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Abstract— Traditionally the false alarm rate in change point
detection problems is measured by the mean time to false
detection (or between false alarms). The large values of the
mean time to false alarm, however, do not generally guarantee
small values of the false alarm probability in a fixed time
interval for any possible location of this interval. In this
paper we consider a multichannel (multi-population) change
point detection problem under a non-traditional false alarm
probability constraint, which is desirable for a variety of
applications. It is shown that in the multichart CUSUM test
this constraint is easy to control. Furthermore, the proposed
multichart CUSUM test is shown to be uniformly asymptotically
optimal when the false alarm probability is small: it minimizes
an average detection delay, or more generally, any positive
moment of the stopping time distribution for any point of
change.

Index Terms— Change-point detection, sequential detection,
multichart CUSUM test, asymptotic optimality, renewal theory,
false alarm probability.

I. INTRODUCTION

The problem of rapid detection of abrupt changes in
stochastic systems and processes is of importance for a
variety of applications such as signal and image processing,
quality control engineering, computer intrusion detection,
chemical or biological warfare agent detection systems, fail-
ure detection in various systems, target detection in surveil-
lance systems, etc. [1], [2], [S], [15], [20], [22], [23], [24].
In all these applications sensors monitoring the environment
take observations that undergo a change in distribution in
response to a change in the environment. The change occurs
at an unknown point in time, and the practitioners’ goal is to
detect it as quickly as possible while avoiding frequent false
alarms.

The classical change-point detection problem deals with
the i.i.d. case where there is a sequence of observations
X1, X, ... that are identically distributed with a probability
density function (pdf) f(x) for n < A and with a pdf g(z)
for n > A\ (with respect to a sigma-finite measure p(z)),
where A, A = 1,2,... is an unknown point of change.
In this paper, we will be interested in the following multi-
population (or “multichannel”) generalization. Suppose there
are N mutually independent populations X?, i = 1,..., N
which, for A < n, are distributed according to the pdfs f;(z).
At an unknown time A a change occurs, and one of the
populations (and only one) changes its statistical properties.
If the change occurs in the j-th population, then for n > A
the pdf of X7 is g;(z). In other words, the joint pdf of
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the vector Y,, = (XL,....XN), X¢ = (Xi,...,X})
conditioned on the hypothesis Hj that the change happens
in the j-th population at the time A = k has the form

| - H%} FiX) TIEL f(XT)
1oy 95(X2),if k < n; (D
H::1 sz\il fi(XD),if k> n.

In the sequel we write P, and E., for the probability
measure and expectation under which there is no change (i.e.
A = 00); while for any A = k < oo, P4, and EJ, are used
to denote the probability measure and expectation when the
change occurs in the j-th population at the point A = k.

A sequential detection procedure is identified with a
random stopping time 7 with respect to the sigma-algebra
Fn=0(X"),ie. {Tr<n}eF,,n=>1l

The customary performance indices of the sequential pro-
cedure 7 are the average run lengths (ARLs) ARLy(7) =
E.7 and ARL](7) = E{7. The value of ARL, measures
the false alarm rate (FAR), and the value of ARL{ the
expected detection delay when the change occurs from the
very beginning. It is desirable to make ARL((7) large
and ARL] () small. These performance characteristics are
popular in the Statistical Process Control community. More
generally, a good detection procedure should guarantee small
values of the average (expected) detection delay ADD; (1) =
Ei(T—k|T >k)forall k >1and j=1,...,N when the
FAR is fixed at a certain level.

However, if the FAR is measured in terms of the mean
time to false alarm, i.e. it is required that ARLo(7) > ~
for some v > 0, then a procedure that minimizes the
average detection delay ADD; (7) for all k£ does not exist
even for N = 1. For N = 1, it is only possible to find
minimax detection procedures that minimize sup;, ADDg/(7)
in the worst case scenario [1], [8], [9], [10], [12], [13].
For N > 1, asymptotically optimal solutions that minimize
sup;, ADD/ (1) as v — oo for all j = 1,..., N have been
found in [16], [22]. More importantly, the requirement of
having large values of the mean time to false alarm E 7
generally does not guarantee small values of the probability
of false alarm (PFA) P (k < 7 < k+1T) in a time interval
of the fixed length T" for all £ > 1 or the small values of
the corresponding conditional PFA P (7 < k+ T|7 = k),
k > 1. Indeed, the condition E,,7 > ~ only guarantees that
for any 7" > 1 there exists some k > 1, generally depending
on 7, such that

p(Y"|H]) =

Po{7—k<TITr 2k} <T/y. 2)
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The inequality (2) can be proved by contradiction as
follows. Without loss of generality we may assume that
P {7 > k} > 0, since otherwise P (7 > k) = 0 for all k
and E.,7 = 0, which contradicts the inequality E..7 > 7.
Assume that

Po(tr2k+T|IT2k)<1-T/y forallk>1. (3)

It suffices to consider only integer 7', T' < . Due to (3)
and the fact that P (7 = i + kT) = Po(7 = i)Poo(7 >
i+ kT|T > i) we have

E,m= ZPOO {r > i}
i=1

T oo

=Y > P {r>i+kT}

K2

Il
—
B
Il
<

Poo {72} (1-T/9)"

e
M8

Il
—
=~
Il
<}

T
= (v/T) ZPOO {r>1i} <9/T,

which contradicts the assumption E 7 > ~.

Therefore, the condition E,,7 > < only guarantees the
existence of some k (that possibly depends on ) for which
Poo(r < kE+T|7 > k) < T/~. This means that, for a given
0 < o < 1, the PFA constraint

supPo (r <k+T|r>2k)<a foracertainT >1 (4)
E>1

is stronger than the ARL constraint E 7 > fy.l

At the same time, for many practical applications, includ-
ing computer intrusion detection and a variety of surveillance
applications such as target detection and tracking, it is
desirable to control the PFA P (7 < k+ T|r > k) for
all £ > 1 at a certain (usually low) level a.

Owing to this fact, in what follows we will be interested
in the class of detection procedures Ar(«) for which the
PFA P (7 < k4 T|r > k) does not exceed a predefined
value o« < 1 for all £ > 1 and some T > 1, i.e. we will
focus on detection procedures that satisfy (4).

While in general the large values of the mean time
to false alarm E,,7 do not guarantee small values of
supys1 Poo(7 < k + T|r > k), for certain detection
procedures the PFA can be easily controlled.

Consider, for example, the following multichart extension
of Page’s CUSUM (cumulative sum) procedure [11]. For ¢ =
1,..., N, define the statistics

n .
) o gi(X;)
Ui(n) = max {1, max. L1 F(X0)

and the Markov stopping times
7:(B;) =inf{n > 1:U;(n) > B;},

Tt is easily verified that (4) implies EcoT > 7 for v = (o, T) =
a 'S T Poo(r ).

where B; > 1 are finite numbers (thresholds). The stopping
time of the multichart CUSUM test is
v(Bi1,...,Bn) =min{r(B;),...,7~v(Bn)}.

It may be shown that under mild conditions [6] the P -
limiting distribution of 7;(B;)/Ex.7;(B;) is geometric:

Blim P {7i(Bi)/EcxTi(B;) > x} = exp(—z), x> 0.
Since Eoo7;(B;) > B; and the stopping times 71, ..., 7y are

independent, it follows that for sufficiently large B;
N
Po(v <k+Tlv>k)<1—exp <TZB;1> .
i=1

Consider the particular case where the thresholds B; = B
do not depend on 4. Then, for small «,

B =B.(N,T)=TN/|log(l — a)| = TN/«

guarantees that v(B,(NN)) belongs to the class Ap(a).

More generally, assume that 7' = T, depends on «
and goes to infinity when a@ — 0. The main theoretical
contribution of this paper is the proof of asymptotic op-
timality (as o — 0) of the proposed multichart CUSUM
test in the sense of minimizing the average detection delay
ADDy (1) = Ej(7 — k|t > k) for all hypotheses Hj, (i.e.
for every change point £ > 1 and 5 = 1,..., N) whenever
T, = O(]log a|). (See Theorem 1 in Section II.)

Note that under the classical ARL constraint ARLg > ~
the asymptotic optimality (as ¥ — co) of this multichart test
has been proven in Tartakovsky [16]. An alternative mixture-
based multichannel Shiryaev-Roberts detection procedure
has been studied in Tartakovsky and Veeravalli [22], also
under the ARL constraint.

II. ASYMPTOTIC OPTIMALITY OF THE
MULTICHART CUSUM TEST FOR LOW PFA

In what follows we will always assume that B; = --- =
By = B, in which case the stopping time of the multichart
CUSUM test can be written in the form

v(B) = inf {n >1: max U;(n) > B}.

1<i<N

Let

1y(i) = [ 10g 58 fi(w)du(z) and
1) = [ tox %51 (w)iuta)

2

denote Kullback-Leibler information numbers and let
Zn (i) = log[gs(XE)/fi(XE)], i = 1,..., N denote the log-
likelihood ratios.
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A. The Probability of False Alarm
We begin with obtaining an approximation for the PFA

P {v(B) < k+T|v(B) > k} for large values of B.
For:=1,..., N, define
n, =inf{n >1:95,(:) <0},
ni =inf{n>1:89,(i) >0},
ni(h) =inf{n >1:5,(i) > h},

h)},

Vi lim E} exp { —

where S, (i) = >, Z4(i), So(i) =

The following lemma shows that asymptotically as B —
oo the distribution of the stopping time v(B) is geometric.

Lemma 1: Let I;(i) and I,(i) be positive and finite.
Assume that Z;(i), « = 1,..., N are nonarithmetic with
respect to P, and Pi. Then, as B — oo,

(Shi(ny —

P {v(B)NCn/B >z} =e*(1+0(1)), x>0, (5
where Oy = N 122 L2, (4).
Proof: By Theorem 3 of Khan [6],
Blim Po {7(B)/B > z} = exp(—Ciz), x>0,

where 0 < C; <
Ci = (1 -~ Ew exp{S, - (1)})?/[1(1) (Boor; )?]-

Since V(B) = minlgigN TI(B) and Tlye--y
pendent, we obtain

1 is the constant given by

TN are inde-

P {v(B)/B >z} = HPOO{TZ

=1

= exp (—xZC) 14 0(1)). (6)
By Wald’s likelihood ratio identity,
(i)} =Pi(n; <o0)=1-Pi(n; =c0)

)/B > x}

Eo exp{5, -

and, by Corollary 8.39 (p.
1/ POO(UZ'_‘— =
form

173) in [14], Exn;, =
00). Thus, C; can be written in the following

Ci = [P1(n; = 00)Poo(nj = 00)]?/Iy(i).  (7)

Using Corollary 8.33 (p. 171) in [14], it is easily shown that
7= (1 Ejexp{S,+ ()})/E{S,+ (). ®
By Wald’s identity and Corollary 8.39 (p. 173) in [14],
S, +(i) = I (i)Ein = I,(i)/Pi(n; = oo) and by
Wald s likelihood ratio 1dent1ty
1-E} exp{Snj ()} = Poo(n;' = 00).

Substituting these expressions into (8) yields

% =Pi(n; = 00)Poo(n; = 00)/I4(i).

Comparing with (7) shows that C; = I,(i)y?. Lemma 1
follows by substituting this last expression for C; into (6).
|

Before we proceed, it is worth noting that the constant
v;, which is related to a limiting overshoot in a one-sided
sequential test 7;(h), can be computed by renewal theory
reasoning [14], [19], [25].

Lemma 1 allows us to obtain the asymptotic approxima-
tion for the PFA: for all k > 1 as B — o©

Po(w(B)<k+Tlv(B)>k)~1—exp{-TNCn/B}.
Therefore, if B = B, (N,T) = TNCyx /a, then for all k > 1
Poo(V(Bo) < k+T|v(By) 2 k) ~a, asa—0.

It is worth remarking that Lai [7] proposed to impose
constraints on the unconditional PFA

supPo{k<7<k+T}.
k>1

However, as Lemma 1 suggests, for large B the P.-
distribution of the stopping time v(B) is approximately
geometric and the unconditional PFA

Poo {k <v(B)<k+T}~e *VTNCy/B,
Therefore, despite the fact that
supPo. {k <v(B) < k+T}~TNCy/B,
k

k> 1.

the unconditional PFA decays exponentially fast when &
increases. This nullifies a seemingly natural constraint on
sup, Poo {k <7 < k+T}.

Assume now that the size of the time window T = T,
where the PFA is confined, is allowed to depend on « and
goes to infinity when o — 0. If the threshold B, (V) is the
root of the equation

eXp{—TaNC_'N/B}Zl—a, 9)
then, as o« — 0,
supPoo {V(B,) < k+ To|v(Ba) = k} ~ «a. (10)
k
Obviously, we may replace (9) with
NCNT,/B = a. (11)

In particular, if T, is explicitly expressed via «, then
Bo(N) = NCNT,/a implies asymptotic equality (10).
However, T, may implicitly depend on « via the threshold
value B. For example, if T, = O(log B, ), then in order to
find B, (N) one has to solve the equation (11).

B. Asymptotic Optimality of the Multichart CUSUM test

Let A(a) = {7 : supy>; Poo(7 < K+ To|7 > k) <
a} denote the class Ar(a) in the case when T, depends
on «. It turns out that the multichart CUSUM procedure
with the threshold B, (V) that obeys the equation (11) is
asymptotically optimal, as & — 0, in the class A(a) when
T, satisfies certain conditions (see (12) below).

To be more specific, let L, = |loga|/ min; I4(:) and
assume that the time interval 7' = T,, depends on « in such
a way that

limigf(Ta/La)>1 but lirr%)[(logTa)/La]:O. (12)
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The following theorem, whose proof is given in the
Appendix, establishes the asymptotic optimality result with
respect to any positive moment of the detection delay
Dy (1) = EL{(T — k)™t = k}, m > 0.

Theorem 1: Let m be a positive, not necessarily integer
number and let T}, satisfy conditions (12). Assume that 0 <
I,(i) < oo and 0 < I;(i) < oo and that the log-likelihood
ratios Z1 (i), 4 = 1,..., N are nonarithmetic. If the threshold
B, (N) is chosen from the equation (11), then for all m > 0,
k>1l,and j=1,...,N,

. j,m j,m | IOg OL| "
J’ ~Y ‘7’ ~Y —_—
relgf(a) Dy (1) ~ DL (v(Ba)) ( LG) ) (13)

as o — 0.

ITT. HIGHER ORDER APPROXIMATIONS FOR THE
AVERAGE DETECTION DELAY

Theorem 1 provides a first-order approximation for mo-
ments of the detection delay for small PFA «. As the proof of
this theorem shows, regardless of the false alarm constraint,
for large threshold values, D} (v(B)) can be upperbounded
as in (24). Furthermore, replacing |log | with log B in the
proof of Lemma 2 and using an almost identical argument
shows that this upper bound is asymptotically sharp, i.e.

D™ (1(B)) ~ [(log B)/L, (i)} as B — oc.

The goal of this section is to improve the first-order ap-
proximations for the expected detection delay DZ’I(V(B)) =
ADD; (v(B)) — to obtain higher-order approximations up
to the vanishing term as B — oo using Nonlinear Renewal
Theory developed by Lai and Siegmund [14] and Woodroofe
[25].

Define S§(i) = 0, S¥(i) = >, Zi(i),

S, (i) = max {o, max Sfl(i)} = Si(i) — min S} (i),

1<i<n 0<I<n

i = lim EooS'n(i),

n—oo

B; = Ei[min 2_)1 20

= lim E1 (S, (1) = h),

where n;(h) = inf {n > 1: S} (i) > h} is the one-sided test.

Due to space limitations we are not able to present a
complete, mathematically rigorous proof and, for this reason,
give only an intuitive argument, which can be regarded as a
proof sketch. The complete detailed proof will be presented
elsewhere.

Note first that it may be expected that, for large thresh-
old values, the probability Pi {v(B) = 7;(B)|v(B) > k} is
close to 1, so that, as B — oo,

ADDj,(v(B)) = By {7:(B) — k|7:(B) > k} + o(1). (14)

Therefore, it suffices to evaluate E} {7;(B) — k|r;(B) > k}
for large B. To this end, we rewrite the stopping time 7;(B)
in the form of a random walk crossing a threshold plus a
nonlinear term that is slowly changing in the sense defined in
[14], [25]. This allows us to apply nonlinear renewal theory.

Specifically, observe that 7;(B) can be written in the form
7;(b) = inf {n >1:8,(i) > b} , b=logB.
A simple algebra shows that
Sn(i) = S-1(i) + S3(0) = Bk, n),
where

Bi(k,n) = min {0, min S} (i) —

k<i<n

min S} (z’)} :

1<I<k—1

Further,
SE (i) = b — Se—1(i) + Bi(k, ) + x:(b),

where x;(b) = S, (i) — b is the excess of the process S, ()
over the level b at time 7;. Observing that the sequence
{S%(i)}n>r is a random walk with mean E.SF(i) =
I,(t)(n — k + 1), taking the conditional expectations and
applying Wald’s identity, we obtain

I()EL(r; —k + 17 > k) = b — B [Sk_1(i)|7i > k]
+E[Bi(k, )| = k] + Ej (xolmi > k).
The crucial observation is that the sequence {5;(k, n) }n>k
is slowly changing and, moreover, converges P -a.s. as n —
oo to the random variable

Bi(k) = min {O,Iln;’? S}(i) — min Sll(i)}

1<I<k—1
with finite expectation Ei 3;(k) = 3; (k).

An important consequence of the slowly changing prop-
erty is that, under mild conditions, the limiting distribution of
the excess of a random walk over a fixed threshold does not
change by the addition of a slowly changing nonlinear term
(see Theorem 4.1 of Woodroofe [25]). Since Pz(n > k)=
Poo(r; 2 k) — Las b — oo, it follows that E} [Sy_1(i)|7; >
K — BoolSi1 ()], BilBi(k,m)lm > K — Bi(k), and
E, (xs|7i > k) — »;. Therefore, we may expect that for
a large b,

ADDL(r (1) = 5 (b~ BncSics (1) + A1 (8) +5)

1,(i

—1+4o0(1). (15)

It is difficult to evaluate E.,Sj_1(i) and ;(k) for arbitrary
values of k. This task seems feasible only for k¥ = 1 and
large k (k — oo). Indeed, if &k = 1, then So(i) = 0 and
Bi(1) = Ef min, > S:(i); while when k — oo, B;(k) — 0
and E..S),_1 (1) — w;, where p; is the mean of the stationary
distribution of the Markov process S, ().

The exact result is given in the following theorem.

Theorem 2: Assume that E¢|Z;(i)|? < oo and that Z (i)

are Pﬁ—nonarithmetic, i=1,...,N. Then, for k =1,
ADD (v(b)) = 1, (0) (b + 2 + 5;)
(16)
—140(1)
and, as k£ — oo,
i _ =1y
ADD}(v()) = I, (i) (b + s — pu:) (17

—140(1) asb— co.
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Further mathematical details will be presented somewhere
else. Here we only remark that crucial points are to prove
(14) for all £ > 1 and (17) for large k. The proof of (15) for
k =1 and exponential families is given by Dragalin [3]. A
generalization for an arbitrary distribution with finite second
moment requires only proving that, for every 0 < ¢ < 1,

Tim bPS {73(b) < (1 - £)b/I, (i)} = 0.

For this purpose, the argument in the proof of Theorem 5 of
Tartakovsky and Veeravalli [21] can be used.

We complete this section by giving useful formulas for the
constants [3;, p;, and »;. We write Y~ = —min(0,Y) and
Y+ =max(0,Y). Under P, the distribution of the Markov
process S, () converges to the stationary distribution, which
is equal to the P -distribution of maxy>q Sk (7). Therefore,
i = Eoo(maxg>0 Sk (7). Spitzer’s formula and Borovkov’s
identity apply to yield

=> 1 ' EwSi()
n=1

Since 3; = —Ei{[max,>0{—S.(i)}] and E[-S,(i)]* =
E[—-5,(i) s, i)<oy] = ES;, (i), similar to (18)

- Z n"'ELS; (i)
n=1

The constant s¢; is the subject of renewal theory. The
following formula is particularly useful:

Zn*lEgs

IV. CONCLUSIONS

In contrast to the conventional FAR measure E_ 7, in this
paper we propose to measure FAR in terms of the conditional
probability of false alarm sup; s, Poo {7 <k +T|7 > k},
which is shown to be a stronger requirement than E 7 > .
It is shown that in the quickest multipopulation change
detection problem the multichart CUSUM test easily meets
the PFA constraint. Moreover, this detection test is asymp-
totically optimal in the first-order sense with respect to any
positive moment of the detection delay under fairly weak
conditions when the PFA is small. We also derived higher
order approximations for the average detection delay using
nonlinear theory reasoning. These approximations involve
several constants that are subject of renewal theory and can
be easily computed for specific data models.

Further research is needed to verify accuracy of first-order
and higher-order approximations for a number of examples
using Monte Carlo simulations.

(18)

sw; = ELZ2(1) /2EL Z, (i

APPENDIX

The proof of (13) is performed in two steps. The first step
is to obtain an asymptotic lower bound for moments of the
detection delay inf ¢ () D7, () for any procedure from
the class A(a). This is performed in the following lemma
whose proof is based on the Chebyshev inequality and the

change-of-measure reasoning similar to that used in [4], [7],
[18], [21].

Lemma 2: Let T, satisfy conditions (12). If 0 < I,(i) <
0,%=1,...,N, then forall m >0and k > 1

inf D{;m(T)>< >m(1+0(1)), (19)

TEA(a)

| log o
1,(7)

as a — 0. ‘
Proof: Write L}, = |loga|/I4(i). By Chebyshev’s
inequality, for any 0 < e < 1, m > 0, and any 7 € A(«)

DI™(1) = (eLi)"PL{r —k >eLli|r > k}.  (20)

Therefore, in order to prove (19) it suffices to show that for
an arbitrarily small € and all £ > 1, as a — 0,

sup sup PJ {r<k+QQ-e)Lilr >k} —0

reA(a) k=1

2n

whenever 0 < Iy(j) < oo, j=1,...,N.
Write SF(i) = SO, Zi(i). Changlng the measure, we
obtain that for any L > 1, b > 0 and any stopping time 7

. .
B (s 1)
_ e

> E; {ﬂ{r<k+L,s¢(j)<b}6 S| > k}

SEG) <ol > k]

Po(t—k < L|T 2 k)

max
k<n<k+

P {T <k+1L,
> e_b{Pi(T <k+Llr>k)
SEG) > blr > k) }.

Since the event {7 > k} belongs to the sigma-field Fj_1
and the event {maxy<,<riz S¥(j) > b} does not depend
on Y;_1, it follows that

SE() > blr > k)

- Py, ( max
k<n<k+L

Pi( max
k<n<k+L

max

=P <k<n<k+L Sld) > b>'

Furthermore, by the i.i.d. property,

J ko> P/

Pl cmax, , S50) 2 8) = PA(max, 3200 > )
and, hence,
supPi(T <k+Llt>k) < ebsupPoo(T <k+Llt>k)

k

( max ZZZ )

Putting L = L(e, v, j) = (1—¢) LI, = (1—¢)|log a|/I,(5)

and b= (1+¢)I,(j)L(e,a,j) = (1 —£?)|log |, we obtain

sup P {r<k+Q-e)Lir >k} <
k

< e(1==")lloga supPoo {r<k+1-e)Li|r >k}

+ P’ max Z(i
! {1<n< 1—¢) LJ Z

“l=1

(1 —£?)|log o

(22)
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Since 0 < I4(j) < oo, by the strong law of large numbers
regardless of the choice of 7, as v — 0,
P, S0

max — 0.

1<ng(1— a)LJ
Also, by (12),

e==Ilosal gqup sup P, {r<k+@Q-e)Li|r>
TEA () k21

2 2
< 6(175 )|loga\a = af

(1 —¢e?)|logal

k} <

b

since T, > (1 — )L?, for all sufficiently small c.

Thus, both terms on the right-hand side of (22) go to zero
uniformly over 7 € A(«), which means that (21) follows.
The proof of (19) is complete. [ ]

The second step is to obtain an upper bound for
D7™(v(B)) and to show that this bound is asymptotically
the same as the lower bound when B = B, (N).

To this end, introduce the sequence of one-sided stopping
times

nl(B) = )>logB}, k=1,2,...
It is easily seen that logU;(n) > SE(j) for any n > k.
Thus, v(B) < 7j(B) < n,(B) for any k > 1. Moreover,
v(B) =k < nj(B) — k on {v(B) > k}. Since {v(B) >
k} € Fi—1 and 7j,(B) does not depend on Fj,_, it follows

D} (v(B)) < BY[(nl(B) — k)" |v(B) > K]
— E]((B) - k)"
Since the random variables Z,(j), n =1,2,... are iid.,

the distribution of 7 (B) — k + 1 under P, is the same as
the P -distribution of the stopping time

n>1: ZZ[(]) >
=1

Therefore, using the previous inequality we obtain that
D™ (v(B)) < Ej(nl(B) —1)™ forallk>1, (23)

which can be used to obtain the desired upper bound.
Since I,(j) is assumed positive and finite, Theorem 4.1
of Dragalin, Tartakovsky, and Veeravalli [4] applies to yield,
for all positive m,
log B

E%mmw~(%w

Using this last asymptotic relation along with (23), we obtain
the asymptotic upper bound

; log B
D} w(m) < (75

g I, (4)
Finally, note that if B, (V) obeys the equation (11) with

T, that satisfies conditions (12), then log B, (N) ~ |log«|
as o — 0 and, therefore,
|log

D™ (v(Ba(N))) < ( 70 ) (1+0(1)) as a—0.

Comparing this asymptotic upper bound with the lower
bound (19) completes the proof of (13).

min {n >k : Sk(j

7! (B) = min log B

) as B — oo.

)m (14+0(1)) as B—oco. (24)
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