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Abstract— Smooth and nonsmooth versions of the Pontryagin
Maximum Principle can be proved using necessary conditions
for set separation in terms of approximating multicones arising
from generalized differentiation theories. We propose a notion
of approximating multicone derived from J. Warga’s theory of
derivate containers and the notion of Mordukhovich normal
cone, and state and prove the corresponding set separation
theorem.

I. INTRODUCTION

In a series of papers (e.g., [1], [2], [3], [4]) we have proposed
versions of the Pontryagin Maximum Principle for highly
non-smooth systems, based on generalized differentials and
flows, and proved by “primal” methods, using packets of
needle variations. All these proofs are based on separation
theorems for sets, which give a necessary condition for two
sets S, Sy containing a point 5 to be separated at 5—in
the sense that S; NSy = {5}. The condition involves the
notion of “approximating multicone” to a set at a point,
and says that, if C;, Co are approximating multicones to
S1, Sy at §, then C; and Co are not “strongly tranver-
sal.” The notion of approximating multicone is specific
to a particular “generalized differentiation theory.” (For
example, the classical notion of Boltyanskii approximating
cone corresponds to the classical differential.) In our previous
papers, this was done for differentiation theories such as
the “generalized differential quotients,” and the result was
used to prove very nonsmooth versions of the Pontryagin
principle. In all these versions, the transversality condition
turns out to involve some version of the notion of Boltyanskii
cone, and does not apply to Clarke tangent cones or Mor-
dukhovich normal cones.

The purpose of this note is to present the analogue
of the separation theorem for the differentiation theory of
Warga derivate containers (cf. Warga [5], [6], [7]). We
define the notion of a “MWAMC” (“Mordukhovich-Warga
approximating multicone”) to a set at a point, and prove the
separation theorem. As was the case for other differentiation
theories, the key element of the proof is a directional open
mapping theorem, stated and proved in §V. The application
of these results to the nonsmooth maximum principle will
be discussed in subsequent papers.
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II. PRELIMINARY BACKGROUND MATERIAL

If X, Y are real linear spaces, then Lin(X,Y") will denote
the space of all linear maps from X to Y. If X and
Y are finite-dimensional and normed, then Lin(X,Y) is
also finite-dimensional, and we will always regard it as
a normed space, endowed with the operator norm || - |/op
given by || L||,p = sup{||L(z)| : z € X, ||z|| < 1}. We use
XT to denote the dual space of X, so X' = Lin(X,R).
We use R™, R™*"™ to denote, respectively, the space of
real n-dimensional column vectors, and the space of all
real matrices with m rows and n columns. We iden-
tify R™*™ with Lin(R™,R™) in the usual way, by
identifying each matrix M € R™*™ with the linear map
R*3>x+— M-z € R™. If X is any set, then Ix will denote
the identity map of X. If X is a metric space, * € X,
and 0 < r € R, we use Bx(z,7), Bx(z,7), to denote,
respecetively, the closed ball {z € X : dist(z,Z) < r} and
the open ball {z € X : dist(x,Z) < r}. We write B"(z, ),
Bn(i‘, r) for BRn (z,7), Brn(Z, 7“).

A cone in a real linear space X is a nonempty subset C'
of X such that r¢ € C whenever r € R, r > 0, and ¢ € C.
The polar of a cone C in X is the set CT of all w € XT such
that (w,c) <0 for all ¢ € C. It is clear that CT is always a
closed convex cone, and C++ is the smallest closed convex
cone containing C, so in particular C++ = (' if and only
if C' is closed and convex. A convex multicone in X is a
nonempty set of convex cones.

Two convex cones C7, Cy in a finite-dimensional real
linear space X are transversal, if C; — Cy = X, i.e., if for
every ¢ € X there exist c; € Cq, co € (9, such that
T = c¢1 — co. The cones C and Cs are strongly transversal
if they are transversal and in addition C; N Cy # {0}.

If Cq, Cy are convex cones in X, then

(1) Cy and C5 are transversal if and only if either (i) Cy
and Cy are strongly transversal or (ii) C; and C5 are
linear subspaces and C; & Cy = X.

2 C; and C5 are transversal if
cin(=ci) = {oy.

(To prove (1), it suffices to assume that C; and Cy are

transversal but not strongly transversal and show that (ii)

holds. Let us prove that C is a linear subspace. Pick ¢ € (.

Using the transversality of C7 and Cs write —c = ¢ — ¢2,

¢; € C;. Thene; +c=cy. But ¢g +c¢c € Cq and ¢y € Cs.

and only if
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So ¢1 + ¢ € C;NCy, and then ¢; + ¢ = 0, since Cy and Cy
are not strongly transversal. Therefore —c € C'y. This shows
that ¢ € C; = —c € (4. So C} is a linear subspace. A
similar argument shows that C5 is a linear subspace. Then
the transversality of C; and C5 implies that C; + Co = X
and the fact that they are not strongly transversal implies that
CyNCy = {0}. Hence C; @ Cy = X. To prove (2) observe
that Cy — C is a convex cone, so C7; — Cs = X if and only
if Clos(C7 — C32) = X, and if Clos(C; — C2) # X then the
Hahn-Banach theorem implies that C1 N (=C1) # {0}.)

Two convex multicones Cq, C» in a finite-dimensional real
linear space X are transversal, if C; is transversal to Cy
whenever 7 € C;, Cy € Cy. The convex multicones Cq,
Cy are strongly transversal if they are transversal and in
addition there exists a u € XT\{0} such that

(VCl €Cy, Cy € CQ)(HLL’ eCiN CQ)(/J,(LL‘) > O) . (1)

Let S be a subset of a finite-dimensional real linear space
X, and let 5 € S. The Bouligand tangent cone to S at
5 is the set of all vectors v € X such that there exist a
sequence {s;}jen of points of S converging to s, and a
sequence {h;}jen of positive real numbers converging to
0, such that v = lim;_,o *—==. We use 7S to denote the
Bouligand tangent cone to S at 5. Itis clear, and well known,
that T2S is a closed cone. The Bouligand normal cone
of S at 5 is the polar cone (T2S)I of TBS, that is, the
set of all covectors p € XT such that (p,v) < 0 for all
v € T5PS. The limiting normal cone, or Mordukhovich
normal cone of S at 5 is the set of all covectors p € X¥
such that p = lim;_,., p; for some sequence {p;};en of
members of Xt and some sequence {s;};jen of members of
S such that p; € (TBS)T for each j. We use N S to denote
the Mordukhovich normal cone of S at 5. For each p € X,
we let pf = {v € X : (p,v) < 0}. The Mordukhovich
tangent multicone to S at 5 is the set

MT5 Sdif{pJr :pe NMgs}.
Lemma 2.1: Let S be a closed subset of a finite-
dimensional normed real linear space X, and let 5 € S,
p € XT. Then the following conditions are equivalent:

(x.1) peNMS,

(x.2) limipf (max{(ﬁ, v):veTBS, v < 1}) =0,

(%.3)  liminf (max{(p,v) v eTPS, v < 1}) =0.
S*’S’p%p

Proof: Although Conditions (x.2) and (x.3) depend on
the norm of X, it is easy to see that the truth values of
(*.2) and (x.3) are norm-independent. Hence we may assume,
without loss of generality, that the norm of X arises from
an inner product (-, -), and we may use this inner product to
identify X and X' in the standard way.

For s€ S, pe X, let

O(p, 5)
Then O(p, s) > 0, because 0 € TES.

= max{(p,v) :v € TS, ||Jv|| < 1}. ()

If (+.1) holds, then we can find a sequence {s;};en of
members of S and a sequence {p;}jen of members of X
such that lim; . s; = 5, lim;j o, p; = p, and p; € (T2 S)T
for each j. Then, ©(p;, s;) = 0 for each j, so (*.3) holds.

We now prove that (%.3)=(x.2)=(x.1). The
implication (x.3)=(x.2) is trivial, because if (*.3)
holds then there is a sequence {(s;,p;)}jen oOf
members of S x X such that lim;_.s; = 35,
limj ,oop; = p, and lim;_,. O(p;,s;) =0. Since
O(p, s;) < O(pj,s;)+ ||p—pjll, we can conclude that
lim; o ©(p, s;) = 0, and then (*.2) holds.

We now assume that (x.2) holds, and prove (x.1). If
p=0then p € NMS, so (x.1) is true. So we may assume
that p # 0 and then, without loss of generality, we may
also assume that ||p|| = 1. It follows from (x.2) that we
can find a sequence {s;}jen of members of S such that
lim; ,ooe; =0, where ¢; = O(p,s;) = 0. For a >0,
j € N, define 8;(«) to be the minimum of all the nonnegative
real numbers (3 such that the closed ball Bx(sj + ap, )
intersects S. (The minimum exists because S is closed.) Then
Bj(a) < a, because
=Bx(s; +ap,a).

We are going to construct, for each j, a covector p; which
is close to p and such that p; is a Bouligand normal to .S at
a point 5; close to s;.

Fix a j. If §;(a) = « for some ¢, then the open
ball Bx(s; + ap,a) does not intersect S, and this clearly
implies that p € (T, 5 S)T. So in this case we take
p; = p and §; = s;. Next assume that 3;(a) < o for
all positive «. Then for each o we can pick a point
o(a) € Bx(sj +ap, Bi(a))NS. Let v(a)=oc(a)—s;,
m(a) = ap — v(ea). Then v(a) # 0, and in addi-
tion (v(«a),p) = (v(a) — ap,p) + o = a — (w(«), p), since
||l = 1. Furthermore,

[m()ll = llap = v(a)|| = [[(s; + ap) — o(a)|| = B;(e)
so that (7(a),p) < B;(c), and then (v(a),p) > a — B;(w),
so that f;(a) > a— (v(a),p). On the other hand,
limsup,, o |v(a) |~ (v(@),p) < e;. (Indeed, suppose the
inequality is not true. Then there exist a positive 4 and a
sequence {ay}ren of positive numbers that converges to 0
and is such that [|[v(ag)|| " (v(ak),p) > €; + 6. If we let
wi = ||v(ar)|| " tv(ag), then we may assume, after passing
to a subsequence, that the limit w = limg_, o, wy exists.
Since s; + v(ay) € S, the vector w belongs to TSE;'S.
But (w,p) > ¢; + 0, and this contradicts the fact that
@(]5, Sj) =¢gj.) 4

Let o be such that [|v(a)|| ' {v(a),p) < &; + 277
whenever 0 < a < a*. Given any «, it is clear that
lv(a)|] < 2a. Then 0 < (v(w),p) < «f; whenever
0 < a<a*, whereé; =2(¢;4+277). Let a(a) = (v(a), p)p,
b(a) = v(a) — a(a), so b(a) L a(a), and then |jv(a)||? =
la(a)]|? +||b(cx)||*. On the other hand, m(a) = ap—v(a) =
ap — afa) - b(a), s0 7(a) = (a - (v(a), 7)) - b(a), and
then

o® = fj(a)? = ||m(e)]|* =

55 € Bx(s; + ap, opl)

oo = (v(a), p)I* + [Ib(a) -
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Since (v(a),p) < a€j, we have a — (v(a),p) > a(l — &),
and then o > o(1 — &;)? + ||b(a)||?, so that
[b(a)[? < 0?(1 — (1 - &)%) < (28 — &3) < 2a°¢;,
and then ||b(cv)|| < a/2¢;. Therefore
Im(a) = apll = [[{v(e), p))p + b(a)|| < aé;,

where £; = &; + /2€;. Hence, if we pick any « such that
0 <a<a ada <277 and let p; = %, 5 =
s; +v(a), we see that ||p; — p|| < &;, [|3; — s;]| <277, and
p; is a Bouligand normal to S at 3;. This shows that p is a
limiting normal of S at s, concluding our proof. [ ]

If S is closed, the Clarke tangent cone to S at 5 is the
set of all vectors v € X such that, whenever {s;};en is
a sequence of points of S converging to s, it follows that
there exist Bouligand tangent vectors v; & TB S such that
lim;_,oc v; = v. We use TE'S to denote the Clarke tangent
cone to S at 5. It is well known that TE!S is a closed
convex cone. Also, it is well-known that Tgc LS is the polar of
NMS. Therefore TE! = N{C : C € MT 3S}. The Clarke
normal cone of S at 5 is the polar (TS'S)" of the Clarke
tangent cone, so (TC!S)T is the smallest closed convex cone
containing NMS.

If X,Y are finite-dimensional real linear spaces, €2 is an
open subset of X, F': Q +— Y is a map, and z, € €, a
Warga derivate container of F' at x, is a compact subset
A of Lin(X,Y") such that for every compact neighborhood
A of A in Lin(X,Y) there exist an open neighborhood U
of . in X and a sequence {F}}jcn of maps of class C!
from U to Y such that F; — F uniformly on U as j — oo,
and DF;(z) € A’ for all « € U, j € N. It is clear that if
F has a Warga derivate container at =, then F' is Lipschitz-
continuous on a neighborhood of ..

If M, N, are manifolds of class C!, and & € M, then
it is easy to extend the concepts of Bouligand and Clarke
tangent cone and Mordukhovich tangent multicone, as well
as the corresponding normal cones, to a subset .S of M at
z, and to define intrinsically the notion of a Warga derivate
container at & of a map F' : M +— N. In that case, if €
S C M, then (i) the cones T f S, Tg IS, are subsets of the
tangent space 13 M of M at Z, the convex multicone M7 S
is a set of convex cones in T3 M, (ii) the cones (T2S)T,
(TE'S)T, NM D are subsets of the cotangent space (T M)T,
and (iii) the Warga derivate containers of I’ at  are compact
subsets of Lin(Tz M, Trz)N).

III. WARGA APPROXIMATING MULTICONES

If C, D are convex multicones, then we write C < D if for
every D € D there exists a C' € C such that C C D.

If M is a manifold of class C', 5 € S C M, and C is a
convex multicone in T3 M, we say that C is a Mordukhovich-
Warga approximating multicone (abbr. MWAMC) of S at
s if there exist (i) a nonnegative integer n, (ii) a compact
subset K of R™ such that 0 € K, (iii) an open neighborhood
U of K in R", (iv) a Lipschitz-continuous map F': U — M,
(v) a compact subset A of Lin(R"™, Ts:M), and (vi) a convex

multicone D in R, such that (I) F'(0) =5, () F(K) C S,
(IIT) A is a Warga derivate container of F at 0, IV) D =<
MT ;K and, finally (V) C={L-D:Le€A,DeD}.

Example 3.1: If S is a closed subset of a manifold M of
class C1, 5 € S, and C is any convex multicone in TsM such
that C <X MT 35S, then C is a MWAMC of S at s. Indeed, it
clearly suffices to assume that M/ = R" and 5 = 0. We then
let U, V be, respectively, an open subset of R" containing 0,
and a compact ball centered at 0 and contained in U. We then
take K =V NS, so K is compact and M7 oK = MT;S.
We then let F' : U — R" be the inclusion map, and take A =
{Ign}.ThenC ={L-C:L e A,CeC},andC X MT K
|

Example 3.2: As a special case of the previous example, if
S is a closed subset of a manifold M of class C*', and 5 € S,
then the multicones MT S and {TS'S} are MWAMCs of
S at s. [ |

Example 3.3: It follows trivially from the definition that,
if M, N are manifolds of class C', SC M,5€ S, F : M —
N is a Lipschitz-continuous map, AN is a Warga derivate
container of F at 5, and C is a MWAMC of S at §, then

AC¥(L.C:LeACeC)isa MWAMC of F(S) a
F(3). l
Example 3.4: . If My, My are manifolds of class C*,

51€85CM, 339 € S, C M, C is a MWAMC
of S1 at 51, and Co is a MWAMC of Sy at S, then
C1 X Cy is a MWAMC of S1 x So at (51,52), where
C1 x C ¥ {C) x Cy: Cy €€y, Cy € Co}. To see this find,
for « = 1,2, a nonnegative integer n;, a compact subset K;
of R™ containing 0, an open neighborhood U; of 0 in R™, a
Lipschitz-continuous map F; : U; — M; such that F;(0) =
3; and F;(K;) C S;, a derivate container A; of F; at 0, and
a convex multicone D; in R™ such that D; < M7 ;, K;, for
which C; = {L-C :C € (;, L € A;}. Define n = n; + na,
U=U xUy CR" xR"” ~ R" K = K; x Ky,
M:MlXMQ,S:;S’lX52,§:(§1,§2),A:A1XA2
(that is, A= {L1 XLo:Lj € Al, Ly € AQ}, where L1 X Lo
is the map that sends (s1,s2) € R™ x R to the pair
(Ll . 81,L2 . 82) € TsflMl X TS’QMQ ~ TsM), C =0C1 xCa,
D =D; xDy, F=F; xF,. (That is, F' is the map that
sends (s1,82) € U to (Fi(s1),Fa(s2)) € M.) Then
A is a derivate container of F' at 5, and A - D = C.
So the desired conclusion will follow if we show that
D < MT K. But this is trivial, because, if p € NMS,
then p = lim; oo p; for some sequence {(s%pj)}JeN
such that s/ — 35 s; € S, and p; € (TEK)". If
we write s/ = (s],s}), then TEK = TBKl x TEKs, so
2 .
(T3 )" = (TFK)T X (TJK,)!, and then p? = (p], 1)),
P € (TSBKl) P € (TBKz) Hence p = (p1,p2),
p € NMKy, py € NMK,. Since D; < MT5 K; for
i = 1,2, we may pick D; € D; such that D; C p:r
Then D; x Dy C p' and Dy x Dy € D. This shows that
D < MT ;K and concludes our proof. ]

Remark 3.5: In the previous example, it is important
to notice that the product M7 5 K; x MT 5, Ky of the
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Mordukhovich tangent multicones M7 5, K;, M7 5, Ko
does not in general coincide with the Mordukhovich tangent
multicone M7 ;K of the product. On the other hand, it is
always true that M7 3, K3 x M7 5, Ko < M7 K, and that
is all that is needed for the proof in Example 3.4. [ ]

IV. THE TRANSVERSALITY THEOREM

Two subsets S7, Sz of a topological space X are locally
separated at a point p € X if there exists a neighborhood U
of p in X such that S; N S2NU = {p}.

Theorem 4.1: Let M be a manifold of class C!, let S,
So be subsets of M, and let & € S; NS5, Let Cq1, Ca, be
MWAMCs of Si, Sy at . Assume that C; and C, are
strongly transversal. Then S; and S, are not locally separated
at Z.that is, there exists a sequence {x;};jecy of points of
(S1NS2)\{Z} such that lim; ., x; = Z. Furthermore, there
exists a Lipschitz arc v : [0,1] — M such that v(0) = z,
~(t) does not identically equal Z, and v(t) € S; NSy for all
t €10,1].

Proof: The proof is based on the directional open
mapping property, stated and proved in Theorem 5.1 below.
Without loss of generality, we assume that M = R™ and
T=0.Welet X =R", X =XxX,)Y=XxR. We
fix a linear functional ¢ : X +— R such that (1) holds,
and define a map G : X = X x X +— ) by letting
G(x1,x2) = (r1 — x2,4(x1)). Then G is a linear map, so
the differential DG(0) is just G.

Let S = 51 x Ss. Also, let C = C; x Cy. Then we know
from Example 3.4 that C is a MWAMC of S at (0,0). Let
D =G -C. Then D is a MWAMC of G(S) at G(0,0).

Let § = (0,1) € Y = X x R. Then a straightforward
calculation shows that § € Int D for every D € D. (Proof.
Let D € D, and write D = G(C; x Cs), C; € Cy, Cs €
Cy. Then C; — Cy = X. In view of (1), we can pick
¢ € C; N Cy such that u(¢) = 1. Then G(¢,¢) = . Given
any v € X, we can use the transversality of C; and Cs to
write v = ¢ — ¢g, with ¢; € C1, ¢a € Cs. So there exists
r € R such that (v,7) € G(Cy x Cy). If (eq,...,e,) is a
basis of X, and eg = —(e1 + ...+ e,), then there are reals
r; such that (e;,r;) € G(Cy x Cy) for ¢ = 0,...,n. Since
g€ G(Cy x Cy), it follows that (e;,7) € G(Cy x Cy),
for every i, if ¥ = max(l,ro,71,...,7,). Hence
(€i,1) € G(Cy x Cy) for every i, if &; = 7~ 'e;. This clearly
implies our conclusion.)

We have therefore verified the hypotheses of Theorem 5.1.
It then follows from the theorem that, for some positive «,
there exists a Lipschitz arc £ : [0, 1] — S such that £(0) =0
and {G(&(t)) : t € [0,1]} = {(0,7) : 0 < r < a}. Write
£(t) = (&(1),&(1)), so &(t) € S1 and &(t)) € So. Let
~(t) = &1(t). Then, if t € [0,1], G(&£(¢)) = (0,r) for some
r, s0 &1(t) = &(t), and then ~(t) € Sy N So, Furthermore,
~ does not vanish identically because, for some ¢ € [0, 1],
G(E(t) = (0,a), so p((t) = . =

V. THE DIRECTIONAL OPEN MAPPING PROPERTY

Given a subset A of R”, and a positive number r, we use
T'(A,r) to denote the set of all maps 7 : [0,1] — A such

that v(0) = 0 and ||y(¢) — v(s)|| < r|t — s| whenever s,t €
[0,1]. (So, naturally, I'(A, r) is empty if 0 ¢ A.) It is then
clear that if A is closed then T'(A,r) is a compact subset of
C°([0,1],R¥).

If D is a closed convex cone in R”, and a > 0, we use
D(«) to denote the set {y € D : |ly|| < a}. If y € R”, we
use o, to denote the set {ty: 0 <t <1} Ify:[0,1] — A
is an arc, then || will denote the set {y(t) : ¢t € [0,1]}.

Theorem 5.1: Assume that

« m and n are nonnegative integers,

e S is a closed subset of R™ such that 0 € S,

o U is an open subset of R™ such that 0 € U,

e F:U +— R™ is a Lipschitz map such that F'(0) = 0,

e A is a Warga derivate container of F at 0,

e g€ R™ and ||y]| =1,

e y€IntL-p'forevery L € A. and every p € N}S.
Then there exist a closed convex cone D in R™ and positive
numbers «, « such that § € Int D and

(Vy € D(a))(3y € T(S, ka))(oy = [Fon]).  B)

Proof: ~ We assume, as we clearly may without
loss of generality (after making an orthogonal change of
coordinates, if necessary) that § = (0¥, 1), where p =m—1
and 0* is the origin of R¥. We then let R = R¥, and identify
R™ with R x R.

Our first task will be to reformulate our hypothesis in dual,
rather than primal terms, by proving that

(#) There exists a real number § €]0,1[ such that, if
geR™, L € R™*" s € S are such that |q|| = 1,
(q,7) > =6, dist(L,A) <4, s €S, and ||s|| < 0, then
O(LT(q),s) > 6, where © is the function defined in (2).

We prove (#) by contradiction. Assume that § does not

exist. Then there are sequences {¢; }jen, {L;}jen. {S;}jen,

such that, for each j, the following are true: ¢; € R™,

lajll =1, {a;, §) = =277, Ly € R™™, dist(L;,A) < 277,

s; € S, |Is;ll < 279, and ©(Ll(q)),s;) < 277. Pick

L; € A such that ||L; — L;|| < 277. Then we may find an

infinite subset J of N such that the limits ¢ = lim;_, ¢;,

l:/ = lim; f/j, exist. Then |[|g| = 1, (7,%) >0, and
LecA In addition, 11{11]_,00 S5 = 0 and hm]_,oo Lj = L.
Let pj:L;qj, o= LG so lim; ,cp; = p. Since

O(pj,s;) < 277, itis clear that liminf,_,o ,—.; O(p,s) = 0.
So Lemma 2.1 implies that p € NJS. Therefore the cone
L - p' belongs to C. Hence % is an interior point of L - pf.
On the other hand, if y € L-p' then we can write y = L -,
T € ﬁt so that <(ja y> - <(j,f1 ! .’L‘> = <ET - q, £E> - <I37 .’E>, and
(p,z) <0, since x € p'. So (g,y) < 0 forall yc L-p.
Since § € L-p' and (g, §) > 0, we conclude that (7, %) = 0.
But then, if we take y = y + £¢, where ¢ is positive and
small enough, we have (G,y) = e > 0, while on the other
hand 3 € L-p'. So we have reached a contradiction, proving
#).

We now fix a ¢ having the properties of (#), and choose
k = 01, We then apply the definition of the Warga derivate
container, and obtain
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e an R € R such that R > 0, B*(0, R) C U and R < 6,
o a sequence {Fj}jen of functions of class C' from
B™(0, R) to R™ such that
- F; — F uniformly on B"(0, R) as j — oo,
- DFj(x) € A for all z € B"(0,R), j € N,
where A = {L € R™*™ : dist(L,A) < §}. After replacing
F; by F; — F;(0) we may assume, in addition, that
- F;(0) =0 for every j € N.
We now let D = {y € R™ : (y,5) > (1 —0)]|y|, where
5 = %, so that § = \/;S Then D is a closed convex
cone, and § € Int D. We choose @« = JR, and define
S =B"(0,R)NS, so S is compact and 0 € S. We will
prove (3). It clearly suffices to show that

(vj €N)(Vy € D(@)) (T €T(S, ra)) (0, =|Fj 0 1]) . (4)

(Indeed, if (4) holds, and y € D(«), then for each j we
can find v; € T'(S,ka) such that |Fj o 7;| = o,. Since
F(.é' ,ka) is compact, there exists an infinite subset J of N
such that v = lim;_, 7, exists and belongs to I(S, ka).
But then lim;_. «(Fjo7;) = Fo~,so |Foq] =0, and
v eT(S, ka).)

We now prove (4). We fix a j, and write G = F};. Then
G € CY(B"(0,R),R™), G(0) = 0, and DG(z) € A for all
x € B"(0, R). We want to prove that

(Vy € D(a)(3y € L(S, 8a))(0y =[G on]).  (5)

Let Do(a) = Int D(c). Then, thanks to the compactness of
(S, ka), it suffices to show that

(Vy € Do(@))(3y € T(S, 5a)) (o, = [G o). (6)

To prove (6), we pick a point y, € Do(«) and construct
ay € I'(8, ka) such that o, = |G o+|. We will do this by
finding, for small positive ¢, arcs 7. € I‘(S,na) such that
the sets |F o 7. | converge to oy, in the Hausdorff metric.

Pick a positive £ such that B™(y.,e) C Do(c). (This
implies, in particular, that |ly.|| + ¢ < «.) Then
let Q. ={veR™: (v,y.)=0A|v] <e}, so Q. is the
p-dimensional disc orthogonal to y,, centered at 0, and
having radius €. We define Q. = {y. +v : v € Qe}, SO
QE g Bm(y*,{f)

Next, we let § = I
Y« € Dg(a), and 0 ¢ Dg(ax), because if 0 € Dy(a) it
would follow—since § < 1—that (y,7) > 0 for all y near
0, so 4y = 0.) We then define a function h.: R"™ — R
by letting h.(z) = (z,9) — M|z — (z,9)9||?>, where
Ae = €7 2||y«||. Then h.(0) = 0, and in addition h.(z)
also vanishes at all points = belonging to the frontier
0Q: ={y« +v:veR™ v Ly, |v|] =¢e} of Q.. We then
let H. = h. o G, so H. is a function of class C! on U.

We now let

Q. ={r e R™: \|lw — (z,9)i]* < (z,9) < |lg:|}. (D

Then Q. is obviously closed, and Q # (), because 0 € Q.
Furthermore, the Hausdorff distance dro(Qe, 0y, ) is exactly
e. (Indeed, let = € Q.. Then = = v + rg, with r = (z,§)

‘“—‘ (Recall that y, # 0, because

and v =2z — 1y, so v L g. The fact that = € Q. implies
that A.||v||> <7 < ||y.||, so 7 > 0, and then ry. € o,, and
|z — rg||? < €%, so ||l# — rg|| < &; since this is true for
every ¢ € Q., while ||z —rj|| = ¢ if x € 9Q., we see
that max{dist(z,0,,) : ¢ € Q.} = ¢. Since o,, C Q,,
it follows that dp,(Q,0,,) = €.) In particular, Q. is
bounded, so Q. is compact.

We then define a set-valued function ¥, from B"(0, R)
to R™ by letting

U (s) ={w e R": ||w|| <1 and (VH.(s),w) >} .
Then W. is upper semicontinuous with compact convex
values. Let

S, = GHQ.)NnS8S,
Soe = {seSl:|s| <R and (G(s),5) <lly:l}-

Then S’ is a compact subset of S, S . is a relatively open
subset of S., and 0 € S; .. We will show that

Ue(s) NTES. #0 whenever s, €5).. (8)

To see this, pick a point s, € 5678, and write 2, = G(s.),
e = Vhe(zy), fru = ”:—H It follows that z, € Q., so
Ty = 1G + Us, with v, L g, 7o = (x4, 7), and |Jvi]| < e
The fact that s, € Sj, . then implies that 0 < r, < |[y.|| and

[[ve]| < e. Also, T = § — 2A (s — (T4, §)T) = § — 2Ac0ss

and then
[mell = V14 4X2{|v. |,

since v, L 9. Furthermore, (m,,§) =
Since § € D, and ||g|| = 1, we have (g,
19— gl = 191 + 1711” — 2(5,9) = 2(1 — (3,9)) < 20,
and then ||§ — || < V/26 = 6, so that
2\e {0, 5} =20 (00, T—5) <200 17— 1] <22 0. 16,
(using the fact that v, L ), and then
(T ) > 1 =8 — 20 |Jva[|6 > —2Xc|Jva |6 > —2).€6

from which it follows that

<7A1_ :lj> > 2)‘f:‘HU*H(S

VAR [o*

Let L. = DG(s.). Then dist(L., A) < 6. Since ||| = 1
and (#,,7) > —6, (#) implies that O(LI(#,),s) > 6. We
can therefore find a w € TPS such that |w| = 1 and
(L(#,),w) > 6. It follows that (Li(r,),w) > &|m.|.
Since ||m,| > 1, we can conclude that (Li(r,),w) > 6.
But the chain rule implies that Li(r,) = VH.(z.), so we
have shown that (VH.(x),w) > 0. This establishes that

w € U (s).
To complete the proof of (8), we have to show that
weTBS!. Since w € TBS and ||w|| = 1, we can find

a sequence {sy ey of points of S\{s,} that converges to s,
and is such that
Sk — Sx

sk — sl

lim wg = w, where wg = ©)]

k—oo
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If we let wy = ||sk — s«||, Wr = wr —w, we find

Sk = Sy + WpW + wpWg, lim wp =0, lim w, =0.
k—oco k— oo

Let ¢ be a function from ]0,00[ to [0,00] that satisfies
lim, o9 (r) = 0 as well as the conditions

1G(s) = G(54) = Lu(s = s:) | < ¢(lls = s«Dlls — sl , (10)
|he (@) =he (2.) = (T, 2 =) | < P([lr =)z =] A1)

for al s € U and all x € R™, respectively.
Let 2 = G(sg). Then (10) implies the inequality
|zg — xw — wiLu(w + ) || < (wg)wy. Therefore

ka — Ty — ka*(’LU)H < Vpwg ,

where vy, = (wy) + || L (Wg)]], so that limy_o v = 0.
Hence ||z — x| < wi||L«(w)]| + vewg.
Then [{(z — xs — wi La(w), mi)| < |74 ||viwy. Therefore

(=T, ) = (@p—Te—wpLle(w), me)+wi(Lu(w), my)

—wip || + wi(w, L (7))

>
> wp(0 = vpllml) -

Let v, = ¥(||lzk — 2+

), 80 limy_ o v, = 0. Then
he(t) = he(@a) — (a2 — 22)] < Vi llzn — 2],
$0
he(@k) = he(@s) 2 (Mo, e — @) — Vi lan — 24

Since lze — || < wiel| L (w)|| + vewk and

(Tay Ty — Tu) > Wi (0 — V|| 7s||), we find
heon) — o) > wr6 — vk — VLo ()] — o)

So we can pick a k € N such that

1 _
he(xg) — he(xy) > §Wk||5 whenever k>k. (12)

It follows from (7) that « € Q. if and only if h.(x) > 0
and (z,9) < |ly«||- Since z. € Q., the inequality h.(x.) >0
is true, and then h.(xg) > 0 if k > k. Furthermore, the fact
that s, € S} . implies that (G(s.),9) < [y«|l, i.e., that
(., §) < ||ys||, and this implies that (z, ) < |y.|| if &
is large enough. In addition, using once again the fact that
s« € Sp., we find that [[s.]| < R, so |sg]| < Rif k is
large enough. It follows that we can find a &' € N such
that k' > k and (zy,9) < ||y«|| whenever k > k’. Then, if
k > K/, the the following hold: (i) s, € S, (i) ho(x) > 0,
(i) (xk, 9) < ||y«ll, and (v) ||sk|| < R. It follows from (ii)
and (iii) that =3, € Q, so s, € G~1(Q.), while on the other
hand (i) and (iv) imply that s € S. Therefore s;, € S-.
Hence w € TSB; Se, completing the proof of (8).

Using standard existence results from viability theory, we
pick a solution & : I. +— Sj . of the differential inclusion
£-(t) € W (£(t)) such that (i) £.(0) = 0, (ii) &. is defined on
a subinterval I of R such that 0 = min I, and (iii) & is not
extendable to a solution £ : I Sp . such that 0 = min I,
I. C I, and I, # I. Then &. satisfies H.(&(t)) > ot
for all ¢ € I.. On the other hand, H.(s) = h.(G(s)) <

lly<|| for all s € S., so I. C [0,5 'y.ll]. It follows
that I. = [0,7.[ or I. = [0,7.] for some 7. or such
that 0 < 7. < &6 Y|y.||. If I. = [0,7.], then & would be
extendable, contradicting the choice of (¢.,1.). So I, =
[0, 7 [. Since & is Lipschitz with constant 1, the limit 5. =
limyy,, £-(s) exists and belongs to S_. If 5. € Sj _ then .
would be extendable. So 5. ¢ S), .. But then either ||5.| = R
or (G(5:),9) = |ly«]|- The possibility that ||5.||=R
is excluded because |5 <7. <3 'yl <5 ta=R.
Hence (G(5:), ) = ||ly«||- If we let Z. = G(S:), then this
shows that Z. € Q..

We now define 7. : [0,1] — S. by letting 7. (¢) = & (7t)
for t € [0,1]. Then v. € T'(S, ka) (since 7. < 6~ la = ka),
and 7.(0) = 0. Furthermore, the set |G o 7| is en-
tirely contained in Q., and G(7.(1)) € Q.. We can then
pick a sequence {ej}ren Of positive numbers such that
limy_, €x = 0 and the arcs ., converge uniformly to an
arc v € I'(S, ka). This arc clearly satisfies |G o .| C oy,.
Furthermore, y, = limy_oo Z¢,, SO Y« € |G 0 7e|, and then
|G o 7| = oy.. This concludes the proof. |
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