–(ix) of Definition 2 imply that there is
a marking M ′ ∈ R(N , M0) such that its restriction to the
place set Pj violates item (x) of Definition 2. Furthermore,
the acyclic structure of net NPj

implies that the length
of any transition sequence bringing a token in place oj

is O(Pj). Hence, the length of any transition sequence
leading to the marking of place oj with Kj tokens is
O(Pj · M0(ij)). But then, Definition 7 implies that the
length of any of the aforementioned transition sequences
σ is O(

∑
j Pj · M0(ij)). �

Remark 1: While the result of Theorem 2 is technically
correct, in the sense that the derived bound O(

∑
j Pj ·

M0(ij)) is indeed polynomially related to |N |, one could
argue that initial marking M0(ij), j = 1, . . . , n, is a
concept that it is not defined naturally by the original
resource allocation system (RAS), but it was artificially
introduced while modelling the (logical) dynamics of this
system through the proposed class of process-resource
nets. However, in any practical study of such a process-
resource net, the markings M0(ij), j = 1, . . . , n, are
selected such that they express the maximal concurrency
allowed by the resource availability in the underlying RAS.
Hence, for a well-defined process-resource net, M0(ij) =
O(

∑
rl∈PR

M0(rl)), which, when combined with the results
in the proof of Theorem 2, implies that |σ| is O(

∑
j Pj ·∑

rl∈PR
M0(rl)).

Remark 2: A practical bound, K, for the length of se-
quences σ of Theorem 2, can be computed as the optimal
value of the following Integer Programming (IP) formula-
tion:

K = max
∑
t∈T

z(t) (8)

s.t.
M0 + Θz ≥ 0 (9)

z(t∗j ) = 0, ∀j (10)

z ∈ (Z+
0 )|T | (11)

Next we discuss the implications of Theorem 2 for the
structural analysis of process-resource nets with acyclic,
quasi-live and strongly reversible process subnets. These
implications stem from the following results [2]:

Theorem 3: Let N = (PS ∪ I ∪ O ∪ PR, T, W,M0) be
a process-resource net with acyclic, quasi-live and strongly
reversible processes. N is live and reversible iff the space
of modified reachable markings, R(N , M0), that is induced
by R(N , M0) through the projection

M(p) =

{
M(p) if p 
∈ I ∪ O
0 otherwise (12)

contains no deadly marked siphons, S, such that (i) S ∩
PR 
= ∅ and (ii) ∀p ∈ S ∩PR, p is a disabling place at M .

A siphon, S, that is deadly marked at some marking, M ,
of a process-resource net, N = (PS∪I∪O∪PR, T,W,M0),
with acyclic, quasi-live and strongly reversible process
subnets, and it further satisfies that (i) S ∩ PR 
= ∅
and (ii) ∀p ∈ S ∩ PR, p is a disabling place at M , is

2117



characterized as resource-induced deadly marked siphon.
The absence of resource-induced deadly marked siphons
from any marking M of a process-resource net N =
(PS ∪ I ∪ O ∪ PR, T,W,M0) can be verified through the
following computational test.

Theorem 4: Consider a process-resource net, N = (PS∪
I∪O∪PR, T,W,M0), with acyclic, quasi-live and strongly
reversible process subnets, and let SB(p) denote a structural
bound for every place p ∈ PS∪I∪O∪PR. 3 Then, any given
marking, M , of N will contain no resource-induced deadly
marked siphons, iff the following system of equations, in
binary variables vp, zt, and fpt, is infeasible.

fpt ≥
M(p)−W (p,t)+1

SB(p) , ∀W (p, t) > 0 (13)

fpt ≥ vp, ∀W (p, t) > 0 (14)

zt ≥
∑

p∈•t fpt − |•t| + 1, ∀t ∈ T (15)

vp ≥ zt, ∀W (t, p) > 0 (16)∑
r∈PR

vr ≤ |PR| − 1 (17)∑
t∈r• frt − |r•| + 1 ≤ vr, ∀r ∈ PR (18)

vp, zt, fpt ∈ {0, 1}, ∀p ∈ P, ∀t ∈ T (19)

The test of Theorem 4 can be extended to a test for the
non-existence of resource-induced deadly marked siphons
over the entire modified reachability space, R(N , M0), of
net N , by:

i) substituting marking vector M in Equations 13–19
with the modified marking vector M ;

ii) introducing an additional set of unrestricted variables,
M , representing the net reachable markings;

iii) adding two sets of constraints, the first one linking
variables M and M according to the logic of Equa-
tion 12, and the second one ensuring that the set of
feasible values for the variable vector M is equivalent
to the PN reachability space R(N ,M0);

iv) this last set of constraints can be provided by Equa-
tions 4–7, where the parameter K is selected accord-
ing to the IP formulation of Equations 8-11.

When combined with Theorem 3, the above observation
implies the following result:

Corollary 2: Let N = (P, T,W,M0) be a process-
resource net with acyclic, quasi-live, and strongly reversible
process subnets. N is live and reversible iff the system
of equations defined by (i) Equations 13–19, where the
parameter vector M is replaced by the variable vector M ,
(ii) Equations 4–7, where the parameter K is computed
according to the IP formulation of Equations 8-11, and (iii)
Equation 12, is infeasible.

Furthermore, Corollary 1 and Theorem 2, together with
the inspection of Equations 13–19, imply that the number
of variables and constraints engaged in the formulation
of Corollary 2 is polynomially related to |N |. The exact
number of variables and equations depends on the value for
parameter K returned by the solution of the IP formulation

3For well-defined process-resource nets with acyclic, quasi-live and
strongly reversible process subnets, such bounds will be established by
item (iii) of Definition 6 and item (x) of Definition 2.

of Equations 8-11. Finally, notice that, if the application of
the resulting criterion on any given process-resource net, N ,
is deemed computationally intractable, one can still resort to
the sufficiency test provided in ([2]; pgs 141-142); this test
substitutes Equations 2–3 for Equations 4–7, in the system
of equations defined in Corollary 2, and it seeks to verify
the absence of resource-induced deadly marked siphons in
the broader set of markings that satisfy the resulting system
of equations.

V. CONCLUSIONS

The first part of this paper presented a linear characteri-
zation of the space of the Petri net markings that are reach-
able from the initial marking, M0, through bounded-length
fireable transition sequences. The second part employed
this result in order to develop a necessary and sufficient
condition for the liveness and reversibility of process-
resource nets with acyclic, quasi-live and strongly reversible
process subnets; this condition takes the computationally
convenient form of testing the feasibility of a system of
linear inequalities with additional integrality requirements
for some of its variables, the size of which is related
polynomially to the size of the underlying PN. Furthermore,
it should be noticed that the presented methodology can be
easily extended to other structural analysis tests that concern
the verification of certain net properties and take the form
of a mathematical programming formulation parameterized
with respect to the net marking M . Indicatively, we men-
tion that assessing the quasi-liveness of process-resource
nets where every process subnet, NPj

, j = 1, . . . , n, of
Definition 2, has the additional structure of a marked graph
with every circuit containing the path < ojt

∗
j ij >, reduces

to verifying the absence of resource-induced deadly marked
siphons from the modified reachability space R(N ,M0) [5],
and, therefore, it can be tested together with the liveness and
reversibility of the net, through the criterion of Corollary 2
in this paper. Similarly, assessing the strong reversibility
of an acyclic process net, NP , of Definition 2, reduces to
verifying the absence of empty siphons from its modified
reachable markings other than M0 [6]. A sufficiency test
for this last property, that takes the convenient form of a
mixed integer programming formulation, can be found in
[7]; this test can be easily extended to an exact test for
the strong reversibility of acyclic process nets through the
methodology presented herein.
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