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A Lyapunov-Krasovskii Methodology
for ISS of Time-Delay Systems

P. Pepe

Abstract— This paper presents a Lyapunov-Krasovskii
methodology for studying the input-to-state stability of non-
linear time-delay systems. The methodology is feasible by the
use, for instance, of the M5 norm (that is the norm induced
by the inner product in the Hilbert space known in literature
as Mo, or Z) in the space of continuous functions, and by
the use of functionals which have a suitable (simple) integral
term with strictly increasing kernel. The proposed results can
be seen as a preliminary step towards extending some existing
stability criteria to nonlinear time-delay systems with distur-
bance inputs.

Index Terms: Input-to-State Stability (ISS), Functional Dif-
ferential Equations, Nonlinear Time-Delay Systems, Lyapunov-
Krasovskii Theorem.

I.  INTRODUCTION

In the literature of time-delay systems, Lyapunov-
Krasovskii theorems have played a role of paramount
importance for both the input-output stability (which
considers zero-state response) and the asymptotic sta-
bility (which considers zero-input response) (see, e.g.,
Proposition 8.3, pp. 288 in [7]).

In the seminal paper [19], the notion of input-to-
state stability [16] has been generalized to nonlinear
time delay systems. Sufficient conditions are stated in
the setting of Lyapunov-Razumikhin theorems to yield
the input-to-state stability of nonlinear time delay sys-
tems. It is well known, as far as the stability of time de-
lay systems is concerned, that the Razumikhin method
can be considered as a particular case of the method of
Lyapunov-Krasovskii functionals (see Section 4.8, pp.
254 in [11]). The primary objective of our paper is
to address input-to-state stability from a perspective
of Lyapunov-Krasovskii functionals for time-delay sys-
tems.

As seen from the tutorial paper [18], the notion of
input-to-state stability has had a great impact on the
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analysis and synthesis of nonlinear delayless systems.
Following the seminal paper [19], it is very natural to
believe that this concept will play an important role in
the case of controlling nonlinear time-delay systems too.
The motivation behind our work is to further extend the
ISS theory to nonlinear time-delay systems.

In this paper, we propose a general tool, based
on Lyapunov functionals, for checking stability prop-
erties of nonlinear time-delay systems. In particular,
we give Lyapunov-Krasovskii theorems for the input-to-
state stability of time-delay systems. The methodology
is feasible by the use, for instance, of the My norm (that
is the norm induced by the inner product in the Hilbert
space known in literature as Ms, or Z, see [2,4,6]) in the
space of continuous functions, and by the use of func-
tionals which have a suitable (simple) integral term with
strictly increasing kernel.

II. PRELIMINARIES

Let us consider the following nonlinear time-delay sys-
tem
a.e.

@(t) = f(we,u(t)), : (1)

(1) = &o(7),

where z(t) € R™, u(t) € R™ is the input function, for
t >0 :[-A,00 = R" is the standard function (see
Section 2.1, pp. 38 in [8]) given by a:(7) = z(t + 7),
A is the maximum involved delay, f is a function from
C([-A,0]; R™) x R™ to R™, C([—A, 0], R™) denotes the
set of the continuous functions which are defined on
[-A,0] and take values in R™, & € C(]—A,0]; R™).
Without loss of generality we suppose that f(0,0) =0,
thus ensuring that z(¢) = 0 is the trivial solution for the
unforced system @(t) = f(x¢,0). Multiple discrete non
commensurate as well as distributed delays can appear
in (1).

t>0,
TE [7A70]7

The symbol | - | stands for the Euclidean norm
of a real vector, or the induced Euclidean norm of
a matrix. We indicate the essential supremum norm
of an essentially bounded function with the symbol
|| - lloo- A function u is said to be essentially bounded
if esssup,~q |u(t)| < oo. For given times 0 < T} < Ty,
we indicate with urry, ) ¢ 10,+00) — R™ the func-
tion given by up, 1,)(t) = u(t) for all t € [Ty,T>) and
= 0 elsewhere. An input u is said to be locally essen-
tially bounded if, for any T > 0, ujo ) is essentially
bounded. A function w : [0,b) — R, 0 < b < +o0,
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is said to be locally absolutely continuous if it is ab-
solutely continuous in any interval [0,¢], 0 < ¢ < b.
Moreover, we indicate with the symbol || - ||as, the well
known norm (see [2,4,6]) induced by the inner product
in the Hilbert space My = R™ x La([—A,0]; R™), given

bY7 for Y = |:::ZO:| ) with Yo € Rn: Y1 € LQ([_A,OLRW'),
1

1Y las, = (yoT b+ /'OA ﬁ(ﬂyl(f)(sz (2)

Lo([—A,0]; R™) is the space of square Lebesgue inte-
grable functions from [—A,0] to R". Again, we in-
dicate with the same symbol || - ||z, the norm in the
space of continuous functions C([—A, 0], R™), given by

I6la, = (67(0)6(0) + [° 67 (D)é(r)dr)".  Recall
that a function v : RT — RT is: of class K if it is
zero at zero, continuous and strictly increasing; of class
K if it is of class K and it is unbounded; of class L
if it decreases to zero as its argument tends to +o0o. A
function 8 : RT x Rt — RT is of class KL if it is of
class K in the first argument and is of class L in the
second argument. A function n: RT — RT is positive
definite if it is zero at zero and positive elsewhere.

With the symbol || - ||, we indicate any norm in
C([-A, 0]; R™) such that, for some positive reals V4, ¥q,
the following inequalities hold

Yal$(0)] < [19]la < Falldlloc, Yo € C([=A, 0 R") (3)

For example, the || - ||a, norm satisfies the following
inequalities

16(0)] < l|6llar, < (14+4)2 [, Vo € C([*A,O];R(";
4
and, therefore, it is a || - ||, norm.

As usual, by ISS we mean both input-to-state stable
and input-to-state stability.

The following standard hypothesis (see [8,11]) is as-
sumed throughout the paper:

Hpy) The function f : C([-A,0]; R™) x R™ — R" and

the input function u : RT™ — R™ are such that the
function

g:C([~A,0]; R") x Rt — R" (5)

given, for (¢,t) € C([-A,0]; R*) x R*, by g(¢,t) =
f(@,u(t)), is bounded on any bounded set U €
C([-A,0); R™) x RT (the set C([-A,0]; R™) being
endowed with the supremum norm), and satisfies the
Carathéodory conditions in C([—A,0); R") x RT. e

Remark 1: Asis well known, from the hypothesis Hpg
it follows that the system (1) admits a unique solution
on a maximal interval [0,0), 0 < b < +o0, which is
(componentwise) locally absolutely continuous and, if
b < 400, is unbounded in [0,b) (see Section 2.6, pp. 58
in [8], and Sections 2.2 and 2.4, pp. 96, 100 in [11]). e

III.  MAIN RESULTS

In the following, the continuity of a functional V' :
C([-A,0; R™) — RT is intended with respect to the
supremum norm. Given a continuous functional V :
C([-A,0]; R*) — RT, the upper right-hand derivative
DTV of the functional V' is given by (see [3], Definition
4.2.4, pp. 258)

DV (6,0) =limsup = (V(6}) - V(8),  (6)
h—0+

where ¢} € (C(]—A,0]; R") is given by

¢(s+h),

. B s € [-A,—h],
9h(s) = { 6(0) + f(6,v)(h +5),

sel-no, @

The functional DTV is generalized because it can take
infinite values (see [11], pp. 205). Throughout the pa-
per, the following hypothesis is assumed for the func-
tional V' involved in the Lyapunov-Krasovskii method-
ology presented below:

Hpy) the functional V : C([—A,0]; R*) — R™ is contin-

uous and is such that, for any (componentwise) lo-
cally absolutely continuous solution x(t) of system
(1) over a mazimal interval [0,b), 0 < b < +o0, the
following facts hold for the function w : [0,b) — R,
given by w(t) = V(xy):

1) the function w is locally absolutely continuous in

[0,);

2) the upper right-hand derivative of the function w,
DT w(t) = limsupj,_ o+ M, is such that, for
almost all t € [0,b),

DT w(t) = DYV (x, u(t)) (8

Remark 2: As is well known, the absolute continu-
ity property of w assures that, when the upper right-
hand derivative DTw < 0 almost everywhere, then w is
non-increasing, and the condition (8) is fundamental for
practical use because DTV is calculated without know-
ing the solution, by means of (6), (7). If the function f
and the input u were continuous (this is clearly not the
case of this paper, see the hypothesis Hpy), then: 1) the
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absolute continuity property of w would not be needed,
since w continuous and DTw < 0 everywhere yields w
to be non-increasing (see [15], Theorem 2.3, App. I);
2) the condition (8) would be satisfied by locally Lip-
schitz functionals (Driver 1962, see [3], Theorem 4.2.3,
pp- 258, and, for the delayless case, Yoshizawa 1966,
see [15], Theorem 4.3, App. I). Note that, the absolute
continuity of w is not guaranteed by the local Lipschitz
property of the functional V. For example, consider the
globally Lipschitz functional V' given by V(¢) = |¢(7)|,
with —A < 7 < 0, and take into account that the initial
condition &y in general is not absolutely continuous. e

As said before, the definition of input-to-state sta-
bility for time-delay systems has been given in [19].
For reader’s convenience, and to make our work self-
contained, we reproduce the definition of ISS for time
delay systems parallel to the one given for nonlinear de-
layless systems in [16].

Definition 3: The system (1) is said to be input-to-
state stable (ISS) if there exist a KL function 8 and
a K function v such that, for any initial state & and
any measurable, locally essentially bounded input u, the
solution exists for allt > 0 and furthermore it satisfies

()] < B (€olloos ) + 7 (Ilugo,pllec) (9)

It is evident that the trivial solution of a time delay
system which is input-to-state stable is globally asymp-
totically stable. In the linear case, the converse holds
too. Let us consider the following linear time-delay sys-
tem (time invariant case of system 1.31, pp. 16 in [7],
or system 5.15, pp. 547, in [11])

z(t) = Aox(t) JrZAx
/ Ap1(8)x(t + 0)dd + Bu(t), t>0, a.e.,
(1) = &ol(7), €[-4A,0],
(10)
where B € R"™ A; € R"™",j = 0,1,...,p, Aga

is a m X m matrix of piecewise continuous functions
which are defined in [—A,0] and take values in R,
0 <Ay <Ay<--- <A, = A are the arbitrary (non-
commensurate) time delays, & € C([—A,0]; R"), the
input v is measurable, locally essentially bounded.

Proposition 4: The linear time-delay system (10) is
input-to-state stable if and only if the trivial solution of
the unforced system is asymptotically stable.

Proof. By a steps procedure with sufficiently small
step, it follows that there exist two positive reals L and
M such that, in [0, A], for any initial state £ and for
any input u, the following inequality holds

@) < Lligolloo + Ml[ujo,p)lloc (11)

Being xa absolutely continuous and being its derivative
square Lebesgue integrable, by Theorem 2.1 in [2], the
solution of system (10) can be expressed, for t > A, by

X(t) :S(t—A)X(A)+/A S(t—7) {B%(T)] dr, (12)

where X (t) = Itx(o)
¢

€ My, and S(t) : My — My is

a Cp-semigroup. If the trivial solution of the unforced
system is asymptotically stable, then there exist two
positive constants M and w such that (see Theorem 2.3
in [6])

IS < Me™*,  t>0, (13)
S(t)Y
where [[S()]] = supyer, SPRR.

The following inequalities hold, for ¢t > A,
lz(@)] < [ X(@)llar =

S(t - A)X(A) + /A S(t ) {Bﬁ@] ar| <

t
[15( = )X (A)Iar, + /A 1S =)l Bllfu(r)ldr,

(14)

Therefore, by using the inequality (13), by || X (A)|a, =

lzalla, < (14 A)Z||lzallso, and taking into account

(11), an inequality of the form (9) for the system (10)
can be derived. .

Theorem 5: If there exist a functional V
C([-A,0]; R*) — RT, functions ay, as of class Ko,
and functions as, p of class K such that:
Hy) an([6(0)]) < V() < aa((|dlla), ¥V ¢ € C([-A, 0 R");
Hy) D*V (¢, u) < —as([[¢lla),  VéeC(-A,0R"),

VueR": |¢lla = p(lul);
then, the system (1) is input-to-state stable with v =
ozl_l o g 0.

Proof. The lines of a part of the proof of the main
theorem in [16] will be followed here. Let the input u
be such that esssup,~ |u(t)] = v, for a suitable v €
R*. Let ¢ = as(p(v)) and introduce the set S = {¢ €
C(I=A,01 R") = V(E) < c.

Claim 1: If the solution x(¢) is such that, for a certain
time to > 0, x4, € 9, then x; € S for t > 1.

Proof: see [16] for details. It suffices to note that, be-
cause of the hypothesis Hp;, the locally absolutely con-
tinuous function w(t) = V(x;) is non-increasing when
DTV (x4, u(t)) is non-positive almost everywhere. When
xy € S, necessarily |x(t)| < y(v), with v = a7 o ay 0 p.

Claim 2: There exists a KL function 3 such that, for
each &, and each bounded control u, there exists a time
instant T > 0 (possibly T = +00) such that
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D) Jz(t)] < B(ll€olloe, ) V £ < T
2) Ty € SVt 2 T.

Proof: see [16]. Just take into account Lemma 4.4
in [12], inequalities (3) and note that, for almost all ¢ in
some interval [0,T") (where V (z;) > ¢), by the inequality
in Hs, the following inequality holds, for w(t) = V(z,),

DTw(t) < —azoa; (w(t)), ae. in [0,T), (15)

since, by the hypothesis Hp;,

DY w(t) = DTV (wy, u(t)) < —as([leella) <

—azoa; ' (V(x))) = —azoay (w(t)), ae. in [0,T)
(16)

Note that the inequality (15) guarantees that the
locally absolutely continuous function w(t) = V(z;) is
non-increasing in [0,7) and this, together with Claim 1,
guarantees that the solution z(t) is defined for all t > 0
(see Remark 1). Causality arguments can be used for
locally essentially bounded inputs. .

Remark 6: Theorem 5 turns out to be useful for
studying a large class of nonlinear systems, when us-
ing the M5 norm and Lyapunov-Krasovskii functionals
which have one integral with strictly increasing kernel.
Indeed, by the strictly increasing kernel, it is possible to
generate a negative integral term, that is needed for sat-
isfying the inequalities which involve the input. That is,
such a negative integral term is very useful in order to
satisfy DYV (¢, u) < —as(||¢|lrs,), whenever |u] is up-
per bounded by a K function of the M> norm of ¢. The
norms used in the inequalities involved in the Lyapunov-
Krasovskii theorem developed in this paper are different
from the ones involved in the Lyapunov-Krasovskii the-
orem for asymptotic stability. It is the first time that
sufficient Lyapunov-Krasovskii conditions, with appro-
priate norms, are explicitly proposed for ISS of a large
class of time-delay systems. °

IV. ILLUSTRATIVE EXAMPLE

Let us consider the following example, taken from
[5];

__ xa(d)
14 22(t — A)

do(t) =1 ()T (t — A) + ult) + w(t),

I’l(t) +0’.’L’2(t—A)

(17)

where z(t) = {Il(t)} € R?, u(t) € R is the con-

()
trol input, w(t) € R is a measurable, locally essentially
bounded disturbance, o is a constant parameter, A > 0

is an arbitrarily large, known time-delay. The initial
condition is given by a function & € C([—A,0]; R™).

In [5] the case with no disturbance is studied: it is
shown that, if the parameter is such that |o| < 1, the
system (17) is globally stabilized by the following non-
linear control law, which is a continuous time difference
equation,

u(t) = —z1 (a2t — A) + (L+ 27 (t — A)):
il (t)
. <kT H%?(tt,%) +oxo(t — A)}
—owi(t — A)za(t — 28)+
2xo(t)x1(t — A) To(t — A)
(1 im?(t —A))? (1 +jc%(t —oay tomlt- 2A)>>
—o(l+ai(t—A))u(t—A)

(18)
where k7 is a suitable row vector such that the matrix
Ap — Bgk” has prescribed eigenvalues in the left-half
complex plane, Ag, Bp being a Brunovskii couple (see
[9], pp. 153, 231). Note that, because of its dependence
on u(t — A) and z(t — 2A), such a control law can be
applied only for ¢t > A. If; as in [5], the input is chosen
equal to zero in [0,A), then the solution of the sys-
tem (17) exists in [0, A] and, by the Bellman-Gronwall
Lemma, it satisfies the inequality

ja(t)] < eIl (14 |o|A) € ]lo + Allwo,plloo) -
t €0, A

(19)
When |o| > 1, the internal dynamics of the closed loop
system (17)(18) is unstable so that the control law (18)
does not work (see [5] for details). In this paper we shall
consider non-negative values of the parameter o. By the
methodology here presented, we shall prove that, when
a measurable, locally essentially bounded disturbance w
adds to the control law, the closed-loop system is ISS
with respect to such disturbance if ¢ = 0, while the
closed-loop system can become unstable if 0 < o < 1.

As in [5], define, for ¢ > 0,
=20 [raes o

1+§§f((2m +ora(t—A)
so that the control law (18) yields the following equa-
tion, for t > A,

| e

2(t) = Hz(t) +

R N

where H = Ap — BgkT is a Hurwitz matrix in canonical
controllable form, with arbitrarily preassigned eigenval-
ues up to a suitable choice of gain k7. Let us study,
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by the methodology of this paper, the ISS of system
(21) with respect to a measurable, locally essentially
bounded disturbance d(t) € R?,t > A (which in (21)
takes the place of [w(t) w(t — A)]T). The hypothesis
Hpy is satisfied. Let us apply Theorem 5 with the My
norm and the following Lyapunov-Krasovskii functional
(with strictly increasing kernel) which satisfies the hy-
pothesis Hpq

V(9) =6 (0)P(0)+
0 -7 T+ A
[ 0 (Tt TR0 el

(22)
where ¢ = {zj e C([-A,0]; R"), P, Q1, Q2 are sym-

metric positive definite matrices, Q2 > Q1.

We obtain, for ||@|la, > pld|, where p is a suitable
positive real,

D*V(¢,d)
0
S

_ ¢T

A)Quo(~A)
/ o7(7)(Qz — Qu)d(r)dr

< ¢"(0) (H'P + PH + Q2+
0

HPL |a|]51>¢(0’+
0 0 1

ik M;

/ & (1)o(r)dr — o7 (-

N TT 2 — W1 T)aT
A/_Aqs()(cz Quo(r)d

= ¢T(0)(HTP + PH)¢(0)+

2] d+ +67 (0)Q29(0)

(23)

+

A)Q1o(—A)—

Let us choose @1 = I, Q2 = 2I (I is the identity matrix).
Let us choose P such that

HTP + PH = 41 (24)
and let p be sufficiently large such that || P {(1) |g|} % <
min {1, %} Then we obtain

D*V(¢,d) < —¢"(0)$(0)
/ (OO — 6T (~AQ(-A) S g
~min {1, 3—A} 19132,

Thus, by Theorem 5, it is proved that system (21)
is ISS with respect to the disturbance d(t), that is, for

each o € (—1,1) there exist a K L function 3, and a K
function 7, such that, for t > A,

|Z(t)| < ﬁa(”ZAHomt - A) + ’70(||d[A,t)HOO)7 (26)
where, as usual, za is the function in C([—A,0]; R™)
given by za(7) = z(A + 7) (take into account (19) and
(20) in [0, A]). In the case o = 0, there is no dependence
on w(t—A) in (21) and therefore, for d(t) = [w(t) 0]7,
the following inequality holds for ¢ > A, by the KL
function Gy and the K function -y,

12()] < Bo(llzallec, t

—A)+v(lwanlle)  (27)

Let us now go back to the variables z. From (20),
we obtain, for t > A,

z(t) =

Z1 (t)

o(1+ 22(t — A))aa(t — A)
(28)

From the equation in the second variable, xo(t), it
follows that, if o > 0, the closed-loop system (17),(18) in
general cannot satisfy the inequality (9). For instance,
assume o > 0 and let the gain k7 in the control law (18)
be chosen such that the matrix H has real asymptoti-
cally stable eigenvalues Ay < A1 < 0 (which is the case
of the simulated example, without disturbance, in [5]).
Choose the disturbance to be constant and equal to a
positive real @ in [0, +00). From (21), (19) and (20) it
follows that, for any initial conditions &y, there exist a
positive real p > 1, a positive real w and a positive real
t > A, such that, for all ¢ > ¢,

)1+ 21— A)) -

c(1+23(t—A)>p (29)

and the scalar continuous time difference equation in the
variable z5(t) in (28), evaluated for ¢ > ¢, with initial
conditions in [t — A, ], is unstable.

While, if o = 0, from (28) it follows that

A)?) <
t>A

[z(®)] < 28]+ |2(8)]( +2|Z(t* (30)
2z(B)[(1 + [2(t = A7),

and, taking into account (27) and that |z(¢)] <
|z(¢)| Vt > 0, it follows that

[2(8)] < 2(1+ [lzall)-
: (ﬁO(H«TAHoo,t - A) + '70(|‘w[A,t)||OO)) , te [AvQA)’

(31)
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lz(t)] <2(1+ 285 (||zallc, t — 2A) 4+ 298 (lwia.p lso))-
- (Bo(llzalloo, t = A) +v0(lwia,p o)) »

t €24, 400)
(32)

From (31),(32) it follows that the closed-loop system
(17),(18), t > A, with initial conditions equal to za, is
ISS with respect to wia 4o0)-

From (19), (31) and (32), by standard properties of
K and KL functions, it follows for system (17) with
o =0, with input u equal to zero in [0, A) and given by
the control law (18) in [A, +00), that there exist a KL
function 8 and a K function vy such that, for all ¢ > 0,
the following inequality holds

()] < BlIolloos ) +v(llwio,n llo)- (33)
Remark 7: Note that, when ¢ = 0, the control law
(18) is no more a continuous time difference equation
in the variable u(t) (the term u(t — A) disappears in
(18)), therefore in this case the problem of instability of
the controller (see [5]) does not occur. While, if o > 0,
the controller can well be unstable. Indeed, it would
be sufficient that o(1 + 22(t — A)) > p > 1 for all ¢
sufficiently large. °
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