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Abstract— The problem of identifying a nonparametric
model of the closed loop part of a 2-d.o.f. control system,
suitable for the design of the feedforward regulator, is addressed
in this paper. The approach presented to describe the model
relies on a finite set of ‘control’ and ‘output base functions’,
that have to be experimentally determined. A thorough analysis
of the methods used to determine these base functions is thus
presented, focusing attention on simplicity, feasibility, noise and
disturbance sensitivity, as the set point tracking performance
of the feedforward regulator depends on the quality of the
estimated model.

I. INTRODUCTION

Given an LTI plant a basic control problem is the deter-
mination of an LTI regulator that ensures the stability of
the closed loop system and meets various design objectives,
e.g. set point tracking and disturbance rejection. In process
control many approaches have been developed to design such
a controller, emphasizing the importance of decoupling the
problem of stability and disturbance rejection from that of
set point tracking [1], [2]. This separation can be achieved
through a two degrees of freedom (2-d.o.f.) control scheme,
where the feedforward regulator is designed for optimal set
point tracking.
However, despite of the great importance of the 2-d.o.f. struc-
ture, a very small number of tuning methodologies, suitable
for industrial implementation [3], have been proposed. This
lack of synthesis methods is even more significant if one
focuses attention on methods that are suitable for embedded
systems, or wherever the limits imposed by hardware and/or
software architecture play an important role, and that does
not require a precise knowledge of the closed loop part of
the control system.

A method to synthesize the feedforward part of a generic
LTI 2-d.o.f. controller has been proposed in [4]. This method
is completely independent of the technique used to syn-
thesize the feedback controller and of the aspect of the
set point signal, does not require any parametric model
of the control loop, can provide a reliable forecast of the
obtained results, is computationally simple and based on
a few, easily interpreted, design parameters. The key idea,
preliminary introduced in [5] with exclusive reference to the
PID case, is to formulate the problem as an optimization
based on a nonparametric model of the control loop, that is
easily identified on-line. Moreover, this model relies upon
the concepts of ‘output’ and ‘control base functions’, i.e.
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the set point response of the controlled variable and the
control signal in the closed loop system are vectors in a finite-
dimensional functional space, where the output and control
base functions play the role of a base (whence the name).
As a consequence, the problem of determining the base
functions in a realistic noisy environment should be tackled
with great care.

In this paper, we address the problem of determining
the base functions relative to a given set point signal ex-
perimentally. As the set point tracking performance of the
feedforward regulator depends obviously on the quality of
the estimated closed loop system, a thorough analysis of the
methods used to determine the base functions is appropriate.
In fact, the only error affecting the model is that due to
disturbances and noise, i.e., with reference to Fig. 1, to the
signals q(t) and n(t).
Moreover, if the base functions are relative to a particular
set point, they have to be determined every time the set
point changes, arising in an excessive computational burden
or in an unnecessary waste of time. Thus, the problem of
determining a ‘general’ set of base functions from which
the base functions relative to any set point signal can be
derived, without requiring a further experiment, will be also
addressed.

The paper is organized as follows. In Section II the key
idea of using a set of output and control base functions as a
nonparametric model of the closed loop part of the system is
introduced. Sections III and IV present two different methods
to determine the base functions: direct algebraic methods
and indirect filtering methods. Moreover the effects of noise
and disturbances on the base functions determination are
discussed in Section IV. Section V introduces a new method
to determine a ‘general’ set of base functions, independent
of the considered set point. A few application examples are
presented in Section VI to illustrate the proposed method-
ologies. Finally, Section VII concludes the paper.

II. PROBLEM STATEMENT

Consider the class of 2-d.o.f. linear controllers described,
in the frequency domain, by the general control law

D(s)U(s) = NFF(s)Y ◦(s)−NFB(s)Y (s)

where Y ◦(s), Y (s), and U(s) are the Laplace transforms
of the set point, the controlled variable and the control
signal, respectively, while NFF(s), NFB(s) and D(s) are three
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polynomials in the complex variable s expressed as

NFF(s) =
nN

∑
k=0

nFF
k sk NFB(s) =

nN

∑
k=0

nFB
k sk

D(s) =
nD

∑
k=0

nD
k sk

(1)

with nN ≤ nD, nFF
0 �= 0, nFB

0 �= 0. Such controllers are
implemented as shown in Fig. 1, where

RFF(s) =
NFF(s)
NFB(s)

RFB(s) =
NFB(s)
D(s)

and we have to assume that all the roots of NFB(s) lie in the
open LHP. This loss of generality is of minimal importance
in the application domain, however.

yo yu
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−

Fig. 1. Control scheme with a 2-d.o.f. regulator.

Suppose that a stabilizing feedback block RFB(s) has
already been synthesized, so that the polynomials NFB(s)
and D(s) are fixed, and that the polynomial NFF(s) has been
chosen equal to NFB(s), i.e., RFF(s) = 1 (the problem of
determining a convenient NFF(s) will be discussed later on).
We can now state the following

Lemma 1. The response y(t) of the controlled variable
in the control system of Fig. 1 forced by a Laplace-
transformable set point y◦(t) can be expressed as a weighed
sum of nN +1 functions yb

k(t), the weights being the coeffi-
cients of NFF(s), i.e.,

y(t) =
nN

∑
k=0

nFF
k yb

k(t) (2)

having expressed NFF(s) as in (1). The functions yb
k(t) do

not depend on the coefficients of NFF(s), and will be termed
the control system’s ‘output base functions’ relative to the
set point signal y◦(t).

Proof. Define the complementary sensitivity of the closed
loop part of the control system as

T (s) =
RFB(s)P(s)

1+RFB(s)P(s)
where P(s) is the transfer function of the process. It follows
immediately that

Y (s) =
NFF(s)
NFB(s)

T (s)Y ◦(s) (3)

Hence, recalling (1),

Y (s) =
nN

∑
k=0

nFF
k

skT (s)
NFB(s)

Y ◦(s) (4)

and, in force of the Laplace transform linearity, the thesis
follows by setting

yb
k(t) = L −1

[
skT (s)
NFB(s)

Y ◦(s)
]

(5)

Considering now the control signal, we can also state the
following

Lemma 2. The response u(t) of the control signal in the
control system of Fig. 1 forced by a Laplace-transformable
set point y◦(t) can be expressed as a weighed sum of nN +1
functions ub

k(t), the weights being the coefficients of NFF(s),
i.e.,

u(t) =
nN

∑
k=0

nFF
k ub

k(t)

having expressed NFF(s) as in (1). The functions ub
k(t) do

not depend on the coefficients of NFF(s), and will be termed
the control system’s ‘control base functions’ relative to the
set point signal y◦(t).

Proof. The proof is analogous to that of Lemma 1, and
leads to

ub
k(t) = L −1

[
skT (s)

NFB(s)P(s)
Y ◦(s)

]

These first results can be interpreted as follows. Each of
the closed loop set point responses y(t) and u(t) of the
control system is a vector in a finite-dimensional functional
space, where we can take the functions yb

k(t), or ub
k(t), as a

base (which motivates the name). The base functions allow to
compute the set point responses of the control system for any
value of the coefficients nFF

k , and the relationship between
the coefficients and the responses is linear. Therefore, the
base functions are a nonparametric model of the control
system, independent of the structure of the process dynamics
and particularly suitable for tuning the feedforward regulator
[4].

III. DETERMINATION OF THE BASE FUNCTIONS:
DIRECT (ALGEBRAIC) METHODS

By definition, the i-th output (control) base function rel-
ative to a set point signal is the output (control) response
to that signal obtained with nFF

i = 1 and nFF
k = 0, k �= i.

Therefore, the set of base functions can be obtained directly
with nN +1 experiments, setting in each of them NFF(s) = si,
i = 0 . . .nN . This is the crudest idea, and the simplest direct
method. An apparent drawback of this method is that, in the
general case, the control signal in the nN +1 experiments may
have very different behaviours and amplitudes. As a result,
some experiments may excite the possible control system’s
nonlinearities more than others, and the signal to noise ratio
in the experiments may be very different—two facts that
clearly adversely affect the base functions’ estimation. A
remedy can be devised by observing that, denoting by y(i)(t),
u(i)(t) the output and control response obtained in the i-th
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experiment, one can write⎡
⎢⎣

y(0)(t)
...

y(nN)(t)

⎤
⎥⎦ = MFF

⎡
⎢⎣

yb
0(t)
...

yb
nN

(t)

⎤
⎥⎦

⎡
⎢⎣

u(0)(t)
...

u(nN)(t)

⎤
⎥⎦ = MFF

⎡
⎢⎣

ub
0(t)
...

ub
nN

(t)

⎤
⎥⎦

(6)

where

MFF =

⎡
⎢⎢⎣

nFF(0)
0 · · · nFF(0)

nN
...

...

nFF(nN)
0 · · · nFF(nN)

nN

⎤
⎥⎥⎦ (7)

nFF(i)
k being the k-th coefficient of NFF(s) in the i-th ex-

periment. Provided that the coefficients nFF(i)
k are chosen so

that MFF be nonsingular, the set of base functions can be
computed from the algebraic systems (6), whence the second
name of these methods. Direct methods can be considered as
parameterized by matrix MFF , in that a specific value of MFF

defines a particular direct method (e.g., that with NFF(s) = si,
i = 0 . . .nN corresponds to MFF = I).

Direct methods are conceptually simple, but extremely
impractical unless nN is very small. The main reason is that
it is not easy do derive a criterion for the selection of MFF .
The aim of such a criterion should be to make the output
of RFF(s), and therefore the control signal, have ‘similar
excitation characteristics’ in the nN + 1 experiments, but it
is difficult to state precisely what such a similarity is. If the
feedback controller RFB(s) makes the closed loop behave
almost linearly in the vicinity of the operating point from
which the experiments start, it is enough that the output of
RFF(s) in the experiments have similar peak amplitudes, and
that their energy is significantly greater than that of noise.
If (almost) nothing is known on the process nonlinearity,
however, things get much more complex. Since the only way
to obtain a good linear model is to remain near the starting
operating point, a reliable a priori determination of MFF is
too difficult for practical applications, and computing MFF by
means of iterations makes the base functions’ determination
procedure long and potentially cumbersome.

In one word, the only advantage of direct methods is their
computational simplicity, but the selection of MFF makes
them impractical. To obtain a tuning method applicable in
a reasonably wide variety of cases with acceptable effort,
another solution to determine the base functions is in order.

IV. DETERMINATION OF THE BASE FUNCTIONS:
INDIRECT (FILTERING) METHODS

A more interesting solution to the problem of determining
the base functions comes from the following

Remark 1. Denoting by Y b
k (s) the Laplace transform of

yb
k(t), on the basis of (5) and (3) it is immediate to write

Y b
k (s) = Fb

k (s)Y (s) 0 ≤ k ≤ nN (8)

where
Fb

0 (s) =
1

NFF(s)
Fb

k+1(s) = sFb
k (s)

Similarly, for the control base functions, with obvious nota-
tion it turns out that

Ub
k (s) = Fb

k (s)U(s) (9)

Notice that the transfer functions Fb
k (s) are the same for

the output and control base functions, and depend only on
NFF(s). Therefore, these transfer functions will be termed
the ‘base filters’ relative to NFF(s).

Remark 1 shows that one can obtain the base functions
relative to a given set point signal with a single experiment:
in principle, it suffices to choose as NFF(s) an arbitrary
polynomial Ne

FF(s), apply the set point signal of interest to
the control system, and then filter the obtained responses
ye(t) and ue(t) as dictated by (8) and (9). Unfortunately, this
would be correct only if the system were disturbance- and
noise-free (i.e., with reference to Fig. 1, q(t) = n(t) = 0) and
there were no limits on the admissible control effort. Since
these hypotheses are unrealistic, Ne

FF(s) cannot be chosen
arbitrarily, but has to be determined according to the criteria
derived in the following.

A. Choice of Ne
FF(s) in filtering methods

To choose Ne
FF(s), three facts must be considered.

1. Stability and causality. A first criterion is that all the
nN + 1 base filters Fb

k (s) must be stable (quite an obvious
requirement, especially in the presence of noise), and causal.
Thus, Ne

FF(s) must be of degree nN , and its roots must all
lie in the open LHP.

2. Effect of disturbance and noise. Suppose that the
control system is subject to a load disturbance and an
additive output noise with Laplace transforms Q(s) and N(s),
respectively, as shown in Fig. 1. Both the disturbance and
the noise deteriorate the estimation of the base functions. To
quantify this deterioration, recall that

Y (s) =
RFF(s)RFB(s)P(s)Y ◦(s)+P(s)Q(s)+N(s)

1+RFB(s)P(s)

and

U(s) = RFB(s)
RFF(s)Y ◦(s)−P(s)Q(s)−N(s)

1+RFB(s)P(s)

Hence, the estimates Ŷ b
k (s) and Ûb

k (s) of Y b
k (s) and Ub

k (s),
obtained in the presence of disturbance and noise with a
certain Ne

FF(s), are

Ŷ b
k (s) =

skP(s)Y ◦(s)
D(s)+NFB(s)P(s)

+
skD(s)(P(s)Q(s)+N(s))

Ne
FF(s)(D(s)+NFB(s)P(s))

and

Ûb
k (s) =

skY ◦(s)
D(s)+NFB(s)P(s)

− skNFB(s)(P(s)Q(s)+N(s))
Ne

FF(s)(D(s)+NFB(s)P(s))

that clearly approach Y b
k (s) and Ub

k (s) as Q(s) and N(s)
vanish. The important fact is that the choice of Ne

FF(s) does
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not affect the contribution of Y ◦(s) to the base function
estimates. On the other hand, the larger |Ne

FF( jω)| is at a
given frequency ω , the less a noise or disturbance component
at that frequency will deteriorate the estimates. Note that
Ne

FF(s) is only used in the experiment, so there is no partic-
ular reason why Ne

FF(0) should equal NFB(0). Therefore, a
second criterion is that any polynomial Ne

FF(s) with complex
roots is surely suboptimal for noise rejection, because there
exists another polynomial N̄e

FF(s) with real roots such that
|N̄e

FF( jω)| ≥ |Ne
FF( jω)|, ∀ω .

3. Control limits. From the scheme of Fig. 1 it follows
immediately that

U(s) =
NFF(s)

D(s)+NFB(s)P(s)
Y ◦(s)

thus that increasing |Ne
FF( jω)| makes the control effort in

the experiment bigger. An excessively nervous control signal
may be undesirable per se, but an even more serious fact is
that if some value or rate saturation is hit the control system’s
behaviour ceases to be linear, which is not acceptable in
an experiment devoted to determining the base functions. A
third criterion, then, is that Ne

FF(s) must be chosen so that
the control signal does not exceed any value or rate limit
during the experiment.

V. DETERMINATION OF A ‘GENERAL’ SET OF
BASE FUNCTIONS

The methods described in Section III and IV lead to the
determination of the base functions relative to a given set
point signal. We now address the more ambitious problem
of determining a ‘general’ set of base functions, i.e. a set of
base functions suitable for any set point signal.

Suppose that a set of base functions relative to a given
set point signal has already been experimentally determined.
When the set point changes a new experiment is required
and the feedforward controller has to be tuned again, to
ensure the best tracking performance. In practice, however,
this could arise in an excessive computational burden or in
an unnecessary waste of time. To avoid this bottleneck a
different procedure is proposed, with the aim of determining
a ‘general’ set of base functions from which the base
functions relative to a given set point can be derived without
requiring a further set of experimental data.

Assume that a set of output base functions yb
k(t), k =

0 . . .nN relative to the set point signal yo(t) is known. From
equation (4) it follows

Y b
k (s) =

skT (s)
NFB(s)

Y o(s) k = 0 . . .nN (10)

Multiplying now both sides of (10) by Ỹ o(s)/Y o(s) yields

Y b
k (s)

Ỹ o(s)
Y o(s)

=
skT (s)
NFB(s)

Ỹ o(s) = Ỹ b
k (s) k = 0 . . .nN (11)

where ỹb
k(t) are the output base functions relative to the set

point signal ỹo(t) (and Ỹ b
k (s), Ỹ o(s) their Laplace transforms).

Then, from (11) it follows immediately that

ỹb
k(t) = L −1

[
Y b

k (s)
Ỹ o(s)
Y o(s)

]
(12)

Equations (11) and (12) show that one can obtain the output
base functions ỹb

k(t) relative to a set point ỹo(t), assuming
that a set of output base functions yb

k(t) relative to a set point
yo(t) is known, simply applying to each element of the set
yb

k(t) the filter Ỹ o(s)/Y o(s). Unfortunately, this filter exists
if and only if Ω̃ ⊂ Ω, where

Ω = {ω ∈ R+ : Y o( jω) �= 0}
Ω̃ = {ω ∈ R+ : Ỹ o( jω) �= 0}

being Y o( jω) and Ỹ o( jω) the discrete Fourier transforms of
yo(t) and ỹo(t), respectively. Therefore, this procedure can be
applied only when the spectral components of the set point
ỹo(t) are a subset of the previous one. However, as can be
easily guessed, the determination of a procedure of general
validity is a very complex problem and is out of the scope
of this work.
In practice, a reasonable and computationally simple solution
can be devised in the context of discrete time systems.

Consider a discrete time set point signal ỹo(h) of finite
duration N, it can be expressed as

ỹo(h) =
N

∑
l=0

δl sca(h− l) (13)

with δl = ỹo(l +1)− ỹo(l).
Let ybs

k (h), k = 0 . . .nN be the set of output base functions
relative to a unit-step set point signal. Then, the response of
the closed loop system to the l-th addendum of (13) is given
by

δl

nN

∑
k=0

nFF
k ybs

k (h− l)

and the system output, generated by ỹo(h), is thus

y(h) =
N

∑
l=0

δl

nN

∑
k=0

nFF
k ybs

k (h− l) =
nN

∑
k=0

nFF
k

N

∑
l=0

δl ybs
k (h− l) (14)

As a consequence, recalling (2), from (14) it follows

ỹb
k(h) =

N

∑
l=0

δl ybs
k (h− l)

being ỹb
k(h) the k-th output base function relative to the set

point signal ỹo(h).
Similarly, for the control base functions, with obvious

notation it turns out that

u(h) =
nN

∑
k=0

nFF
k

N

∑
l=0

δl ubs
k (h− l)

being ubs
k (h), k = 0 . . .nN the set of control base functions

relative to a unit-step set point signal. As a consequence,
the k-th control base function relative to the set point signal
ỹo(h) is given by

ũb
k(h) =

N

∑
l=0

δl ubs
k (h− l)
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We can now state the following

Theorem 1. The output and control base functions yb
k(h)

and ub
k(h), k = 0 . . .nN , relative to a discrete time set point

signal yo(h) of finite duration N, can be determined as
follows

yb
k(h) =

N

∑
l=0

δl ybs
k (h− l)

ub
k(h) =

N

∑
l=0

δl ubs
k (h− l)

being ybs
k (h) and ubs

k (h), k = 0 . . .nN the output and control
base functions relative to a unit-step set point signal, respec-
tively and δl = yo(l +1)− yo(l), l = 0 . . .N.

VI. APPLICATION EXAMPLES

In this Section two examples will be presented to show
how the choice of a different Ne

FF(s) affects the determina-
tion of the control and output base functions, and in which
way the approach described in Section V can be exploited to
derive the base functions relative to a given set point from the
unit-step base functions, without making a new experiment.
Note that only the filtering methods will be taken into
account in the following, as they represent the better solution,
applicable in a reasonably wide variety of actual cases.

Consider the plant with transfer function

P(s) =
1

s3 +2s2 +2s+1

controlled by a feedback regulator with the following struc-
ture

RFB(s) =
s2 + s+1

s(1+0.01s)

A. Choice of Ne
FF(s)

Consider the following choices for the polynomial Ne
FF(s)

Ne
FF(s) =

⎧⎪⎪⎨
⎪⎪⎩

s2 + s+1
s2 +2s+1
s2 +3.5s+2.5
s2 +11s+10

(15)

The first one corresponds to the standard choice Ne
FF(s) =

NFB(s). The polynomial NFB(s), however, has a couple
of complex roots and, recalling the criterion expressed in
Section IV-A, there exists another polynomial with real
roots, the second one of (15), which is better for noise
and disturbance rejection, i.e. whose frequency response has
a larger magnitude. In the last two choices the magnitude
of Ne

FF(s) is gradually increased to study how this change
affects the noise and disturbance rejection, at the expense
however of an increasing control effort.

Consider a first situation in which n(t) is a uniform white
noise of amplitude ±0.05, spanning a frequency range of
about 0 to 670 rad/s, and q(t) = 0, ∀t. Figs. 2 and 3
compare the responses of the controlled variable and the
control signal to a saturated ramp set point (dotted line),
reconstructed from the output and control base functions,
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Fig. 2. Control signal estimated from the control base functions.
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Fig. 3. Controlled variable estimated from the output base functions.

with the output and control signal simulated in a noise free
condition (solid line).
As can be seen from Figs. 2 and 3 the larger |Ne

FF( jω)| is,
the less the noise deteriorates the estimate. This improvement
is at expense, however, of an increasing control effort (Fig.
2), as discussed in Section IV-A.

Consider now a different situation, in which q(t) is a step
disturbance of amplitude 0.5 and n(t) = 0, ∀t. Again Figs.
4 and 5 compare the responses of the controlled variable and
the control signal to a saturated ramp set point (dotted line),
reconstructed from the output and control base functions,
with the output and control signal simulated without the
presence of the load disturbance (solid line).
As previously noticed, the larger |Ne

FF( jω)| is the less the
load disturbance affects the base functions’ estimation (Figs.
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Fig. 4. Control signal estimated from the control base functions.
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Fig. 5. Controlled variable estimated from the output base functions.

4 and 5). Again, it is clear from Fig. 4 that the improvement
of the estimations is achieved increasing the control effort.

B. A ‘general’ set of base functions

We address now the problem of determining a set of output
and control base functions, relative to a set point yo(t) given
by

yo(t) = 0.001t3 −0.002e0.5t (16)

starting from the unit-step base functions and applying
Theorem 1. For the sake of clarity, in this case a noise and
disturbance free environment will be considered.

Fig. 6 demonstrates the effectiveness of the approach
proposed in Section V: one cannot distinguish between the
output base functions reconstructed using Theorem 1 and the
ones determined directly from set point (16).
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Fig. 6. Output base functions derived from the unit-step base functions
(dash-dot line) and determined from yo(t) (solid line).

VII. CONCLUSIONS

The key idea of the method proposed in [4] for the
synthesis of the feedforward part of a 2-d.o.f. controller
is to formulate the problem as an optimization based on a
nonparametric model of the control loop. As a consequence,
the problem of determining this model in a realistic noisy
environment plays a crucial role.

A few approaches to determine a set of base functions,
i.e. a nonparametric model of the closed loop part of the
system, experimentally have been discussed in this paper.
The effects of noise and disturbances on the quality of the
estimated model have been analyzed, given suitable criteria
to optimize the estimation procedure. Finally, an approach
to determine a ‘general’ set of base functions with a unique
experiment, independent of the aspect of the set point signal,
has been devised.
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