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Stabilization of continuous-time nonlinear switched systems

Patrizio Colaneri, José C. Geromel and Alessandro Astolfi

Abstract— The first result of this paper is a strategy for global
stabilization of continuous time nonlinear switched system. The
strategy is of closed loop nature (trajectory dependent) and is
designed from the solution of what we call nonlinear Lyapunov-
Metzler inequalities from which the stability condition is
expressed. Next, results on the stabilization of nonlinear time
varying polytopic systems are provided.

I. INTRODUCTION

This paper aims at providing new results on stabilizing
control synthesis for a continuous time switched nonlinear
system of the following general form

#(t) = foy(z(t)) , #(0) =m0 €]

defined for all ¢ > 0 where x(t) € R™ is the state, o(t) is
the switching rule and x is the initial condition. Given a set
of vector fields {fi(x),---, fx(z)}, such that f;(0) = 0 for
all i =1,--- N, two different classes of switched systems
are studied. The first is characterized by the fact that the
switching rule, for each ¢ > 0, is such that

fa(t)e{fla"'va} ()
while the second one is such that, for each ¢ > 0,
fory € colfr, -+, [n} (3)

where co{-} denotes the convex hull. It is important to
make clear the basic difference between these two classes
of switched systems. The model (2) naturally imposes a
discontinuity on f, ) since this vector must jump instan-

taneously from f; to f; for some ¢ # j = 1,--- , N once
switching occurs. In other words, f, ;) is constrained to jump
among the N vertices of the vector polytope {f1, -, fn}.

The model defined by (3) is more general in the sense that
the interior of the same polytope is now feasible for f,
and so it supports switching rules with no discontinuity with
respect to time. As it will become clear in the sequel there are
some important relationship between the stability conditions
of both models.
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The nonlinear switching stability condition has been
spurred by reading the recent paper [21], where a method for
stability analysis of switched and hybrid systems is provided
by using polynomial and piecewise polynomial Lyapunov
functions.

The notation used throughout is standard. Capital letters
denote matrices, small letters denote vectors and small Greek
letters denote scalars. For matrices or vectors (') indicates
transpose. The sets of real and natural numbers are denoted
by R and N respectively.

II. STATE SWITCHING CONTROL

In this section we consider the system (1) where the
switching rule satisfies (2). It is assumed that the state vector
z(t) is available for feedback for all ¢ > 0, and our goal is
to determine a function u(-) : R™ — {1,---, N}, such that
the switching rule

o(t) = u(z(t)) )

assures that the equilibrium = 0 of (1) is globally
asymptotically stable. Note that we do not assume that any
of the vector fields in the set {f1,---, fn} be either locally
or globally asymptotically stable.

Let us define the simplex

N
A:—{)\GRN Z)\i—l,/\izo} (5)
i=1
and the following function
v(e) = min Vi(z) (6)
where {V7,---,Vn} is a set of differentiable, positive def-

inite and radially unbounded functions, which are zero at
x = 0.

As it will be clear in the sequel, the function v(z) is
a candidate Lyapunov function, crucial for our purposes.
However, even if the functions V;(z) are differentiable,
the function v(z) remains differentiable but it is not (in
general) differentiable everywhere. To address this issue the
set I(z) = {i : v(x) = V;(x)} plays a central role since v(x)
fails to be differentiable at all z € R™ such that card I(z)
is discontinuous [13].

Before proceeding, recall the class of Metzler matrices
denoted by M and constituted by all matrices II € RV*Y
with elements 7;;, such that

N
mi; >0Vi#j, ij:o Vj. (7)

i=1
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It is clear that any II € M presents an eigenvalue at the
origin of the complex plane since ¢'II = 0 where ¢/ =
[1 --- 1]. In addition, it is well known from the Frobenius-
Perron’s theorem that the eigenvector associated to the null
eigenvalue of II is non-negative, yielding the conclusion that
there always exists Ao, € A such that [T\, = 0. The next
theorem summarizes the main result of this section.

Theorem 1: Assume that there exist a set of functions
{V1,--+,Vn}, which are all differentiable, positive definite,
radially unbounded and zero at zero, and a matrix I € M
satisfying the Lyapunov-Metzler inequalities

ov/
Ox

N
it mVi<0,i=1,--- N ®)
Jj=1

for all = # 0. Then, the state switching control (4) with
u(z(t)) = arg _J;ninN Vi(x(t)) 9

globally asymptotically stabilizes the equilibrium point z =
0 of the nonlinear systems (1).

Proof: To begin with, notice that the Lyapunov function
(6) is differentiable, positive definite, radially unbounded and
zero at x = 0. Moreover, the Lyapunov function (6) is not
differentiable for all x € R™. For this reason we need to deal
with the Dini derivative (see [19])

D o(a(t)) = limsup LEEEM) —v@®)

m su 5 (10)
-0

Assume, in accordance with (9), that at an arbitrary ¢ > 0,
the state switching control is given by o () = u(x(t)) = ¢ for
some i € I(z(t)). Hence, from (10) and the system dynamic
equation (1) we have
!
+ _ 1

Dhole) = miv o fi
ov/
< or i, (1D
where the inequality holds from the fact that i € I(x(t)).
Finally, remembering that (8) is valid for IT € M and that
Vi(z) > Vi(x) for all j # i = 1,---,N once again due
to the fact that ¢ € I(x(t)), using the Lyapunov-Metzler
inequalities (8) one gets

N
DVo(x(t) < — > miVj(a) (12)
j=1
N
<D m | Vile) =0
j=1
for all x # 0, which proves the claim. |

Remark 1: Theorem 1 does not require that the set
{f1,"--,fn} be composed exclusively by (locally) as-
ymptotically stable vector fields. Indeed, if a function
Vi(x) is locally quadratic, a necessary condition for the
Lyapunov-Metzler inequalities to be feasible with respect to
{V1,- -+, Vn} is that the vector fields f;+(m;;/2)x be locally

asymptotically stable. Since 7;; < 0 this condition does not
imply local asymptotic stability of any of the f;’s.

On the other hand, in general, the Lyapunov-Metzler
inequalities imply that

DY Vi(a(t)) < |mulVi(z(t)) Vi

and, since the functions V; are radially unbounded, this
implies that the vector fields {f1,- -, fx } are complete and
that, along the trajectories of f; the functions V; are such
that

Vi(a(t)) < Vi(w(0))elmil Vi,

Remark 2: An interesting case occurs when all vector
fields {f1,---,fn} are globally asymptotically stable for
which the choice II = 0 is possible and the state switching
strategy proposed preserves stability. Furthermore, if the set
{f1,--+, fv} admits a unique Lyapunov function V, then
the Lyapunov-Metzler inequalities admit a solution V; =
oo =Vn =V and I(x(t)) = {1,--- ,N} for all ¢ > 0.
In this classical but particular case, at any ¢ > 0, the control
law u(x(t)) being an arbitrary logic state ¢ € {1,--- , N},
asymptotic stability is once again guaranteed.

Remark 3: Theorem 1 also holds if the matrix II is a
function of z, i.e. I = II(x), provided that, for each fixed
x € R™, it satisfies II(x) € M.

Remark 4: In the literature of linear systems, the
Lyapunov-Metzler inequalities, with II € M fixed, have
been introduced in order to study the Mean-Square (MS)
stability of Markov Jump Linear Systems (MJLS), see e.g.
[4]. In that context, the Metzler matrix I € M is given and
I represents the infinitesimal transition matrix of a Markov
chain o(t) governing the dynamical system. In this respect,
each component of the vector A(t) € A is the probability of
the Markov chain to be on the ¢ — th logical state and obeys
the differential equation

At) = TIA(#) , M0) = X € A (13)

where the eigenvector Ao, € A associated to the null
eigenvalue of II represents the stationary probability vector.

Consider now the modified Lyapunov-Metzler inequalities
defined as:

A%
or

N
fita) miV;<0,i=1,--- N  (14)
j=1

for all z # 0, where « is a positive parameter. This parameter
multiplies all elements of the matrix II, therefore the matrix
oIl is still a Metzler matrix, i.e. oIl € M whenever II € M.
Notice that these new inequalities are those relative to vector
fields {f1/c, -+, fn/a}, obtained by the time scaling ¢t —
t/a. If the solutions V; exist for each o > 1, then (pointwise)

N
lim iV, <0, Vi
aﬂoo_zl 7ty =

j=

Moreover, recalling the role of the vector A, in the Metzler
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matrix II, we have

Z Moo Z mjiV; =0
It then follows that
Vi
Va
lim IT . =0
Vi

which implies that lim, .., V; =V, forall ¢ = 1,--- | N.
Finally, (14) yields

N

ov!
E )\ooz . fz < 07
i=1 Oz

and hence

oV’
ox

N
Fre <0, fre =D Aocilfis
i=1

This means that if (14) holds for a sufficiently large «,
the “average” system characterized by the vector field fy_
is globally asymptotically stable. This is a relevant point
further, since it meets the already classical stability condition
provided in [17] and [18]. To prove this fact in our present
context, let us assume that there exists Ao € A such that
fr. is globally asymptotically stable, making possible the
determination of V' > 0 satisfying the Lyapunov inequality
%—‘: fr.. < 0. Hence, the switching rule (4) with

/

N Ox

makes the equilibrium point £ = 0 of the switched system
(1) globally asymptotically stable. Indeed, considering the
Lyapunov function V(x) we have

fi 15)

u(z(t)) = arg min

V() =

= mlIl
i=1,---,N (9xf

= minaV/f
T xea oz P

oV’
ox Proe <0

for all x # 0. It is important to keep in mind that the
numerical determination (if any) of A € A and V' > 0 such

that N
ov’
Ox <i=1

is not a simple task even in the simplest case of linear time
invariant systems.

IN

We conclude this section introducing a guaranteed cost

associated to the proposed state switching control law (9).
Lemma 1: Let h(z) be a given p-valued mapping. Assume

that there exist a set of functions {Vi,---,Vx}, which are

differentiable, positive definite, radially unbounded and zero
at zero, and a matrix II € M satisfying the Lyapunov-
Metzler inequalities

v/

fl+z7rﬂv+hh<0 1L,---,N  (16)
Jj=1

for all  # 0. Then, the state switching control (4) with

u(x(t)) given by the equation (9) globally asymptotically

stabilizes the equilibrium point x = 0 of (1) and it is such

that the inequality

/ e
holds.

Proof: The proof has the same structure as the proof of
Theorem 1. The Lyapunov function (6) and the Lyapunov-
Metzler inequalities (16) yield

DYu(x(t)) < —h(z) h(x) x #0,

and, by integration it is readily verified that

o(x(t) — v(x(0) = / DV (x(r))dr

z)dt < {ﬂln Vi(zo). 17

(18)

t
< —/ h(z)'h(z)dr, (19)
0

is valid V ¢ > 0, proving thus the claim since, by asymptotic
stability, v(z(t)) goes to zero as t goes to infinity. [ |

III. EXTENDED LYAPUNOV-METZLER INEQUALITIES

In this section we discuss a possible stabilizing switch-
ing strategy that includes the previous one as a particu-
lar case and hence may provide less conservative results.
To this end, define a set of positive definite functions
{Wi(z), - ,Wn(z)} and the functions

N
x):ZWﬁWj(x), 221,2,,N
j=1

Due to the structure of the Metzler matrices, these functions

cannot be strictly negative for all ¢ = 1,---, N, since
Zf;l AooiHi(z) = 0. As a result, for each z € R" the
set

I(z)={i: H;(z) >0}

is not empty, and it is possible to define the candidate
Lyapunov function

v(z) ;== min V;(x) (20)
i€l(x)
Now, assume that there exist a set of function {V7,--- , Vy},

which are differentiable, positive definite, radially unbounded
functions, and zero at zero, a set of positive definite functions

{Wy,---, Wy} and a matrix IT € M satisfying the extended
Lyapunov-Metzler inequalities
ov/
fﬂ—Zm,W <0, N (@21
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for all = # 0. Finally, consider the switching control rule (4)
with
u(z(t)) = arg min Vi(x) (22)
iel(z))

Notice that the Lyapunov-Metzler inequalities (8) are
recovered by imposing W;(z) = V;(x) in the extended
Lyapunov-Metzler inequalities (21). These inequalities imply
the partition of the state-space into subsets where the Lya-
punov function (6) is decreasing. However, this Lyapunov
function is not continuous with respect to z € R™ and the
stabilizing property of the switching rule (22) depends on the
jumps of v(x) in the switching instances and by the possible
presence of sliding modes. Despite this fact, inequalities (21)
are easy to be handled and verified, and this is the main
advantage for their use. Further research is necessary to
incorporate to (22) additional constraints that imply global
stability of the equilibrium point x = 0.

Remark 5: The role of the strictly positive parameters 7 ;
is immaterial in the case N = 2. Indeed, in this case, the
inequalities reduce to

0
7

where I' = WQ — Wl, ‘71 = ‘/1/71'21 and ‘72 = ‘/2/7T12.

Remark 6: The positive-definiteness assumptions in the
Lyapunov-Mezler inequalities (21) (resp. (8)), can be relaxed
by noting that, for all+ = 1, ... , N, the ¢-th condition has to
hold only for all x € R™ such that v(x) = V;(z). Moreover,
the functions V; do not have to be positive definite, or even
defined, for all x € R™, provided that the function v(x) is
differentiable, positive definite, radially unbounded and zero
at zero.

! V;
i+T <0, fo+(-T)<0 =z#0,
T Ox

Finally it is possible to introduce, following the same ratio-
nale adopted in Lemma 1, a guaranteed cost associated to the
state switching control law (22), as stated in the following
Lemma.

Lemma 2: Let h(z) be a given p-valued mapping. Assume
that there exist a set of functions {V7,---,Vy} which are
differentiable, positive definite, radially unbounded and zero
at zero, a set of positive definite functions {W7y,---, Wy}
and a matrix II € M satisfying the Lyapunov-Metzler
inequalities

ov;
or

N
fi+ > miWi+h(x)h(z) <0, i=1,-- N (23)
j=1

for all x # 0. If the state switching control (4) with u(z(t))
given by equation (22) globally asymptotically stabilizes the
equilibrium point « = 0 of (1) then, the guaranteed cost

/Oo h(z)'h(z)dt < min V;(zo). (24)
0

i€1(xo)
holds.

IV. STABILITY OF TIME VARYING POLYTOPIC SYSTEMS

In this section we discuss the stability of systems defined
by (1) which are classified in the literature as polytopic

systems [5]. In this case, the very basic requirement on each
trajectory of o(t) is that o(t) € A for all ¢ > 0. Since this
property alone does not suffice to define the way o (t) evolves
with time, we consider further that

o(t) =To(t) , o(0) =09 (25)

where IT € RY*Y is a Metzler matrix a priori known or
to be determined by the designer. The rationale behind this
choice follows from a well known property of this class of
matrices. Whenever the initial condition op € A then o(t) €
A for all ¢ > 0 as we have just required. From now on it
is assumed that og € A. Due to the fact that I € M is
necessarily marginally stable, and there exists Ao, € A such
that ITA,c = O then o(¢) evolves inside A and goes to Ao
as t goes to infinity. The time evolution of o (t) towards A
depends, of course, on each particular choice of II € M.
The results given in the sequel are based on the parameter
dependent Lyapunov function

N
v(x(t) = (Z m(t)Vi(w(t))>

defined by an adequately determined set of functions
{V1,---,Vn}, which are differentiable, positive definite,
radially unbounded and zero at z = (. The next theorem
provides the way to determine either the Lyapunov function
(26) and a sufficient condition for asymptotic stability of the
considered system.

(26)

Theorem 2: Assume that there exist a set of functions
{V1,--+,Vn}, which are differentiable, positive definite,
radially unbounded and zero at zero, a matrix II € M, and
a function G(z,y) satisfying, for each x and y and for each

i=1,2,---, N the following inequalities
Vi(z) &
0 > ——y+ ; 7V () 27)
0G(z,y) | 9G(z,y)\’

for all =,y # 0. Then, provided o(t) is given by the rule
(25), the equilibrium point x = 0 is a globally asymptotically
stable equilibrium point of (1).

Proof: Assume that (27) holds and o(t) € A for all
t > 0. Multiplying each inequality by o;(t), adding up for
all i =1,---, N, and letting y = Zfil o;fi(x) one gets

L Wal@t) o Vet

0 ox ot

Jm(z,t) (28)

where
N N
Vin(a,) = Y oi(OVia),  fmla,t) = 3 0ult) fila)
i=1 i=1

This states that the time derivative of the parameter depen-
dent Lyapunov function (26), which is differentiable, positive
definite, radially unbounded and zero at zero, is negative
along all trajectories of @(t) = f,)(x(t)), proving thus
global asymptotical stability of (1). |
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Several remarks are in order. First notice that, as before,
Theorem 2 does not require the set {f1,---,fn} to be
composed only by asymptotically stable vector fields. Of
course, this is a consequence of our previous assumption
which implies that the variables o(¢) and &(t) are not inde-
pendent but are coupled together by the linear model (25).
The second remark comes from the fact that the inequalities
(27) must be satisfied for all z,y # 0 and in particular for
all z,y # 0 satisfying the additional constraint y = f;(z)
for each 7 = 1,--- | N implying that the inequalities

ov;/
ox

N
fi+ ) miV;<0,i=1,--- N (29)
j=1

must hold for all z # 0, which is nothing else than the
stability condition provided by Theorem 1 for state switching
control. The conclusion is that the stability condition of
Theorem 2 is more exigent than the one of Theorem 1. This
fact was expected since the set of vector fields defined in (2)
is a subset of that defined in (3).

V. AN ILLUSTRATIVE EXAMPLE

In this section we propose an illustrative example of appli-
cation of some of the proposed theoretical tools introduced
so far. The purpose of this example is twofold. First, to
illustrate the theory, and then, to underscore that the proposed
switching law may be non-robust (this is actually true also
if the underlying system is linear), hence further research is
needed to derive a robustly stabilizing switching mechanism.

Consider the so-called Artstein circle [1], [10], [14],
namely the system described by the equation

(—af +23)u
—2r1ToU.

Ty =
P (30)
This system is asymptotically controllable and it is (robustly)
asymptotically stabilizable exploiting the results in [10].
We exploit the observation in Remark 6, applied to the
system (30). For that, consider the set of vector fields

F = {f17f2}
with
f= fx%qu%
1= —2(E1CIJ2
and fo = —f;. Note that f; (resp. fo) is obtained from

system (30) setting u = 1 (resp. u = —1). Consider now the
functions

7 sign(xy) — 2arctan(xy /x2)

Vi1, 22) = (27 + 23)

233‘2
for 1 > 0 and
7 sign(xg) + 2 arctan(xq /x
Ve (ar, ) = (o + o) L2 2 arctan( o)
2

for 1 < 0. Notice that

m
V+(07l‘2) = V,(O,l‘g) = §|1‘2|

(0
T
’ AR
A st
T R
R Z
Nk XA VL7
‘\\\\§\““ ':‘%{':2'" 75577 W
N S

&

osts
s

A7

Fig. 1.

The function v(x) for the Artstein circle.

Let us define
Vi(z1, z2) = Vi (21, 22)

for x1 > 0 and define V; for x1 < 0 such that the resulting
function is continuous for all z € R? and Vj(xy1,x2) >
V_(x1,z9) for all z; < 0. Analogously, let

‘/Z(xla $2) =V_ (xla .TQ)

for 1 < 0 and define V5 for 1 > 0 such that the resulting
function is continuous for all z € R? and Va(z1,22) >
V., (x1,22) for all 2y > 0. The function

v(z) = min{Vi(z), Va(2)},

depicted in Figure 1, is continuous, positive definite, radially
unbounded and zero at zero.
For this example, and after simple computations, the condi-
tions (21) yields
—(234+23)+T <0 Va; >0
—(23+23)-T<0 Vo <0

so that the following selection

is a consistent one.

The above discussion leads itself to the following interpre-
tation. The control law

=1 if >0

Y= =1 if 2<0
or, alternatively

1 if >0

=111 i e<o

can be shown to globally asymptotically stabilize the system
(30). This is the same control law proposed in [10]. Therein
(see also [14]) it is however argued that this control law is
not robust against measurement noises, and a (simple) robust
modification of this controller (in the spirit of the result in
[11]) is proposed. Hence, the results presented in this paper,
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and in its linear counterparts, see [20], have to be understood
as first steps toward a general (robust) stabilization theory
for switched systems. We believe that this theory could be
developed exploiting the results in this paper and the results
in [11], [10] and [12].

VI. CONCLUSION

In this paper we have introduced stability conditions for
switched systems. They have been used for control synthe-
sis of state dependent (closed loop) switching rules using
nonlinear Lyapunov-Metzler inequalities. The determination
of a guaranteed cost associated to each control strategy has
been addressed. The relationship between switched systems
and time varying polytopic systems stability has been in-
vestigated, yielding useful mathematical properties for both
classes of dynamical systems.

Various issues deserve more attention. The first is related
to the development of numerical algorithms for the solution
of the introduced nonlinear Lyapunov-Metzler inequalities .
The second one is the possible generalization of the stability
conditions to cope with an optimal guaranteed cost. Taking
into account the nonlinear nature of the involved stability
conditions, this point constitutes a real theoretical challenge.
Finally, the crucial and difficult issue of robust stability
requires an in-depth investigation. These issues are being
currently studied.
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