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Abstract— When weights are adjusted in an H∞ design,
corresponding modifications occur in the synthesised H∞ con-
troller and the resulting closed-loop transfer function matrices
of interest. This article proposes an algorithm that allow us
to compute the corresponding modifications in the controller
and closed-loop transfer functions via calculations that are
simpler/faster than solving two brand new Riccati equations
from scratch. This is particularly beneficial (in terms of both
speed and numerical reliability of the solutions) for high order
systems and in iterative adaptive control algorithms that involve
weight adjustments at each sampling interval. The algorithm
proposed here builds upon our previous results presented in [1]
and now allow us to also handle medium-size and large weight
adjustments, as opposed to only small weight adjustments.

Index Terms— weight modifications, weight adjustments,
H∞-control, J -lossless factorisation, chain-scattering.

I. INTRODUCTION

The problem we consider in this article can be formulated

as follows: “Suppose that an H∞ control problem for a plant

P has been solved for some weights Wi and has delivered

a central controller Kc and closed-loop transfer functions

Tzw. Furthermore, suppose that we now consider the same

H∞ control problem but with weights Wi,new := Wi +�Wi
(where �Wi is some adjustment). Via calculations simpler

than those used in solving an H∞ control problem from

scratch, find the new controller Kc,new and the new closed-

loop transfer functions Tzw,new as a function of �Wi and the

variables of the first H∞ control problem.”

This paper is an extension of [1] in three quite distinct

ways. Firstly, this paper includes the innovation of using

a Newton-Raphson algorithm, thus giving us a method for

handling also medium-sized and large weight changes, as

opposed to only small weight changes. Secondly, in this

article, we present the material using a more general weight-

ing scheme (which is applicable to a wider class of H∞

control problems), since in [1] we restricted attention to only

H∞ loop-shaping weights. Thirdly, we also answer several

questions about domain of applicability of the results and

validity of assumptions that have been left open in [1].

To explain the problem setting, consider the following

weighted four-block H∞ control design problem consisting
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of finding an internally stabilising controller K such that∥∥∥∥
[

W2 0

0 W4

]
Tzw

[
W3 0

0 W1

]∥∥∥∥
∞

< γ (1)

where γ is some positive number, Wi ∈ RH∞ are square

weighting functions, Tzw is defined by

Tzw :=

[
P
I

]
(I − K P)−1 [

−K I
]
. (2)

and P ∈ RL∞ is a MIMO (not necessarily square) plant

model. Some algebraic manipulations should convince the

reader that the above H∞-norm objective can be restated

as: “Synthesise an internally stabilising controller K such

that∥∥∥∥∥∥∥Fl

⎛
⎜⎝

⎡
⎢⎣ 0 1

γ
W2 PW1

1
γ

W2 P
0 1

γ
W4W1

1
γ

W4
−W3 PW1 P

⎤
⎥⎦ , K

⎞
⎟⎠

∥∥∥∥∥∥∥
∞

< 1. (3)

The term in the square brackets of inequality (3) is commonly

called “the generalised plant” and we shall denote this by �.

As presented in [1, Lemma 1], the work of [2] and [3]

tells us that as long as the normalised H∞ control problem

‖Fl (�, K )‖∞ < 1 is solvable, then the set of all admis-

sible controllers is given by {K = HM(�, S) : S ∈

RH∞, ‖S‖∞ < 1}, where � is a unit in RH∞ (with a

(q × q) bi-proper �22) that satisfies

� Jpq �∼ =[
Ip 0

�22 �21

] [
�∼

12�12 �∼

12�11
�∼

11�12 �∼

11�11 − Ir

]−1 [
Ip �∼

22
0 �∼

21

]
.

(4)

Since the solution of equation (4) is not unique, the reader is

also referred to [4] for instructions on how to pick out one

particular solution � which gives a central member

Kc := HM(�, 0) (5)

of the above-mentioned admissible controller set that has the

correct properties (e.g. minimum entropy) discussed in the

literature [5], [6].

Rewriting equation (4) for the H∞ control problem posed,

we get

� Jpq �∼ = �(Wi={1,...,4}) (6)

where

�(Wi={1,...,4}) := −

[
(W1W ∼

1 ) 0

0 (W3W ∼

3 )

]

+ γ 2
[

I
P

] [
P∼(W ∼

2 W2)P + (W ∼

4 W4)
]−1[

I P∼
]
. (7)
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It is easy to see that once we have the object � (unit in RH∞

with bi-proper �22) that solves equation (6), computation of

the central controller Kc via equation (5) and computation of

the closed-loop transfer function matrices of interest Tzw via

equation (2) are trivial. Consequently, most of the arguments

in this paper will only revolve around the computation of the

unimodular object �.

In [1], we analysed the infinitesimal properties of the

mapping from weights Wi to the unimodular object �.

Put another way, in that article, we examined how an

infinitesimally small perturbation in weights Wi maps into an

infinitesimally small perturbation in �. It was useful because

it gave us a linear approximation to the modification �� in

the object � for a given weight adjustments �Wi in the

weights Wi , with the approximation quality becoming better

as the size of the weight adjustments becomes smaller.1 In

fact, in that work, we assumed from the very beginning

that all weight adjustments were sufficiently small for the

mapping �Wi �→ �� to be approximated well by first order

terms. In this article, we will refer to such weight adjustments

as “small weight adjustments”.

All this is summarised in the following theorem (taken out

of [1] with minor modifications due to the different weighting

scheme considered here) which gives a formula that allows

us to compute an approximation of the modification �� in

the unimodular object � when “small weight adjustments”

�Wi are performed.

Theorem 1: Suppose a number γ > 0, a nominal plant
P ∈ RL∞ and some square weights Wi ∈ RH∞ ∀i ∈

{1, . . . , 4} are given for which the normalised H∞ control
problem stated in equation (3) is solvable. Let � (unimodular
in RH∞) denote the solution of equation (6) and force
uniqueness on � by pinning down �( j∞) as described
in [4], [11].

Then consider a “small weight adjustment” �Wi for each
weight Wi to give corresponding new weights Wi,new :=

Wi +�Wi . As a result of these weight changes, the selected
� changes to �new and a first order approximation of the
change �� := �new − � is given by

�� ≈ ��Jpq , (8)

where � ∈ RH∞ satisfies �( j∞) =
1
2

[
�−1�(Wi,new)�−∼ − Jpq

]
( j∞) (note that �( j∞) = 0

when all �Wi are strictly proper) and

� + �∼ = �−1 (
�(Wi,new) − �(Wi )

)
�−∼ (9)

and �(·) is defined in equation (7).

It is important to clearly understand that in this article

we are not studying the reverse engineering problem of

determining what precise weight change should be made in

1Linear approximations are also computationally attractive, when com-
pared with the usual calculation for solving an H∞ problem typically based
on Riccati equation solution, since high order problems involving linear
matrix equations are solved faster and with solutions that are numerically
more reliable than Riccati (i.e. quadratic) equations, and for that matter
linear equations involving transfer functions are solved faster than nonlinear
equations (such as J -spectral factorisations [2], [7]–[10]).

order to achieve a particular closed-loop transfer function

modification. Also, the results in this article cannot be easily

applied to that problem because the formula quantifying the

controller change is expressed in terms of an object that

is only the stable part (in an additive sense) of an RL∞

object (see equation (9)). Such additive decompositions (of

RL∞ objects into RH∞ and RH −
∞ objects) make it noto-

riously hard to relate frequency responses and this in turn

prohibits use of the results in this paper to solve the reverse-

engineering problem. The reader interested in the reverse

engineering problem of determining what weight is required

in order to achieve a particular closed-loop transfer function

is referred to other articles such as [12]–[17] that approach

the problem of weight selection in H∞ designs from an

optimisation perspective.

II. A NEWTON-RAPHSON ALGORITHM FOR

MEDIUM-SIZED WEIGHT ADJUSTMENTS

There exist weight adjustments �Wi which are of a

sufficient size that the approximation of the change ��

(given in Theorem 1) using the linear analysis may be too

crude. Nevertheless, because � and �new are the solutions

of a nonlinear equation (i.e. equation (4)) which happens

to be susceptible to solutions via Newton-Raphson approx-

imations, when the weight change �Wi is modest but not

too large, �new can be determined through Newton-Raphson

iterations, with the solution � for the initial weights Wi
providing the starting point for the iteration. Each iteration

involves only linear equations, and the number of iterations

to obtain practical convergence can be small, e.g. 3 or

4, essentially because the Newton-Raphson algorithm, if it

converges, has quadratic rate of convergence. In this case, the

computational advantage derives from the potentially greater

attractiveness of solving 3 or 4 linear equations as opposed

to one nonlinear equation.

In this section, we will thus propose a Newton-Raphson

iterative algorithm, based on the approximation given in

Theorem 1, that guarantees quadratic convergence to the

exact solution of the problem with changed weights provided

an initial quantity lies in a certain region of attraction.

We will also explicitly derive an under-bound on the size

of this region of attraction and hence this will give us

a handle on precisely what are acceptable “medium-sized

weight changes”. This algorithm will thus allow us to solve

the problem statement of Theorem 1 in situations when the

first order approximation (8) is too crude to estimate ��

since the weight adjustments are not small enough.

Let us begin by proposing this Newton-Raphson iterative

algorithm2 as follows:

1. Let the counter k = 0 and �0 = �.

2. Set �k = �k Jpq�∼

k .

3. Solve the following equation for �k ∈ RH∞ with

�k( j∞) = 1
2

[
�−1

k �(Wi,new)�−∼
k − Jpq

]
( j∞):

�k + �∼

k = �−1
k

(
�(Wi,new) − �k

)
�−∼

k . (10)

2We shall show in this section that this algorithm possesses properties
(e.g. quadratic convergence) of a Newton-Raphson algorithm.
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4. Let �k+1 = �k(I + �k Jpq).

5. If
∥∥�k

∥∥
∞

� 1, then EXIT. Otherwise, increment the

counter k by one and go to step 2.

It should be clear that the steps in this algorithm come

from the equations and approximations in Theorem 1. The

stopping criterion for this algorithm is chosen as
∥∥�k

∥∥
∞

�

1 since this guarantees that �k+1 ≈ �k (i.e. practically no

improvement in the solution) through the equation �k+1 =

�k(I + �k Jpq).

A. McMillan degrees do not explode!

The algorithm given above has pedagogical value since

it is easily related to Theorem 1. However, on preliminary

inspection of the algorithm, one may be concerned that the

McMillan degrees of �k and �k increase at every iteration.

This is not the case as will be shown next. The technique

through which we show that the proposed algorithm does

not have explosion of degree is also of independent interest

because it suggests a computationally simpler way of per-

forming the algorithm.

Let us first study the relation between the McMillan degree

of �k+1 and �k . Towards this end, from equation (10) (used

with indices k + 1 and k) and other quantities in the above

algorithm, observe that

�k+1 + �∼

k+1 + Jpq

= �−1
k+1�(Wi,new)�−∼

k+1

= (I + �k Jpq)−1�−1
k �(Wi,new)�−∼

k (I + �k Jpq)−∼

= (I + �k Jpq)−1(�k + �∼

k + Jpq)(I + �k Jpq)−∼

= Jpq −
[
I − (I + �k Jpq)−1]Jpq

[
I − (I + �k Jpq)−∼

]
and hence

�k+1 + �∼

k+1 =

−
[
I − (I + �k Jpq)−1]Jpq

[
I − (I + �k Jpq)−∼

]
. (11)

Note that equation (11) can be used as a replacement of

equation (10) in the computation of �k ∀k ∈ Z+ (although

�0 still needs to be computed via equation (10)). Given �k ,

one could solve equation (11) for �k+1 directly and easily

using state-space data, for example, as follows: Letting

�k =

[
Â B̂

Ĉ D̂

]
(12)

be a minimal state-space realisation, it is easy to see that a

state-space realisation for the right side of equation (11) is

given by

⎡
⎢⎣

Â − B̂ Jpq R−1Ĉ (B̂ Jpq R−1)Jpq(B̂ Jpq R−1)T

0 −( Â − B̂ Jpq R−1Ĉ)T

R−1Ĉ (I − R−1)Jpq(B̂ Jpq R−1)T

−(B̂ Jpq R−1)Jpq(I − R−1)T

(R−1Ĉ)T

−(I − R−1)Jpq(I − R−1)T

⎤
⎥⎦ ,

where R = (I + D̂ Jpq) and ( Â − B̂ Jpq R−1Ĉ) is Hurwitz

since (I + �k Jpq)−1 ∈ RH∞
3. Then, there clearly always

exists an X that solves

X ( Â − B̂ Jpq R−1Ĉ)T + ( Â − B̂ Jpq R−1Ĉ)X

+ (B̂ Jpq R−1)Jpq(B̂ Jpq R−1)T = 0 (13)

so that a similarity transform

[
I X
0 I

]
on the above state-

space realisation yields

�k+1 =

[
Â − B̂ Jpq R−1Ĉ

R−1Ĉ

−X (R−1Ĉ)T − (B̂ Jpq R−1)Jpq(I − R−1)T

− 1
2 (I − R−1)Jpq(I − R−1)T

]
, (14)

via equation (11). It is unclear whether this last state-space

realisation is minimal or not. However, letting deg(·) denote

the McMillan degree of (·), we have shown above that

deg(�k+1) ≤ deg(�k) ∀k ∈ {0} ∪ Z+. (15)

It is worth pointing out at this stage that one could use

equations (12), (13) and (14) to calculate �k at each k ∈ Z+

(except k = 0) instead of Step 3 of the algorithm.4 This

clearly is computationally more efficient and ensures that the

McMillan degree of �k does not increase at each iteration.

Now let us check that the McMillan degree of �k also

does not increase at each iteration. Towards this end, note

that

�k + �∼

k = �−1
k �(Wi,new)�−∼

k − Jpq

⇔ �k�k Jpq + �k�
∼

k Jpq = �(Wi,new)�−∼
k Jpq − �k

⇔ �k+1 = �(Wi,new)�−∼
k Jpq − �k�

∼

k Jpq

⇔ �k+1 =
[
�k �̆s

new
] [

−�∼

k Jpq
�̆a

new�−∼
k Jpq

]
(16)

where �̆s
new ∈ RH∞ and �̆a

new ∈ RH −
∞ satisfy �̆s

new�̆a
new =

�(Wi,new). Note that such a decomposition is easily com-

puted, in state-space data for example, as we do not require

�̆s
new and �̆a

new to be square or units! It follows that

[
�k+1 �̆s

new
]

=
[
�k �̆s

new
] [

−�∼

k Jpq 0

�̆a
new�−∼

k Jpq I

]
. (17)

Now, before we proceed, we will need the following

lemma whose proof is trivial.

Lemma 2: Given F, G ∈ RH∞ and H ∈ RH −
∞ satisfy-

ing F = G H , then

deg(F) ≤ deg(G).

3It will be shown in subsection II-B via inequalities (29) and (32) that
‖�k‖∞ < 1 ∀k ∈ {0} ∪ Z+ (provided the initial quantities lie in a

region of attraction) which automatically guarantees that (I +�k Jpq )−1 ∈
RH∞ ∀k ∈ {0} ∪ Z+.

4Note that the calculations giving the state-space formula for �k+1 in
equation (14) work also when the given realisation for �k in equation (12)

is not necessarily minimal but Â is Hurwitz.
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Furthermore, let G =

[
A B

C D

]
and H =

[
Ā B̄

C̄ D̄

]
be

state-space realisations with A and (− Ā) Hurwitz. Then

F =

[
A B D̄ − X B̄

C DD̄

]
(18)

where the matrix X satisfies AX − X Ā + BC̄ = 0.

Using Lemma 2 on equation (16), we get

deg(�k+1) ≤ deg
([

�k �̆s
new

])
(19)

and doing the same on equation (17), we get

deg
([

�k+1 �̆s
new

])
≤ deg

([
�k �̆s

new
])

. (20)

Hence, letting α := deg
([

�0 �̆s
new

])
, it follows from

inequality (20) that

deg
([

�k �̆s
new

])
≤ α ∀k ∈ {0} ∪ Z+

and thus through inequality (19) that

deg(�k) ≤ α ∀k ∈ Z+. (21)

Consequently, the McMillan degree of �k does not increase

beyond that of
[
�0 �̆s

new
]
.

It is worth noting also at this stage that the state-space

construction in equation (18) given in Lemma 2 can be

used to construct a state-space realisation for �k at each

k ∈ Z+ that is of non-increasing order. This is clearly more

advantageous than the direct computation in Step 4 of the

above algorithm. In order to do this, let

[
�k �̆s

new
]

=

[
À B̀

C̀ D̀

]
(22)

and

[
−�∼

k Jpq
�̆a

new�−∼
k Jpq

]
=

[
Ā B̄

C̄ D̄

]
(23)

be realisations with À, (− Ā) Hurwitz. Then, applying the

state-space construction of equation (18) in Lemma 2 on

equations (16) and (17), there exists a Y satisfying

ÀY − Y Ā + B̀C̄ = 0 (24)

and consequently state-space realisations for �k+1 and[
�k+1 �̆s

new
]

are given by

�k+1 =

[
À B̀ D̄ − Y B̄

C̀ D̀ D̄

]
(25)

[
�k+1 �̆s

new
]

=

⎡
⎢⎢⎣

À B̀ D̄ − Y B̄ B̀
[

0

I

]

C̀ D̀ D̄ D̀
[

0

I

]
⎤
⎥⎥⎦ . (26)

These formulae, from equation (22) to equation (26), can be

used repeatedly to generate �k at each k ∈ Z+ on noting

that equation (22) is updated by equation (26) and an update

of equation (23) can be easily constructed from its individual

components �k , �k and �̆a
new which are all available.

B. Convergence of the algorithm

Now let us study how �k = �k Jpq�∼

k changes at each

iteration and whether it approaches �(Wi,new) as k increases.

If this is the case, then it would also implicitly imply that

�k approaches �new as k increases, which is the desired

outcome from this algorithm. To this end, note that from

Step 3 of the algorithm we have∥∥∥�−1
k �(Wi,new)�−∼

k − Jpq

∥∥∥
∞

≤ 2
∥∥�k

∥∥
∞

. (27)

Therefore �−1
k �(Wi,new)�−∼

k → Jpq , or equivalently �k =

�k Jpq�∼

k → �(Wi,new), as �k → 0. Consequently, we

only need to show that �k → 0 as k → ∞, as this will

then guarantee that the algorithm yields a solution �k that

converges to �new as k → ∞.

Hence, how do we now prove that the above algorithm

does have the property that �k → 0 as k → ∞? Letting

σ j (·) (where σ j (·) > σ j+1(·)) denote distinct Hankel singular

values of (·) each having possibly some multiplicity, σ(·)

denote the maximum singular value of a real or complex

matrix and β =
[
deg

(
�−1

0 �(Wi,new)�−∼
0

)
+ 1

2

]
, we get

‖�k+1‖∞

≤ σ [�k+1( j∞)] + 2

Nk+1∑
j=1

σ j (�k+1)

≤ σ [�k+1( j∞)] + 2Nk+1 σ1(�k+1)

=
1

2
σ [�k+1( j∞) + �k+1( j∞)∗]

+ 2Nk+1 inf
η∈H

−
∞

‖�k+1 + η‖∞

≤
(

2Nk+1 +
1

2

) ∥∥�k+1 + �∼

k+1
∥∥

∞

≤
(

2Nk+1 +
1

2

) ∥∥∥I − (I + �k Jpq)−1
∥∥∥2

∞
via (11)

=
(

2Nk+1 +
1

2

) ∥∥∥(I + �k Jpq)−1�k

∥∥∥2

∞

≤ β
‖�k‖

2
∞

(1 − ‖�k‖∞)2 (28)

where Nk+1 is the number of distinct Hankel singular values

of �k+1. Note that β ≥ (2Nk + 1
2 ) ∀k ∈ Z+ since the

McMillan degree of �k is non-increasing at each k as shown

in inequality (15).

Now we shall use inequality (28) to show that provided the

initial �0 lies in certain a region of attraction, then ‖�k‖∞

decreases at each k down to zero and in fact converges to

zero quadratically. Thus, let an under-bound on the region

of attraction be defined as follows:

‖�0‖∞ <
1

βε
(≤ 1), (29)

where

ε :=
1

β
+

1

2
+

√
1

β
+

1

4
. (30)
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If �0 lies in the region specified by inequality (29), then it

follows that
1

(1 − ‖�0‖∞)2 < ε (31)

as
(

ε
ε−1/β

)2
= ε from equation (30). Then using inequali-

ties (28), (31) and (29) and noting that the function 1
(1−x)2

is monotonically increasing as x increases in the interval

x ∈ [0, 1), we get

‖�k+1‖∞ < ‖�k‖∞ ∀k ∈ {0} ∪ Z+ (32)

1

(1 − ‖�k‖∞)2 < ε ∀k ∈ {0} ∪ Z+. (33)

Hence ‖�k‖∞ decreases at each k and ‖�k‖∞ < 1 for

all k ∈ {0} ∪ Z+ (implying that (I + �k Jpq)−1 ∈ RH∞

is automatically guaranteed by �k ∈ RH∞). Also, using

inequalities (28) and (33), it is easy to see that

‖�k+1‖∞ < βε ‖�k‖
2
∞ , (34)

which in turn yields

‖�k‖∞ <
1

βε
(βε ‖�0‖∞)2k

∀k ∈ Z+. (35)

This shows that ‖�k‖∞ → 0 quadratically as k → ∞.

Note that the bound on the region of attraction given

in inequality (29) is very conservative due to the series of

inequalities above used to obtain it. One would expect that

the region of attraction is much larger, as occurs in the later

numerical example.

If one insists on using the proposed algorithm for an

initial �0 outside the guaranteed region of attraction (29)

and notices that the algorithm still converges to a fixed

solution, then this solution must be the correct solution �new
even though the algorithm started outside the guaranteed

region of attraction. This is because from Steps 4 and 3

of the algorithm we can see that as �k+1 → �k (i.e. the

algorithm is converging) then �k → 0 and consequently

�k → �(Wi,new) yielding the required conclusion. It is

important to note that this is independent of whether the

weight adjustment satisfied inequality (29) or not!

We are now ready to state what we mean by a medium-

sized weight change. The term “medium-sized weight

change” should be taken to mean: (a) the algorithm given

at the beginning of this section converges5, and (b) the new

H∞ control problem with changed weight remains solvable.

III. NUMERICAL EXAMPLE

In this section, we will illustrate the results presented in

this paper. We will consider the following system P(s):

P(s) =
10

(s − 1)(0.2s + 1)
. (36)

A first four-block H∞ controller is designed for the system

P(s) with the following weights:

5A sufficient condition for convergence is that inequality (29) is satisfied.

W1(s) =
0.1s + 1

0.003(100s + 1)
W2 =

1

20
(37)

W3 =
1

30
W4 = 1 (38)

As we can see, in this first design, only the sensitivity

function T22 is effectively constrained via the weights. Using

the weights (37)-(38) and the Riccati-based H∞ control

design method, we obtain the following central controller:

Kc =
164.1246(s + 4.993)(s + 0.8347)

(s + 0.01)(s2 + 46.53s + 1053)
(39)

This first controller delivers three acceptable closed-loop

transfer functions on four. The only problem is the closed-

loop transfer function T21 = Kc/(1+Kc P) whose resonance

peak is too high as can be seen in Figure 1. This resonance
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Fig. 1. |T21( jω)| (dash-dot) and |T21,new( jω)| (solid), |W3( jω)−1|

(dashed), |W3,new( jω)−1| (dotted)

peak must be decreased. So, we choose the following new

weight W3,new:

W3,new =

1
6 s + 1

6( 1
30 s + 1)

(40)

The 4-block H∞ problem is solved with this new weight

keeping unmodified the three others and we obtain the

following new central controller:

Kc,new =
27.8746(s + 4.996)(s + 30)(s + 0.7208)

(s + 25.53)(s + 0.01)(s2 + 25.15s + 307.7)
(41)

The controller Kc,new is represented in Figure 2 and the

new closed-loop transfer functions T21,new in Figure 1. In

these two last figures, the modified transfer functions are

compared to the corresponding transfer function of the initial

H∞ problem (i.e. the one with the weights (37) and (38)).

The controller Kc,new in (41) has been computed using

the classical design method based on Riccati equations. Now,

we will show that the results presented in this paper provide

us an alternative way to accurately compute the controller

Kc,new. Note nevertheless that, as opposed to the Riccati-

based method, our method requires as starting point the
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knowledge of the matrix �(s) corresponding to the initial

H∞ control design (i.e. the one with the weights (37) and

(38)) to compute Kc,new (see the algorithm given at the

beginning of Section II).

In order to compute the new controller, consider Figure 1

and note that the change of weight W3,new − W3 is quite

significant. The significance of the weight change can also

be evidenced from the large H∞ norm of the quantity

�(s) computed via (9): ‖�(s)‖∞ = 3003.8 >>> 1.

Consequently, W3,new − W3 is a large weight change. In

this case, in order to compute Kc,new, we have to divide

the large weight adjustment W3,new − W3 into a number of

medium-sized weight changes.

In order to deduce those medium-sized steps, we pro-

ceed as follows. As a first guess, we choose to modify

W3 = 1/30 to W3 = 1/6 (which is the static gain of the

final weight W3,new). We then verify whether the Newton-

Raphson iterative procedure of Section II can be used to

compute the change �� in the matrix � corresponding to

this weight change. This is not the case: the algorithm does

not converge. Consequently, we have to reduce the weight

change. In order to do that, we divide the previous change

in two. This leads to a weight change from W3 = 1/30 to

W3 = 1/10. For that weight change, the Newton-Raphson

algorithm converges and three iterations are sufficient to get

an accurate expression of the matrix � corresponding to

a weight W3 equal to 1/10. We then proceed further by

modifying W3 = 1/10 into W3 = 1/6 which now leads to a

Newton-Raphson procedure delivering, after three iterations,

an accurate expression of the matrix � corresponding to the

weight W3 = 1/6. By continuing this procedure, we finally

observe that the large weight change W3 to W3,new can be

divided into four medium-sized weight changes:

W3,0 = W3 → W3,1 =
1

10
→ W3,2 =

1

6

→ W3,3 =

1
10 s + 1

6( 1
30 s + 1)

→ W3,4 = W3,new

For each of these four steps, only three Newton-Raphson

iterations have been necessary to obtain an accurate ex-

pression of the corresponding matrix �. Of course, such a

division of a large weight change into medium-sized weight

changes can be easily automated.

After these four steps, we obtain an expression for the

transfer function �new corresponding to the H∞ control

design problem with weight W3,new and, consequently, us-

ing (5), an expression for the central controller Kc,new can

be deduced:

Kc,new =
27.8673(s + 0.7208)(s + 4.996)(s + 30)

(s + 25.53)(s + 0.01)(s2 + 25.15s + 307.6)
.

(42)

By comparing (42) and (41), we see that our new method-

ology and the classical methodology give the same controller.
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