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Abstract—The reachability problem has received significant
attention in the hybrid control literature with many questions
still left unanswered. In this paper we solve the general problem
of reaching a set of facets of an n-dimensional simplex in
finite time, for a system evolving with linear affine dynamics.
Necessary and sufficient conditions are presented in the form
of inequalities on the vertices of the simplex, and a linear affine
controller is constructed that solves the reachability problem.

I. INTRODUCTION

In this paper we present reachability results for linear
affine systems defined on a polytope or simplex. We par-
ticularly consider the synthesis of controllers that achieve

a particular reachability specification on a simplex and we

develop necessary and sufficient conditions for the existence

of such a controller. The work of this paper is primarily

motivated by previous results on reachability and controlla-

bility on polytopes presented by Habets and van Schuppen

[8], and is related to work on invariance of polyhedral sets

as presented in the survey paper by Blanchini [5, pp. 1754-

1756].

Our results have implications for reachability analysis

in hybrid system theory. A hybrid system combines the

continuous model of several systems or subsystems with

discrete transitions that occur in between or within them.

In recent years, the interest in hybrid systems has grown

considerably and various general results have been presented

in proceedings; for example [1] and [11]. Our interest lies

specifically with linear affine systems studied by Habets and

van Schuppen [8], and introduced by Sontag [13], [14], [15].

In the literature, several interesting publications are re-

lated to our work. For instance, Lee and Arapostathis [10]

investigated global controllability of piecewise-linear affine

hypersurface systems, while Veliov and Krastanov [17] stud-

ied local controllability of a system which is linear on two

half-spaces. Other related work on invariant polyhedral sets

of linear systems have been studied by Vassilaki and Bitsoris

[16] and Castelan and Hennet [6]. The survey paper by

Blanchini [5] on set invariance in control provides many

other related references. The problem of reaching a particular

facet of an n-dimensional polytope has been extensively
studied by Habets and van Schuppen [7], [8]. The present

paper is highly motivated by their results. However, we

relax a key condition in [8], allowing to find necessary and

sufficient conditions for a more general problem of steering a

state of the system to a set of facets of a simplex. Moreover,

we show through examples that even though the conditions

for reachability of a facet in [8] are infeasible, we may still

be able to find a continuous state feedback which guarantees

the control objective.

The paper is organized as follows. The terminology,

adopted from [8], and the problem statement is presented

next. Section II contains background work related to the

paper. Next, necessary and sufficient conditions for the

existence of a continuous state feedback control which

achieves the control objectives is presented in Section III.

An algorithm for constructing a continuous controller is

presented in Section IV. Finally, several examples are given

in Section V. Concluding remarks follow, summarizing the

results and outlining our future directions of research.

A. Terminology

The convex hull of a set P ⊂ R
n is the set of all convex

combinations of points in P . An n-dimensional polytope is
a set Pn ⊂ R

n, defined as the convex hull of a set of points

V := {v1, ..., vk | k ≥ n + 1}, where v1, ..., vk are chosen

such that there does not exist a hyperplane of R
n containing

all points of V . A vertex of a set P is any point of P
which cannot be written as a convex combination of any

other distinct points of P . The set of vertices of P will be
denoted as V .

Given a set of m ∈ N vectors {x1, ..., xm | xi ∈ R
n},∑m

i=1 αixi is called an affine combination if
m∑

i=1

αi = 1. The

affine hull of a set P is the set of all affine combinations
of points in P , denoted aff(P ). A set of q + 1 points
{v1, ..., vq+1} in R

n is said to be affinely independent if
aff({v1, ..., vq+1}) is q − dimensional. If a set of points
{v1, ..., vn+1} is affinely independent, then its convex hull
is called an n-dimensional simplex, denoted Sn. In this

paper, whenever we say polytope (simplex), we mean an n-
dimensional polytope (simplex).

For an n-dimensional polytope, there exist j ≥ n + 1
distinct unit length normals h1, . . . , hj ∈ R

n and j non-zero
reals α1, . . . , αj ∈ R such that the polytope can be written
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as an intersection of j (n − 1)-dimensional hyperplanes:

Pn := {x ∈ R
n | hi · x ≤ αi, i = 1, 2, ..., j}. (1)

By convention the normal vectors hi point out of Pn. A facet
of a polytope Pn is an (n − 1)-dimensional intersection of
the polytope with a supporting hyperplane:

Fi := {x ∈ R
n | hi · x = αi} ∩ Pn i = 1, . . . , j . (2)

If Pn is a simplex, then we use the convention that Fi is the

convex hull of {v1, . . . , vi−1, vi+1, . . . , vn+1} where vj ∈ V .
Lastly, we define a multi-input linear affine system as

ẋ = Ax + Bu + a , (3)

where x ∈ R
n, u ∈ R

m, and a ∈ R
n and a linear affine

state feedback function of the form:

u = Fx + g , (4)

where F ∈ R
m×n and g ∈ R

m. Notice that with this state

feedback the closed loop system is of affine form

ẋ = (A + BF )x + (Bg + a) = Ãx + ã.

B. Problem Statement

Consider a linear affine system ẋ = Ãx + ã defined on
a polytope Pn. A facet Fi of the polytope Pn is called

restricted or invariant if no trajectory of the system exits
through the facet. (A facet which is not restricted is called

unrestricted). Let I be a given set of indices of the facets to
be made restricted by proper choice of control input for the

system (3). We assume at least one facet F1 is not restricted,

i.e. 1 �∈ I . Also, for each v ∈ V , let Iv = {k | k ∈ I, v ∈
Fk}. We consider the following problem.
Problem 1.1: Let Pn be an n-dimensional polytope with
a set of facets Fj , j ∈ I , with normal vectors hj . For the

system (3), construct a continuous feedback u = f(x), f :
Pn → R

m such that for each initial condition x0 ∈ Pn there

exist a time t0 ≥ 0 and an ε > 0 such that
1) ∀t ∈ [0, t0], x(t) ∈ Pn,

2) x(t0) ∈ Fk, for some k /∈ I
3) ∀t ∈ (t0, t0 + ε), x(t) /∈ Pn.

The problem states that we must design u to enforce all
controlled trajectories originating inside Pn to escape Pn

through some Fk, which is not invariant (notice that nothing

is said about the trajectory for t > (t0 + ε)). In contrast
with [8], we do not try to restrict n facets, but rather an
arbitrary number. Also, we drop the restriction that t0 must
be the first time at which the state reaches the exit facet.

Thus, the current problem is a generalization of the one in

[8]. The implications of the extra restriction in [8] will be

highlighted in the sequel. Since any n-dimensional polytope

can be partitioned into simplices via triangulation, the focus

of this paper will be on solving Problem 1.1 with Pn assumed

to be a simplex Sn. For an excellent overview of triangulation

and its complexities, the reader is referred to [8] and the

references therein.

II. BACKGROUND

In this section, we give background results needed for

the remainder of the paper. First, we present results from

convex analysis concerning separating hyperplanes that will

be used for our main results. Second, two elements from [8]

are reviewed. First, we show how a linear affine controller

can be constructed using only the input values at the ver-

tices. Second, we give conditions for preventing trajectories

originating inside a polytope from leaving via a particular

facet.

A. Convex Sets and Separating Hyperplanes

This subsection presents two important results related to

convex sets and separating hyperplanes. These will be used

in a proof of a key result in Section III.

Definition 2.1 ([12] pg.95): Let C1 and C2 be non-empty

sets in R
n. A hyperplane H is said to separate C1 and C2 if

C1 is contained in one of the closed half-spaces associated

with H , while C2 lies in the opposite closed half-space. Let

B := {x | ‖x‖ ≤ 1}. If there exists ε > 0 such that C1 +εB
is contained in one of the open half-spaces associated with

H and C2 +εB is contained in the opposite open half-space,
then C1 and C2 are separated strongly.
The following theorem gives a condition for the existence

of a hyperplane which separates two non-empty convex sets.

Theorem 2.1 ([12] pg.98): Let C1 and C2 be non-empty

convex sets in R
n. In order that there exist a hyperplane H

separating C1 and C2 strongly, it is necessary and sufficient

that

inf {‖x1 − x2‖ | x1 ∈ C1, x2 ∈ C2} > 0. (5)

Notice that if C1 and C2 are convex and compact, and

C1∩C2 = ∅, then (5) holds, implying that such an H exists.

B. Linear Affine Systems defined on Polytopes

Next we review several results from [8]. The main ideas

are as follows. Given a simplex Sn, we would like to impose

certain conditions, called invariance conditions and flow
conditions at the vertices of the simplex, which guarantee
that trajectories may not leave from the restricted facets,

but may leave from the unrestricted facets. The invariance

conditions, introduced in [8], dictate that the vector field may

not point “out” of a restricted facet. Lemma 2.5 shows that

the invariance conditions indeed guarantee that no trajectory

can exit the restricted facet. The flow conditions are a new

element contributed in this paper. A flow condition imposes

that the vector field points in a particular direction with

respect to a given vector ξ ∈ R
n, or equivalently, points

along a particular side of a hyperplane with normal vector ξ.
In Section III we will show that the flow conditions provide

the required additional element to solve the more general

reachability problem of this paper. Lemma 2.2 says that an

invariance (or flow) condition on a facet can be acheived

simply by imposing the invariance or flow condition on

the vertices of the simplex. Thus, the procedure is to write

invariance and flow conditions at the vertices only and solve

them for the control values at the vertices. Lemma 2.1 shows
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that once those control values at the vertices are obtained,

one can construct a linear affine feedback control defined on

the entire simplex such that the closed-loop system achieves

the design objective.

The first result of this subsection shows how a linear affine

controller can be constructed for the system (3) defined on

a simplex, from the knowledge of the input values at the

vertices. The proof parallels the result of [8] and is presented

for completeness.

Lemma 2.1: Consider two sets of points {v1, . . . , vn+1},
vj ∈ R

n and {u1, . . . , un+1}, uj ∈ R
m. Suppose the vj’s

are affinely independent. Then there exists a unique matrix

F ∈ R
m×n and a unique vector g ∈ R

m such that for each

vj , uj = Fvj + g.
Proof: We want to show there exists a unique matrix

F and a unique vector g such that, in matrix form,⎡
⎢⎢⎢⎣

vT
1 1

vT
2 1
...

vT
n+1 1

⎤
⎥⎥⎥⎦

[
FT

gT

]
=

⎡
⎢⎢⎢⎣

uT
1

uT
2
...

uT
n+1

⎤
⎥⎥⎥⎦ . (6)

If the (n + 1) × (n + 1) left-hand matrix is full rank, then
multiplying by its inverse yields the unique solutions F and
g. However,

rank

⎡
⎢⎢⎢⎣

vT
1 1

vT
2 1
...

vT
n+1 1

⎤
⎥⎥⎥⎦ = 1 + rank

⎡
⎢⎢⎢⎣

vT
2 − vT

1

vT
3 − vT

1
...

vT
n+1 − vT

1

⎤
⎥⎥⎥⎦ = 1 + n .

The last equality follows since the points {v1, . . . , vn+1}
are affinely independent if and only if the affine hull

of {v1, ..., vn+1} is n-dimensional, i.e. the vectors {v2 −
v1, . . . , vn+1 − v1} must be linearly independent.
Since a simplex is the convex hull of n+1 affinely indepen-
dent points, it is now clear that if we enforce input values

u1, ..., un+1 at the n + 1 vertices of the simplex, then we
can also construct a corresponding linear affine controller

u = Fx + g.
The next preliminary result, proved in [8], shows that once

a controller is specified on the vertices of Sn, its invariance

properties can be extended to every point in Sn. An alternate

interpretation, which is new in our work, is the following:

if a flow condition with respect to a hyperplane holds for a
linear affine vector field at the vertices of Sn, then that flow
condition holds for all points in Sn. Intuitively this statement

means that as long as a vector field has a particular direction

of flow with respect to a hyperplane with normal vector ξ,
on all the vertices of Sn, then the vector field also has that

direction of flow on all points of Sn.

Lemma 2.2: Consider system (3) defined on a polytope
Pn with vertices V = {v1, . . . , vk}. Given ξ ∈ R

n, ξ �= 0,
for all x ∈ Pn there exists an input u ∈ R

m such that

ξ · (Ax + Bu + a) < 0 (7)

if and only if for all vj ∈ V there exists uj ∈ R
n such that

ξ · (Avj + Buj + a) < 0 . (8)

Note that in the previous Lemma < can be replaced with
any of {≤, >,≥,=}. In particular, we use ≤ when dealing
with invariance properties.

The next two preliminary results are needed in order to

prove Lemma 2.5, which describes when a trajectory cannot

exit a polytope via a particular facet.

Lemma 2.3 ( Comparison principle [9] pg.102):
Consider the scalar differential equation

ẇ = f(t, w), w(t0) = w0 , (9)

where f(t, w) is continuous in t and locally Lipschitz in w,
for all t ≥ 0 and all w ∈ W̃ ⊂ R, W̃ a non-empty interval.

Let [t0, T ), T ≤ ∞, be the maximal interval of existence of
the solution w(t), and suppose w(t) ∈ W̃ for all t ∈ [t0, T ).
Let z(t) be a continuous function whose derivative satisfies
the differential inequality

ż(t) ≤ f(t, z(t)), z(t0) ≤ w0 (10)

with z(t) ∈ W̃ for all t ∈ [t0, T ). Then, z(t) ≤ w(t) for all
t ∈ [t0, T ).
The next result shows that if we are given a function f ,

which is locally Lipschitz, then the maximum of that function

is also locally Lipschitz.

Lemma 2.4 ([3]): Given a function f(x, y) : R
n × Y →

R, with Y a compact metric space, and f locally Lipschitz
in x. Then g(x) := max

y∈Y
f(x, y) is also locally Lipschitz.

We are now ready to introduce an important result provid-

ing conditions for invariance of a facet, which was presented

in [8] in a different way. A new proof is given, which

provides an alternate view to the argument in [8].

Lemma 2.5: Consider the linear affine system ẋ = Ax+a,
a ∈ R

n defined on Pn. Suppose that for facets Fi, i = 1, ...k
with normal vectors hi, respectively, the following conditions

hold:

hi · ẋ ≤ 0, ∀x ∈ Fi, i ∈ {1, . . . , k} . (11)

Then all trajectories originating in Pn that leave Pn do so

via an unrestricted facet Fj , j /∈ {1, . . . , k}.
Proof: Fix i ∈ {1, . . . , k} and w.l.o.g. assume that Fi

lies in the subspace {x | xn = 0}, so that hi is parallel to

the xn axis. Also, assume that ẋ = Ax + a holds on the
entire space R

n, not only on Pn. We consider two cases: (1)

a trajectory escaping via an interior point of the facet, and

(2) a trajectory escaping via a boundary point.

Case 1. Let ε > 0. Consider the set W := {x | xn ∈
[0, ε], (x1, x2, ..., xn−1, 0) ∈ Fi} (see Figure 1). We show
that no trajectory can escape through an interior point of Fi.

By way of contradiction, assume there exists a trajectory that

leaves via the interior of Fi, i.e. there exists a time t1 > 0
and some τ > 0 such that x(t1) ∈ Fi, and x(t1 + τ) /∈ Fi

with xn(t1 + τ) ∈ (0, ε) (refer to Figure 1). Note that if
hi · ẋ < 0 on Fi, by an elementary argument one can show

that no trajectory can escape Pn via Fi. So assume that at

x(t1), hi · ẋ = ẋn = 0. We define two functions

f(x) = ẋn and

g(xn) = max
{(x1,...,xn−1) | x∈W}

f(x) .
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By definition ẋn = f(x) ≤ g(xn), for all x ∈ W . Let
ẇ = g(w), with w(0) = xn(t1) = 0. But g(0) = 0 since
ẋn ≤ 0 on Fi. Therefore, w(t) = 0, ∀ t ≥ 0, as w is
a scalar function. Now invoking the Comparison principle

Lemma 2.3 with W̃ = [0, ε) and g(w) locally Lipschitz
by Lemma 2.4, we obtain that xn(t) ≤ w(t) = 0 for all
t ∈ [t1, t1 + τ ], a contradiction.
Case 2. We show that no trajectory can escape via a
boundary point of Fi without also escaping via Fk, which

is unrestricted. As before, assume that at a boundary point

x(t1) of Fi, hi · ẋ = ẋn = 0. There are two possibilities:
(a) there exists a facet Fj , j �= i, with x(t1) ∈ Fj such

that hj · ẋ > 0, or (b) for all facets Fj such that x(t1) ∈ Fj ,

hj ·ẋ ≤ 0. In the first case, since hj ·ẋ > 0, then the trajectory
exits Pn via Fj . In the second case, we can use a similar

proof as for an interior point, with a slight modification to

our W set. Details are omitted.

W ε

x1, x2, ... , xn−1

xn

Fi

x(t1)

x(t1 + τ )

hi

Fig. 1. Illustration for the proof of Lemma 2.5.

Observe that one can combine the results of Lemma 2.2

and of Lemma 2.5 to conclude that if there exists an input

function guaranteeing that for each restricted facet Fi, the

vector field at all vertices of Fi satisfies the condition hi ·ẋ ≤
0, then all trajectories which escape the polytope do so via
an unrestricted facet.

III. NECESSARY AND SUFFICIENT CONDITIONS

This section derives the necessary and sufficient conditions

for the general problem of reaching a set of facets of an n-

dimensional simplex in finite time, for a system evolving

with linear affine dynamics.

The first result is central to the development of the

necessary and sufficient conditions. It says that a system

ẋ = Ax + a defined on a compact and convex set P has
no equilibria in P if and only if there exists a vector ξ �= 0
such that ξ · ẋ = ξ · (Ax + a) < 0 for all x ∈ P .
Theorem 3.1: Consider the linear affine system ẋ = Ax+

a with x, a ∈ R
n, and a compact, convex set P . We have

Ax+a �= 0 for all x ∈ P if and only if there exists a ξ ∈ R
n

such that ξ · ẋ = ξ · (Ax + a) < 0 for all x ∈ P .
Proof:

(⇐) Since ξ · (Ax + a) < 0 for all x ∈ P , then clearly
for all x ∈ P , Ax + a �= 0.
(⇒) Since P is compact and convex it follows that the

image of P under the map x �→ Ax + a, denoted by C1 =
AP + a is also compact and convex and does not contain
the origin, by assumption. Thus, letting C2 = {0} and using
Theorem 2.1, there exists a hyperplane H that separates C1

and C2 strongly. In other words, there exists ε > 0 and
some ξ ∈ R

n such that for all x ∈ P , ξ · (Ax + a) ≤ −ε, or
ξ · (Ax + a) < 0.
A consequence of the above theorem is the following

corollary, which ensures that all trajectories originating in

a compact, convex set P containing no equilibria eventually
leave the set.

Corollary 3.1: Consider the system ẋ = Ax + a, with
x, a ∈ R

n. Let P ⊆ R
n be compact and convex. Suppose

that for all x ∈ P , Ax + a �= 0. Then, for each x0 ∈ P , the
trajectory starting at x0 eventually leaves P , i.e. x(t1) /∈ P
for some t1 > 0.

Proof: From Theorem 3.1, we know that if for all x ∈
P , Ax + a �= 0, then there exists a vector ξ and a constant
ε > 0 such that for all x ∈ P , ξ · (Ax+a) > ε, thus trivially
for all x0 ∈ P there exists some t1 > 0 such that x(t1) /∈ P .

The background results and the above observations lead

to the first solution to Problem 1.1.

Theorem 3.2: Consider an affine system ẋ = Ax+Bu+a,
with x ∈ Sn and u ∈ R

m. Problem 1.1 is solvable if and

only if there exists a linear affine control u with u(v1) =
u1, ... , u(vn+1) = un+1 such that the closed loop system

has no equilibria and the invariance conditions

hi · (Avj + Buj + a) ≤ 0 j ∈ {1, ..., n + 1}, i ∈ Ivj
,

are satisfied.

Proof:
(⇒) It is obvious that the closed loop system will not have
an equilibrium if Problem 1.1 is solved. For the proof of

necessity of the invariance conditions, see [8].

(⇐) By assumption, for the set of vertices {v1, . . . , vn+1}
there exists a corresponding set of inputs {u1, . . . , un+1}.
Invoking Lemma 2.1, there exists a linear affine control u =
Fx + g, which guarantees that the desired input values are
achieved at each vertex. Now we must show that the resultant

input u = Fx + g solves Problem 1.1. First, by substituting
for u, we obtain ẋ = (A + FB)x + (Bg + a) = Ãx + ã,
and from the assumption that for all x ∈ Sn, Ãx + ã �= 0,
Corollary 3.1 guarantees that all trajectories of this system

will eventually leave Sn. That is, for each initial condition

x0 ∈ Sn, there exists a time t1 > 0 such that the trajectory
starting at x0 satisfies x(t1) �∈ Sn. Now it can be seen that

this implies there exists t0 < t1 and ε > 0 such that x(t0) ∈
∂S and x(t) �∈ S for all t ∈ (t0, t0 + ε). For consider the set
of times T = {t ∈ [0, t1) : x(t) ∈ ∂S} when x(t) is in the
boundary of S. Clearly T is nonempty and it is bounded.
It is an elementary argument to show that T is also closed.
Therefore t0 := sup T belongs to T . Hence x(t0) ∈ ∂S,
x(t1) �∈ S, and it is easily seen that t0 < t1. Let ε := t1−t0.
Since t0 is the last time x(t) is in the boundary of S, we also
have that x(t) �∈ S for all t ∈ (t0, t0 +ε), as desired. Finally,
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using Lemma 2.2 and Lemma 2.5, the trajectory cannot leave

via the restricted facets. This concludes the proof.

Theorem 3.2 gives conditions for the solvability of Prob-

lem 1.1. The invariance conditions agree with the results in

[8], while the equilibrium condition introduces the missing

link for solving the general problem of reaching a desired

facet in finite time. However, if we were to construct an

algorithm based on the conditions of Theorem 3.2, we would

only be able to satisfy the invariance conditions and hope

that the equilibrium condition would hold with the chosen

controller. If not, then we would have to choose a different

set of inputs {u′
1, ..., u

′
n+1} to construct a different input

function u′ = F ′x + g′ and check if the equilibrium lies
outside Sn. In general this process does not give a guarantee

that we can find a linear affine input function that solves

the problem. However, from Lemma 3.1 we can replace

the condition of no equilibria in a compact, convex set

by the existence of a ξ ∈ R
n such that for all x ∈ P ,

ξ · (Ax + a) < 0. Thus, with this observation a corollary to
Theorem 3.2 is obtained that remedies the difficulty arising

from checking the equilibrium condition.

Corollary 3.2: Consider the system ẋ = Ax + Bu + a,
with x ∈ Sn. There exists a linear affine feedback u = Fx+
g, with F ∈ R

m×n and g ∈ R
m, which solves Problem 1.1

if and only if there exists a set of inputs u1, . . . , un+1 ∈ R
m

and a vector ξ such that the following hold:

1). Invariance Conditions: hi · (Avj + Buj + a) ≤ 0
j ∈ {1, 2, ..., n + 1}, i ∈ Ivj

2). Flow Conditions: ξ · (Avj + Buj + a) < 0
j ∈ {1, 2, ..., n + 1}.

Corollary 3.2 tells us that we only need to check several

inequalities at the given vertices of the simplex. Moreover,

if we know what the value of ξ is, then the problem reduces
to solving a set of linear inequalities. In fact, the sufficient

conditions presented in [8] are a specific case of Corollary

3.2, with ξ set to h1, and I = {2, ..., n + 1}. It is clear
that for our problem we don’t have to restrict ξ to be h1.

The examples at the end of the paper will illustrate several

situations where setting ξ to h1 will not solve the general

problem of leaving via a particular facet or set of facets, but a

different ξ will. The inequalities presented in the Corollary
are still problematic, as the value of ξ and the values for
ui are unknown, making the feasibility of the inequalities a

nonlinear problem. However, with the tools and algorithms

presented in the literature on nonlinear programming (for

instance [4] and references within), one can attempt to

find the solution to the above inequalities. This nonlinear

programming problem is beyond the scope of this paper and

we leave the details to those interested.

IV. ALGORITHM

In this section, we present an algorithm for finding an

affine feedback controller that solves Problem 1.1. The

algorithm parallels the steps outlined in [8], and is shown

primarily for completeness.

Algorithm 4.1: We are given the linear affine system ẋ =
Ax + Bu + a defined on an n-dimensional simplex Sn with

vertices vi ∈ V , and the set I .

1) Check if the invariance and flow conditions of Corol-

lary 3.2 can be satisfied, and the inputs u1, ..., un+1

obtained. If not, the problem is unsolvable; otherwise

go to the next step.

2) Solve (6) for F and g and construct the linear affine
controller u = Fx + g.

The drawback of the algorithm, as previously mentioned,

is that we need to solve nonlinear inequalities in Step 1.

However, from Theorem 3.2 we know that if we satisfy the

invariance conditions and find the input u = Fx + g, such
that the closed-loop system has no equilibria, then Problem

1.1 is solved. This method may not always yield the desired

input, but as will be illustrated in the next section, it can

avoid the effort of finding a feasible solution to the nonlinear

inequalities of step one.

V. EXAMPLES

To illustrate the results of the previous sections two exam-

ples are given. In both examples the conditions presented in

[8] fail, but reachability of the desired facet is still achieved.

Example 5.1: Consider the system

ẋ =
[

0 1
0 0

]
x +

[
0
1

]
u +

[
4
1

]

defined on a simplex S2 with vertices v1 = (−1,−3), v2 =
(4,−1) and v3 = (3,−6), and normals h1 = [5 − 1], h2 =
[−3 − 4] and h3 = [−2 5]. We require that all trajectories
originating in S2 leave via F1. The conditions in [8] on v3

are

1) hT
1 Bu3 > −hT

1 (Av3 + a) ⇒ u3 < −11
hT

2 Bu3 ≤ −hT
2 (Av3 + a) ⇒ u3 ≥ 1

2

Clearly the conditions on vertex v3 fail. However, by check-

ing the invariance conditions of Theorem 3.2, and ensuring

there is no equilibrium for the closed loop system inside S2,

we notice that reaching F1 without leaving through any other

facet is possible. The conditions for restricting the two facets

result in the satisfaction of the four conditions below

1) hT
3 Bu2 ≤ −hT

3 (Av2 + a) ⇒ u2 ≤ 0.2
hT

3 Bu1 ≤ −hT
3 (Av1 + a) ⇒ u1 ≤ −0.6

2) hT
2 Bu1 ≤ −hT

2 (Av1 + a) ⇒ u1 ≥ −1.75
hT

2 Bu3 ≤ −hT
2 (Av3 + a) ⇒ u3 ≥ 0.5.

With the arbitrary choice of u1 = −1.175, u2 = 0.2 and
u3 = 0.5, we can construct the linear affine controller
u = Fx + g, with F = [0.325 − 0.125] and g = −1.225,
which results in the overall closed loop system having

an equilibrium at approximately [−0.8462 4.0]. With this
controller we are guaranteed not to exit through F2 or F3

since the invariance conditions hold; moreover, by the results

of the previous sections we are guaranteed to leave the

simplex via F1, i.e. I = {2, 3}. The phase portrait of the
closed loop system is illustrated in Figure 2.

Example 5.2: Consider the system

ẋ =

⎡
⎣ 1 2 0

0 −1 0
0 0 1

⎤
⎦ x +

⎡
⎣ 1

1
0

⎤
⎦u +

⎡
⎣ 2

3
1

⎤
⎦
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defined on a simplex S3 with vertices v1 = (0, 0, 0),
v2 = (1, 2, 0), v3 = (−2,−1, 0), and v4 = (0, 0, 1), and
corresponding normals h1 = [−3 3 3], h2 = [1 − 2 0],
h3 = [2 − 1 0], and h4 = [0 0 − 1]. We require that all
trajectories originating in S3 leave via F1, i.e. I = {2, 3, 4}.
Once again, by verifying the condition presented in [8] on

v2 we must satisfy

1) hT
1 Bu2 > −nT

1 (Av2 + a), implying that 0 > 15
which is infeasible. However, the invariance conditions imply

that −4 ≤ u1 ≤ −1, u2 ≤ −13, u3 ≥ −10 and −4 ≤ u4 ≤
−1. Choosing u1 = −2, u2 = −15, u3 = 12 and u4 = −2
we can construct the linear affine controller u = Fx + g,
with F = [−5 − 4 0] and g = −2. The closed loop system
has an equilibrium at (−0.2, 0.4,−1). Since all the facets
have been restricted and the equilibrium lies outside of S3,

we can guarantee all trajectories leave through the desired

facet

The reason that the conditions presented in [8] failed in

these examples is because ξ cannot be set to h1 in Corollary

3.2. Of course, it should be noted that in [8] the goal was not

to solve the general problem of leaving via a particular facet,

but to solve a specific problem with all trajectories flowing

in a particular direction with respect to h1.

VI. CONCLUSION

The results presented in this paper have been heavily

influenced by the work of Habets and van Schuppen [8].

We have presented a generalization of their problem by

considering an arbitrary number of restricted facets and by

dropping the restriction that t0 in Problem 1.1 must be the
first time instant at which the state reaches the exit facet.

The results illustrate that through a test on the vertices of

the polytope one can derive a controller that restricts the

flow of the system. Moreover, by checking that the closed-

loop system contains no equilibria, we have shown that the

system will always leave through the desired facet in finite

time. The results presented thus bridge the gap with the work

of [8], showing that the necessary and sufficient conditions

presented in [8] are too restrictive if reachability of a facet is

the only goal. Finally, the examples illustrate the simplicity

equilibrium

F
1

Fig. 2. Phase portrait of the closed loop system for Example 5.1.

and usefulness of the results presented in the paper. In both

situations an arbitrary choice of the input resulted in an

adequate controller; namely, a controller that enforces the

equilibrium to lie outside of the simplex. In general, one

might not be able to make an arbitrary choice for the control,

and instead one must work with the nonlinear constraints

given by Corollary 3.2.

With convexity and linearity of the problem in mind, the

authors are currently pursuing the idea of transforming the

nonlinear conditions into linear ones by finding a legitimate

ξ.
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