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ul. Narutowicza 11/12, Gdańsk, Poland
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Abstract— The paper presents results of local performance
analysis of a generalized adaptive notch filter (GANF). Gener-
alized adaptive notch filters are used for identification/tracking
of quasi-periodically varying dynamic systems and can be
considered extension, to the system case, of classical adaptive
notch filters. The frequency tracking properties of the algorithm
are studied analytically using a direct averaging approach and
an approximating linear filter (ALF) technique. Even though
restricted to a single frequency case, the presented analy-
sis provides valuable insights into the tracking mechanisms
of GANF, including the associated speed/accuracy tradeoffs,
the achievable performance bounds, and tracking limitations.
Additionally, it allows one to formulate some useful rules of
thumb for choosing design parameters. We show that under
the conditions of the ALF approximation, the optimally tuned
GANF is a statistically efficient estimator of a slowly drifting
system frequency.

I. INTRODUCTION

Generalized adaptive notch filters [1], [2], [3], were de-
signed for the purpose of identification/tracking of quasi-
periodically varying complex-valued systems, i.e. systems
governed by

y(t) =
n∑

l=1

θl(t)ϕl(t) + v(t) = ϕT(t)θ(t) + v(t) (1)

where t = 1, 2, . . . denotes the normalized discrete time,
y(t) denotes the system output, ϕ(t) = [ϕ1(t), . . . , ϕn(t)]T

is the regression vector, v(t) is an additive noise and θ(t) =
[θ1(t), . . . , θn(t)]T denotes the vector of time varying coef-
ficients, modeled as weighted sums of complex exponentials

θl(t) =
k∑

i=1

ali(t)e
j

t∑
s=1

ωi(s)
, l = 1, . . . , n (2)

All quantities in (1) and (2), except angular frequencies
ω1(t), . . . , ωk(t), are complex-valued. Since the complex
amplitudes ali(t) incorporate both magnitude and phase
information, there is no explicit phase component in (2).
It will be assumed that both the amplitudes ali(t), l =
1, . . . , n and frequencies ωi(t) in (2) are slowly time-
varying, and that v(t) = vR(t) + jvI(t), E[v2

R(t)] =
E[v2

I (t)] = σ2
v/2, E[vR(y)vI(t)] = 0, ∀t, is a complex

white noise of variance σ2
v , independent of the sequence of

regression vectors ϕ(t).
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Denote by αi(t) = [a1i(t), . . . , ani(t)]T the vector of
system coefficients associated with a particular frequency ωi.
Similarly, let ψi(t) = fi(t)ϕ(t), where fi(t) = ej

∑ t
s=1 ωi(s),

be the generalized regression vector associated with the
ith frequency component. Using the short-hand notation
introduced above, (1) and (2) can be rewritten in the form

y(t) =
k∑

i=1

ψT
i (t)αi(t) + v(t), θ(t) =

k∑
i=1

fi(t)αi(t)

One of interesting applications, which admits such problem
formulation, is identification of multipath (e.g. mobile radio)
channels - see e.g. [4], [5] and [6]. In this particular case the
regression vector ϕ(t) is made up of past input (transmitted)
symbols, y(t) is the received baseband signal, θ(t) is the
vector of time varying impulse response coefficients of the
channel, and the angular frequencies ω1, . . . , ωk correspond
to Doppler shifts along different paths of signal arrival (when
the speed of the vehicle changes over time, Doppler shifts
are also time-varying).
The problem of identification of quasi-periodically varying
systems can be considered generalization, to the system case,
of a classical signal processing task of either elimination or
extraction of nonstationary sinusoidal signals buried in noise.
The problem of elimination and extraction of complex sinu-
soidal signals (called cisoids) buried in noise was considered
by many authors - see e.g. [7], [8] and the references therein.
From different algorithms capable of tracking both complex
amplitudes and frequencies in a system governed by (1) -
(2) we have chosen a relatively simple solution described
in [3], which combines the exponentially weighted least
squares approach to amplitude tracking with gradient search
approach to frequency tracking

f̂i(t) = ejω̂i(t)f̂i(t − 1)

ψ̂i(t) = f̂i(t)ϕ(t)
i = 1, . . . , k

ε(t) = y(t) − ψ̂T(t)α̂(t − 1)

Q(t) =
1
λ

[Q(t − 1)

− Q(t − 1)ψ̂(t)ψ̂H(t)Q(t − 1)

λ + ψ̂H(t)Q(t − 1)ψ̂(t)

]
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k(t) = Q(t)ψ̂(t)
α̂(t) = α̂(t − 1) + k∗(t)ε(t)

gi(t) = Im{ε∗(t)ψ̂T
i (t)α̂i(t − 1)}

ω̂i(t + 1) = ω̂i(t) − ηgi(t)
i = 1, . . . , k

θ̂(t) =
k∑

i=1

f̂i(t)α̂i(t) (3)

where α̂(t) = [α̂T
1 (t), . . . , α̂T

k (t)]T and ψ̂(t) =
[ψ̂T

1 (t), . . . , ψ̂T
k (t)]T.

In the above algorithm λ (0 < λ < 1), usually set close to
one, denotes the so-called forgetting constant, which controls
the rate of amplitude adaptation, and η > 0, usually set close
to zero, denotes the stepsize coefficient, which controls the
rate of frequency adaptation.
The initial conditions for (3) should be set to α̂(0) = 0
and Q(0) = cIkn, where Ikn denotes the kn × kn identity
matrix and c is a large positive constant - this is a standard
initialization procedure for all RLS-type recursive estimation
algorithms [9].
When examining tracking properties of the algorithm (3) we
will rely on the approximating linear filter (ALF) technique,
developed by Tichavský and Händel [7] for the purpose
of analysis of performance of adaptive notch filters, and
on the direct averaging technique [10], widely used in
performance/convergence studies of adaptive systems. Even
though restricted to a single frequency case (k = 1), this
analysis provides valuable insights into the tracking mecha-
nisms, including the speed/accuracy tradeoffs, the achievable
performance bounds, and tracking limitations. Based on these
results we will formulate some useful tuning rules.

II. TRACKING ANALYSIS

Before we start analyzing tracking properties of the algorithm
(3) we will convert it into a more convenient form by
applying the linear time-varying transformation

β̂(t) = F̂n(t)α̂(t), l(t) = F̂∗
n(t)k(t)

P(t) = F̂∗
n(t)Q(t)F̂n(t) (4)

where F̂n(t) = F̂(t) ⊗ In, F̂(t) = diag{f̂1(t), . . . , f̂k(t)}
and ⊗ denotes the Kronecker product of the
corresponding matrices. Let Ân(t) = Â(t) ⊗ In,
Â(t) = diag{ejω̂1(t), . . . , ejω̂k(t)} and ϕk(t) =
[ϕT(t), . . . ,ϕT(t)︸ ︷︷ ︸

k

]T. Using (4) one can express the

algorithm (3) in the following equivalent form

ε(t) = y(t) − ϕT
k (t)Ân(t)β̂(t − 1)

P(t) =
1
λ

Â∗
n(t) [P(t − 1)

− P(t − 1)ϕk(t)ϕH
k (t)P(t − 1)

λ + ϕH
k (t)P(t − 1)ϕk(t)

]
Ân(t)

l(t) = P(t)ϕk(t)

β̂(t) = Ân(t)β̂(t − 1) + l∗(t)ε(t)

gi(t) = Im{ε∗(t)ejω̂i(t)ϕT(t)β̂i(t − 1)}
ω̂i(t + 1) = ω̂i(t) − ηgi(t)

i = 1, . . . , k

θ̂(t) =
k∑

i=1

β̂i(t) (5)

It should be stressed, that the algorithms (3) and (5) are
strictly input-output equivalent, i.e. when started with the
same initial conditions (β(0) = α(0),P(0) = Q(0)) they
yield identical signal estimates θ̂(t).
Tichavský and Händel [7] and Tichavský and Nehorai [8]
have shown that the local properties of a wide range of adap-
tive notch filters can be analyzed using the approximating
linear filtering technique. Approximating linear filters charac-
terize the relation between the sequences of estimation errors
and the sequences of measurement noise v(t) and of the one-
step changes of the true frequency ω(t+1)−ω(t), provided
that the analyzed algorithms operate in a neighborhood of
their equilibrium state. We will use the same tool to analyze
(5).
Similarly as in [7], we will consider a single frequency case
(k = 1) and steady state tracking conditions. Note that in
this case Ân(t) = ejω̂i(t)In, ϕk(t) = ϕ(t) and the matrix
P(t) can be written down in an explicit form

P(t) =

[
t∑

s=1

λt−sϕ(s)ϕH(s)

]−1

(6)

If the sequence of regression vectors is wide-sense stationary
and persistently exciting, and λ is close to 1, one can replace
the matrix inverted in (6) with its expectation [11]. This
results in the following steady state approximation

P(t) ∼=
[

t∑
s=1

λt−sΦ∗
]−1

�−→
t�→∞ (1 − λ)(Φ∗)−1 (7)

where Φ = E[ϕ∗(t)ϕT(t)] > 0.
Using this approximation the generalized adaptive notch
filtering algorithm (5) can be, for a system with a single
frequency mode, rewritten in a simplified form

ε(t) = y(t) − ejω̂(t)ϕT(t)β̂(t − 1)

β̂(t) = ejω̂(t)β̂(t − 1) + µΦ−1ϕ∗(t)ε(t)

g(t) = Im{ε∗(t)ejω̂(t)ϕT(t)β̂(t − 1)}
ω̂(t + 1) = ω̂(t) − ηg(t)

θ̂(t) = β̂(t) (8)

which will be a subject of our further analysis.
We will assume that θ(t) = αoe

j
∑ t

s=1 ω(s) is a constant-
modulus quasi-periodically varying parameter vector, i.e.
θ(t) = β(t) = β(t − 1)eiω(t), where β(0) = βo = αo.
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Let

∆β̂(t) = β̂(t) − β(t)

∆φ̂(t) = βH(t)Φ∆β̂(t) = ∆φ̂R(t) + j∆φ̂I(t)
e(t) = βH(t)ϕ∗(t)v(t) = eR(t) + jeI(t)

Note that e(t) is a complex-valued white noise with variance
σ2

e = E[|e(t)|2] = βH
o Φβoσ

2
v . One can show that E[e2

R(t)] =
E[e2

I(t)] = σ2
e/2 and E[eR(t)eI(t)] = 0.

Using the notation introduced above one can prove

Proposition 1

Assume that the sequences {e(t)} and {w(t)} are uniformly
small so that one can neglect higher than first-order moments
of their elements, and that the sequence of regression vectors
ϕ(t), independent of v(t) and w(t), is wide-sense stationary
and persistently exciting. Then the generalized adaptive
notch filtering algorithm (8) applied to the system governed
by

y(t) = ϕT(t)β(t) + v(t), β(t) = ejω(t)β(t − 1) (9)

with β(0) = βo, can be approximately described by the
following linear filtering equations

∆φ̂I(t) = λ∆φ̂I(t − 1) + λb2∆ω̂(t) + µeI(t)

∆ω̂(t + 1) = δ∆ω̂(t) − η∆φ̂I(t − 1)
+ ηeI(t) − w(t + 1) (10)

where b2 = βH
o Φβo.

All approximations hold for sufficiently high signal-to-noise
ratio (SNR = b2/σ2

v � 1) and for sufficiently low rate of
frequency changes compared with 1/SNR (

√
bσw/σv � 1).

Proof: See Appendix

Solving the approximating linear equations (10) with respect
to ∆ω̂(t) one obtains

∆ω̂(t) = H1(q−1)eI(t) + H2(q−1)w(t) (11)

where q−1 denotes the backward shift operator (q−1x(t) =
x(t − 1)) and

H1(q−1) =
(1 − δ)(1 − q−1)q−1

b2(1 − (λ + δ)q−1 + λq−2)

H2(q−1) = − 1 − λq−1

1 − (λ + δ)q−1 + λq−2
(12)

It is easy to check that for any λ and δ from the interval
(0,1) the poles of both transfer functions in (12) lie inside the
unit circle in the complex plane. Hence, under the constraint
mentioned above, the approximating linear filter associated
with (8) is asymptotically stable.

A. Tracking characteristics

Following many earlier tracking studies, we will assume
that the frequency ω(t) evolves according to the random
walk model, i.e. that the frequency increments w(t) form a
zero-mean white noise sequence, independent of v(t), with

variance σ2
w. Then, using standard results from the linear

filtering theory, one arrives at

E[(∆ω̂(t))2] = I[H1(z)] E[e2
I(t)] + I[H2(z)] E[w2(t)]

where

I[X(z)] =
1

2πj

∮
X(z)X(z−1)

dz

z

is an integral evaluated along the unit circle in the z-
plane, and X(z) denotes any stable proper rational transfer
function.
By means of residue calculus (see e.g. [12]) one obtains

I[H1(z)] =
2(1 − δ)2

b4(1 − λ)(1 + 2λ + δ)
∼= γ2

2b4µ

I[H2(z)] =
(1 − λ)2(1 + λ) + 2λ(1 − δ)
(1 − λ)(1 − δ)(1 + 2λ + δ)

∼= µ

2γ
+

1
2µ

where γ = 1 − δ = b2η and all approximations hold for
sufficiently small values of µ and γ.
Finally, after combining all earlier results, one arrives at
the following expression for the steady state mean-squared
frequency estimation error

E[(ω̂(t) − ω(t))2] ∼= γ2

4b2µ
σ2

v +
[

µ

2γ
+

1
2µ

]
σ2

w (13)

Observe that the derived formula contains terms proportional
to the adaptation gains µ = 1− λ and γ = 1− δ, and terms
inversely proportional to µ and γ. This stays in agreement
with the well-known fact in adaptive filtering: the adaptation
gains should be chosen so as to compromise between the
tracking speed of an adaptive filter (which increases with
growing µ and γ) and its noise rejection capability (which
decreases with growing µ and γ) [9].
Denote by µω and γω the values of µ and γ that minimize the
mean-squared frequency estimation error. Straightforward
calculations yield

µω = 4
√

8ξ, γω =
√

2ξ

E[(ω̂(t) − ω(t))2|µω, γω] ∼= 4
√

2ξ−1 σ2
w (14)

where

ξ =
b2σ2

w

σ2
v

(15)

Note that the optimal values of design parameters and
the best achievable performance are functions of a scalar
coefficient ξ - a product of the signal-to-noise ratio b2/σ2

v

and the variance of frequency changes σ2
w. The coefficient

ξ can be regarded a measure of signal nonstationarity and
plays an important role in analysis of tracking capabilities
of the algorithm (3).
Recall that γ, equal to b2η, is a function of b2 = βH

o Φβo.
Therefore, unless |β(t)| is constant and the sequence of
regression vectors ϕ(t) is wide-sense stationary (which we
have been assuming so far), and the quantities βo and Φ
are known a priori, the user does not have full control
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over the adaptation gain γ. This obvious drawback can be
eliminated by replacing the correction term g(t) in (3) with
the normalized correction term

ḡ(t) =
g(t)

b̂2(t)
= Im

[
ε∗(t)ejω̂(t)ϕT(t)β̂(t − 1)

b̂2(t)

]
(16)

where b̂2(t) denotes a local estimate of βH
o Φβo =

E[|ϕT(t)β(t)|2], for example

b̂2(t) = λob̂
2(t − 1) + (1 − λo)|ϕT(t)β̂(t)|2

where 0 ≤ λo < 1 is the local averaging coefficient (e.g.
λo = 0.9). Careful analysis shows that such modification
does not change equations of the approximating linear filter
associated with (8), provided that δ is redefined as δ = 1−η.
In this case γ is equal to η, i.e. it is an entirely user-dependent
quantity. The modifications described above can be easily
extended to the multiple frequency case.
Our last comment will be devoted to the problem of choice
of design variables µ and γ (or equivalently λ and δ). Even
though our optimization study was not based on realistic
assumptions (the random walk model of signal frequency
variation can be criticized as rather naive), its results, summa-
rized in (14), have some practical relevance as they suggest
useful tuning rules. Observe that the optimal setting γω

is proportional to the square of the optimal setting µω:
γω = µ2

ω/2. Therefore, to make tuning easier it may be
worthwhile to set γ = µ2/2. The problem is then reduced
to selection of a single design parameter µ.

B. Statistical efficiency

Consider a system governed by (9) with the frequency ω(t)
evolving according to the random walk model. Suppose that
the initial value β(0) = βo is known, that the prior distri-
bution of ω(1) is noninformative (i.e. π(ω(1)) = 1/(2π)
for ω(1) ∈ (−π, π]) and that the white noise sequences
{v(t)} and {w(t)} are mutually independent and Gaussian.
Additionally, suppose that the driving sequence {ϕ(t)} is
wide-sense stationary and independent of {v(t)} and {w(t)}.
Denote by Y (t) = {y(1), . . . , y(t)} the history of
system output available at instant t, and by U(t) =
{ϕ(1), . . . ,ϕ(t)} - the analogous input history. Let ω̂ =
g[Y (t), U(t)] = [ω̂(1), . . . , ω̂(t)]T be any estimator (possi-
bly biased) of the vector of instantaneous frequencies ω =
[ω(1), . . . , ω(t)]T. Then, under some regularity conditions
which can be easily verified in the Gaussian case, it holds
that [14], [13]

E
[
(ω̂ − ω)(ω̂ − ω)T

] ≥ J−1
t (17)

where

J−1
t = −E

[∇2
ωω log p(Y (t), U(t), ω)

]
(18)

Since the density p(Y (t), U(t), ω) is a product of the
likelihood function p(Y (t), U(t)|ω) and the prior density
p(ω), the t × t matrix Jt is the sum of the standard Fisher
information matrix (representing the information obtained
from the data) and an additional a priori information matrix

(representing the prior knowledge of the estimated parame-
ters). Note that (17) implies that

E[(ω̂t − ωt)2] = E[(ω̂(t) − ω(t))2] ≥ [
J−1

t

]
tt

where ω̂i = ω̂(i) denotes the ith component of ω̂. Hence,
the limiting steady state value of the mean-squared frequency
estimation error (called posterior Cramér-Rao bound in [13])
can be obtained by examining limt�→∞

[
J−1

t

]
tt

, which leads
to the following result

Proposition 2

The limiting value of the posterior Cramér-Rao bound for the
estimation of ω(t) in the quasi-periodically varying system
described above is given by

lim
t�→∞ inf E[(ω̂(t) − ω(t))2] = f(z)σ2

w (19)

where z = ξ +
√

ξ2 + 8ξ and f(z) =
√

1 + 4z−1.

Proof: The proof is a pretty straightforward extension of the
proof presented in [13] for the signal case (n = 1, ϕ(t) ≡ 1).
It is omitted because the lack of space.

Note that when
√

ξ � 1 it holds that z ∼= √
8ξ and

f(z) ∼=
√

4z−1 ∼= 4
√

2ξ−1. Comparison of the resulting
posterior Cramér-Rao bound limt�→∞ inf E[(ω̂(t)−ω(t))2] =
4
√

2ξ−1 σ2
w with (14) implies that the analyzed algorithm is,

in the range of applicability of the ALF approximation, a
statistically efficient procedure for estimation/tracking of a
slowly drifting system frequency.

III. SIMULATION RESULTS

Several simulation experiments were performed to verify
results of theoretical analysis presented in Section 2. The
results summarized below were obtained for a time-varying
two-tap FIR system (inspired by channel equalization appli-
cations) governed by

y(t) = θ1(t)u(t) + θ2(t)u(t − 1) + v(t)

where u(t) denotes a white 4-QAM input sequence (u(t) =
±1 ± j, σ2

u = 2) and v(t) denotes a complex Gaussian
measurement noise. The impulse response coefficients of
the system were modeled as nonstationary cisoids θi(t) =
aie

jψ(t), i = 1, 2, ψ(t) =
∑t

s=1 ω(s), with time-invariant
complex “amplitudes” α = [a1, a2]T = [2 − j , 1 + 2j ]T.
Note that in this case βo = α, ϕ(t) = [u(t), u(t − 1)]T

and Φ = I2σ
2
u. The evolution of the frequency ω(t) was

modeled as a random walk process with the variance of
frequency increments set to σ2

w = 10−7 and with the starting
value set to ω(0) = π/2. Four noise levels were considered
(σ2

v=20, 2
√

10, 2 and 0.2) to check tracking performance of
the GANF algorithm under different SNR conditions (0dB,
5dB, 10dB and 20dB, respectively).
According to (14), to optimize frequency tracking one should
set µ to µω = 4

√
8ξ and set γ to γω =

√
2ξ (i.e. set

η to ηω = γω/βH
o Φβo). Figure 1 shows comparison of

theoretical evaluations, based on (14), with the results of
computer simulations. For each SNR the analysis was carried
around the optimal point (µω, γω). In the first experiment
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γ was set to its optimal value γω and µ was changed
around µω. In the second experiment µ was set to µω and
γ was changed around γω . Both plots shown in Figure 1
were obtained by double averaging. First, the mean-squared
frequency estimation errors were computed for different pairs
(µ, γ) and for a given frequency trajectory from 10000
iterations of the GANF algorithm (after the algorithm has
reached its steady state). The obtained results were next
averaged over 50 realizations of {w(t)}, i.e. over 50 different
frequency trajectories. Note very good agreement between
the theoretical curves and the results of computer simula-
tions.

0 0.02 0.04 0.06 0.08 0.1
10

−6

10
−5

10
−4

E
[(

∆
ω

(t
))

2 ]

µ

0 0.02 0.04 0.06 0.08 0.1
10

−6

10
−5

10
−4

E
[(

∆
ω

(t
))

2 ]

√
2γ

Fig. 1. Variance of the frequency estimation error ∆ω̂(t) for an FIR
system with a single frequency mode subject to a random walk drift. The
theoretical results (solid lines) are compared with simulation results obtained
for different values of µ given γ = γω (upper plot) and different values
of γ given µ = µω (lower plot); the corresponding signal-to-noise ratios
were: 0dB (∗), 5dB (+), 10dB (◦) and 20dB (×).

Figure 2 shows typical results of system parameter and
frequency tracking.

Finally, Figure 3 shows the evolution of ∆ω̂(t), ∆φ̂(t) and
u(t) for a typical run of the optimally tuned GANF algorithm
(µ = µω, γ = γω). Note that, exactly as we assumed in the
Appendix, the quantities ∆φ̂(t) (a linear combination of the
elements of the modified error ∆β̃(t), defined in Appendix
I) and ∆ω̂(t) vary slowly compared to u(t), i.e. compared
to ϕ(t). This confirms validity of the averaging approach
which was used to derive the approximating linear filter in
the system case.
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3020 3040 3060 3080 3100

−2

0
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R
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Fig. 2. Typical results of system frequency tracking (upper plot) and
system parameter tracking (two lower plots). Solid lines depict true values
and dotted lines show evolution of the corresponding estimates.
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Fig. 3. Evolution of ∆ω̂(t), ∆φ̂(t) and u(t) for a typical run of the
optimally tuned GANF algorithm.
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[8] Tichavský P. and A. Nehorai (1997). Comparative study of four
adaptive frequency trackers. IEEE Trans. on Signal Processing, vol.
45, 1473–1484.
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APPENDIX

It is straightforward to check that

∆β̂(t) = ejω̂(t)β̂(t − 1) − β(t) + µΦ−1ϕ∗(t)ε(t)

=
(
In − µΦ−1ϕ∗(t)ϕT(t)

) [
ejω̂(t)β̂(t − 1) − β(t)

]
+µΦ−1ϕ∗(t)v(t)

For small frequency errors it holds that ej∆ω̂(t) ∼= 1 +
j∆ω̂(t). Using this approximation and neglecting all terms
of order higher than one in ∆ω̂(t) and ∆β̂(t−1) one obtains

ejω̂(t)β̂(t − 1) ∼= β(t) + ejω(t)∆β̂(t − 1) + jβ(t)∆ω̂(t)

and

∆β̂(t) ∼= (
In − µΦ−1ϕ∗(t)ϕT(t)

)
ejω(t)∆β̂(t − 1)

+j
(
In − µΦ−1ϕ∗(t)ϕT(t)

)
β(t)∆ω̂(t)

+µΦ−1ϕ∗(t)v(t)

Multiplying both sides of the last equation with f∗(t) =
e−j

∑ t
s=1 ω(s) one obtains

∆β̃(t) ∼= (
In − µΦ−1ϕ∗(t)ϕT(t)

)
∆β̃(t − 1)

+j
(
In − µΦ−1ϕ∗(t)ϕT(t)

)
βo∆ω̂(t)

+µΦ−1f∗(t)ϕ∗(t)v(t)

where ∆β̃(t) = f∗(t)∆β̂(t).
Assuming that the quantities ∆β̃(t) and ∆ω̂(t) change
slowly compared to ϕ(t) , approximate analysis of the
modified estimation error ∆β̃(t) can be carried out using the
direct averaging technique [10]. The averaging technique was
proposed and used for analysis of slowly varying adaptive
systems. Since the system (9) rapidly varies with time,
some additional arguments are needed to justify the slow
variation assumption mentioned above. Note that ∆β̃(t) =
f∗(t)β̂(t) − βo. It can be shown that, for small values of
µ and γ, f∗(t)β̂(t) varies slowly compared to f̂∗(t)β̂(t) =
α̂(t), which is itself a slowly varying quantity (in the case
considered α̂(t) is a long-memory estimator of a time-
invariant coefficient vector αo = βo). Note, in particular,
that variation of ∆β̃(t) is much slower than variation of
β(t) and β̂(t). Similar analysis can be carried for ∆ω̂(t)
(see Section III for further comments on applicability of the
averaging technique to the system analyzed in the paper).
Using averaging one obtains (with a slight abuse of the
notation)

∆β̃(t) ∼= λ∆β̃(t − 1) + jλβo∆ω̂(t)

+µΦ−1f∗(t)ϕ∗(t)v(t)

Since βH(t)Φ∆β̂(t) = βH
o Φ∆β̃(t) one arrives at the

relationship

βH(t)Φ∆β̂(t) ∼= λβH(t − 1)Φ∆β̂(t − 1)

+jλβH
o Φβo∆ω̂(t) + µβH(t)ϕ∗(t)v(t)

from which the first equation of (10) follows immediately.
Applying the same technique to the frequency update recur-
sions one arrives at

∆ω̂(t + 1) ∼= (
1 − η βH

o ϕ∗(t)ϕT(t)βo

)
∆ω̂(t)

−η Im
[
βH

o ϕ∗(t)ϕT(t)∆β̃(t − 1)
]

+η Im
[
βH(t)ϕ∗(t)v(t)

] − w(t + 1)

Finally, using the averaging technique one obtains

∆ω̂(t + 1) ∼= (1 − η βH
o Φβo)∆ω̂(t)

−η Im
[
βH(t − 1)Φ∆β̂(t − 1)

]
+η Im

[
βH(t)ϕ∗(t)v(t)

] − w(t + 1)

which constitutes the second equation of (10).
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