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Abstract— In this paper, the development of a hierarchical
control, path planning, and obstacle avoidance system for au-
tonomous operation of Unmanned Sea Surface Vehicles (USSVs)
in uncertain cluttered environments (e.g., littoral environments)
is described. The system is designed with a modular structure
incorporating a robust inner-loop controller and a hierarchi-
cal combination of wide-area, intermediate-area, and local-
area planning and obstacle avoidance algorithms. The perfor-
mance of the proposed system has been demonstrated through
Hardware-In-The-Loop (HITL) and experimental tests. The
HITL simulation platform incorporates detailed dynamics of
the USSV including hydrodynamic effects as well as emulation
of sensors and instrumentation onboard the USSV including
Radar. The HITL platform can simultaneously simulate mul-
tiple USSVs and passive obstacles and provides the computer
which runs the controls and obstacle avoidance algorithms with
the exact environment which it sees when operating in the
experimental USSV testbed.

I. INTRODUCTION
Unmanned vehicles and mobile robots have the potential

to play a vital role in a wide variety of application scenarios
and offer an effective solution for automating routine, repeti-
tive, or dangerous tasks. The efficacy and applicability of un-
manned vehicles is greatly enhanced by increasing the level
of autonomy of the mobile agent. In particular, a key technol-
ogy for unmanned vehicles is a robust perception and obsta-
cle avoidance system for operation in complex uncertain and
cluttered environments such as littoral environments. In this
paper, we describe the design and implementation of a hi-
erarchical Maritime Seaway Navigation System (MSNS) for
control, path planning, and obstacle avoidance for Unmanned
Sea Surface Vehicles (USSVs). The various civilian and
military applications of USSVs are well-recognized and their
control and navigation problems have been studied in the
literature [1]–[12]. The MSNS is designed with a modular
architecture incorporating two core subsystems: (a) USSV-
NAV, a high-performance robust tracking and stabilization
control system; (b) USSV-CAS, a computationally efficient
real-time Collision Avoidance System (CAS) comprised of
a hierarchical combination of path planning and obstacle
avoidance algorithms. The USSV-NAV design utilizes a
robust nonlinear dynamic controller [8] based on a six degree
of freedom (6DOF) nonlinear dynamic model for USSVs
taking into consideration disturbances due to waves, wind,
and ocean currents and addresses multiple control objectives
including trajectory/waypoint tracking and stabilization. The
USSV-CAS, which provides a path planning and obstacle
avoidance system (OAS) is designed with a hierarchical
architecture incorporating graph-search based wide area and
intermediate area planners and a GODZILA-based local
area planner [15] to yield computationally efficient and
robust planning and obstacle avoidance in complex uncertain
cluttered environments.

A high-fidelity Hardware-In-The-Loop (HITL) simulation
platform has been developed to evaluate and demonstrate the
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MSNS performance. The MSNS has also been demonstrated
on experimental USSV testbeds. The development of the
HITL platform for testing of the obstacle avoidance system
is based on the 6DOF USSV dynamic model in [7] and
the controls-oriented HITL testbed in [8], [9] which offers
an emulation of the instrumentation onboard the USSV
including sensors and actuators and the interface to these
hardware components through a Controller Area Network
(CAN) bus. The HITL simulation platform described in
this paper additionally incorporates a detailed model of a
Radar system and its interface characteristics to provide the
computer which runs the controls and obstacle avoidance
software with the exact environment which it sees when
operating in the experimental USSV testbed.

This paper is organized as follows. The architecture of the
hierarchical MSNS and its principal constituent components
are described in Section II. The experimental setup and the
HITL simulation platform are described in Section III. HITL
simulation and experimental studies of the proposed hierar-
chical obstacle avoidance system are discussed in Section IV.

II. HIERARCHICAL CONTROL AND OBSTACLE
AVOIDANCE SYSTEM

The MSNS addresses both inner-loop control and obstacle
avoidance and has the overall architecture illustrated in
Figures 1 and 2. The sensor data collected during opera-
tion are processed through a suite of algorithms including
Kalman filtering, inertial navigation, and Radar data process-
ing to estimate both the translational and rotational states
of the USSV and the obstacle geometry of the operating
environment. A multi-resolution hierarchical approach is
utilized in MSNS for robust, reliable, and computationally
efficient path planning and obstacle avoidance over wide
geographical areas and cluttered environments. The core of
the MSNS includes the following components interconnected
in a hierarchical structure as shown in Figure 2:
• A collision avoidance system (USSV-CAS) comprising
of a hierarchical combination of path planning and ob-
stacle avoidance algorithms for computationally efficient
real-time planning in complex cluttered environments. As
shown in Figure 2, the path planning and obstacle avoid-
ance system in MSNS incorporates the following sub-
components: a Wide-Area Planner (WAP) based on a graph
theory algorithm; an optional Intermediate-Area Planner
(IAP) based on maneuver optimization (taking into account
motion capabilities of the specific USSV); a Local-Area
Planner (LAP) based on the GODZILA obstacle avoidance
algorithm. Given a desired vehicle trajectory (specified as
a sequence of desired locations by a manual operator or a
high-level mission planner), the objective of the OAS is to
track the desired vehicle trajectory as closely as possible
while avoiding obstacles. For environments with relatively
sparse obstacle geometries (i.e., not maze-like), the LAP is
sufficient to ensure safe obstacle avoidance. The IAP and
WAP add a higher degree of robustness to the path planning
and obstacle avoidance behavior in complex environments
and also add more flexibility in terms of being able to
simultaneously address other kinematic objectives and/or
to achieve specific types of behaviors.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2070



Fig. 1: Architecture of the MSNS: USSV-NAV (inner-loop controller) + USSV-CAS (path planning and obstacle avoidance system). The
U. S. Navy USSV-HTF (High Tow Force) shown in inset in the figure.

Fig. 2: The MSNS hierarchical control and obstacle avoidance system.
• A set of inner-loop robust nonlinear dynamic control
algorithms (USSV-NAV) for stabilization and tracking and
to compute actuator commands to track the reference
trajectory generated by the obstacle avoidance algorithms.

In addition, as shown in Figure 2, the MSNS also integrates
sensor and actuator interfaces (via CAN bus, Ethernet, and
serial) and sensor processing algorithms. The WAP addresses
the far-field (or global) aspect of path planning and obstacle
avoidance utilizing an environment map with large range but
low resolution, thus taking into account landmass as well as
possibly large moving obstacles such as other ships/USSVs
(stationary or moving), but not necessarily smaller obstacles
such as buoys or debris which are addressed by the LAP.

The WAP is designed using a variant of a graph theory
based search algorithm [13], [14] to compute the optimal
trajectory from a given initial position to a given final
position taking into account obstacles which are represented
through an occupancy grid. The graph theory algorithm
utilizes an iterative search and incorporates a heuristic. The
heuristic component facilitates incorporation of a penalty
for close approach to obstacles and enables finding of a
trajectory solution with specific desired clearance to ob-
stacles. An appropriate heuristic can also potentially be

applied to address specific desired behavior such as rules
of the road (i.e., NAV Rules), a set of rules prescribed in
COLREGS (Collision Avoidance Regulations) which specify
appropriate actions in response to approach of other marine
vehicles. The IAP locally filters the reference trajectory
recommendation generated by the WAP to ensure feasi-
bility of the resulting trajectory taking into account the
kinematic and dynamic constraints of the specific USSV
and the corresponding set of feasible maneuvers. The IAP
utilizes a graph theory algorithm to optimize over a mobility
graph of the vehicle. The output of the IAP is an optimal
sequence of maneuvers taking into account the trajectory
computed by WAP, the intermediate-area obstacle geometry,
and the USSV motion capabilities. The introduction of the
maneuver-based planner offers agile path planning especially
in cluttered environments in close proximity to obstacles
(e.g., buoys in littoral environments) by explicitly accounting
for the vehicle’s kinematic and dynamic capabilities to
compute optimal feasible trajectories. The LAP addresses
the near-field (or local) aspect of path planning and obstacle
avoidance and operates at a higher sampling frequency than
WAP but focuses only on avoiding local obstacles that could
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be moving or too small to show up in the coarse map
used by the WAP. Based on the local obstacle topology,
the LAP computes the required local perturbations on the
global trajectory recommendation and outputs USSV motion
direction and velocity commands to the inner-loop controller
which then computes the control signals for the physical
actuators (rudder and propeller). The design of the LAP is
based on the GODZILA algorithm [15]. GODZILA (Game
Theoretic Optimal Deformable Zone with Inertia and Local
Approach) is a general computationally lightweight path
planning and obstacle avoidance algorithm that does not
require any a priori knowledge of environment and does not
rely on building of an obstacle map. GODZILA follows a
purely local approach using only the sensor measurements at
the current time and requiring only a small number of stored
variables in memory. The low memory and computational
requirements of GODZILA make it an attractive choice for
small autonomous vehicles. GODZILA is applicable in any
finite-dimensional environment (e.g., 2D, 3D) and guarantees
convergence to the target in finite time with probability
1. GODZILA is based on three components: Optimization
based on a cost that penalizes motion in directions other
than the direction to the target, motion towards obstacles,
and back-tracking; A local straight-line planner utilized if the
target is visible; Navigation towards a random target when
a local minimum or “trap” is detected.

The path planners operate based on an environment map
constructed by processing the sensor data from Radar in
conjunction with data from compass, Inertial Measurement
Unit (IMU), GPS, etc., and also utilizing known map data
from Digital Nautical Charts (DNC). The MSNS also inte-
grates a set of Radar processing algorithms for estimating
obstacle geometry and situational awareness of the dis-
crete detected obstacles including an automated clustering
algorithm to spatially and temporally identify and track
discrete obstacles. The objective of Radar data processing
algorithms in the context of the obstacle avoidance system
is to address reduction of clutter in the collected data and
construction of a situational awareness of the static and
dynamic obstacles in the environment including estimation
of the projected future trajectories of moving obstacles. To
this end, the MSNS includes a set of spatio-temporal Radar
filtering and smoothing algorithms (Figure 3) developed
based on median filtering, Discrete Cosine Transform (DCT),
temporal weighted sliding window memory, correlation with
known map data from DNC and/or other databases, obsta-
cle occupancy estimation within a probabilistic occupancy
grid, and obstacle set decomposition into discrete obstacles
via clustering of the Radar data and temporal correlation
of clusters across Radar frames. These algorithms enable
spatio-temporal identification and tracking of discrete ob-
stacles and would potentially facilitate implementation of
full NAV Rules compliance capabilities. The Radar data is
obtained as scan lines (Figure 4) which are converted into
absolute frame using the ship’s position and orientation as
estimated by the inertial navigation algorithms (using data
from GPS, compass, IMU, etc.). The Radar data are then
filtered spatially to reduce clutter and thereafter temporally
wherein regions corresponding to high Radar echoes in
multiple successive frames are weighted higher as being
more likely to contain an obstacle. The spatial and temporal
filtering utilize customizable weighting factors tuned based
on weather conditions. The filtered Radar data are correlated
with the DNC data (Figure 5) available from the National
Geospatial-Intelligence Agency (NGA). The DNC data are
available as multiple layers corresponding to coast line,
buoys, markers, etc. These layers have been combined and

integrated into a single database used both for obstacle
avoidance and for HITL simulation. The Radar data are
correlated with the DNC data to filter land echoes and
identify transient (e.g., moving obstacles such as ships, etc.)
obstacles that are not contained in the DNC data. The
transient obstacle set is decomposed into discrete obstacles
using a clustering algorithm and the velocity of each discrete
obstacle is estimated to attain a situational awareness of the
static and dynamic obstacle set. The likely future trajectories
of the transient obstacles are also computed from their
estimated velocities and incorporated into the probabilistic
occupancy grid. During the spatial and temporal filtering,
the size of the Radar returns is propagated to obtain a
probabilistic occupancy grid representing the likelihood of
the occurrence of obstacles in cells in the grid (see Figure 6
where the probabilities are indicated through color coding
as a shade between green and reddish brown with green
representing less likely; the red cells are ones found on
DNC). The estimated likely future trajectories of the discrete
obstacles are also integrated into the grid. The probabilistic
entries in the grid are utilized by the OAS modules. In
the WAP and IAP (which are based on graph search), the
probability of an obstacle being contained in a cell in the
grid influences the traversal cost for that cell while in the
GODZILA-based LAP, the obstacle occurrence probability
is used in computation of the obstacle repulsion component
in GODZILA’s optimization cost.

Fig. 3: Processing of Radar and DNC data.

Fig. 4: Typical experimental Radar data obtained via Xenex Radar
processor module.

The MSNS can utilize both Radar scan line data (in con-
junction with the algorithms for stochastic spatio-temporal
Radar processing for environment estimation, DNC correla-
tion, and spatio-temporal clustering as described above) and
ARPA messages generated by a third-party Radar processing
module (such as the Xenex system). The hierarchical path
planning and obstacle avoidance module provides commands
to the USSV-NAV subsystem which consists of a bank of
inner-loop nonlinear control algorithms that address tracking
and stabilization objectives. USSV-NAV provides a high-
performance stabilization and tracking control system based
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Fig. 5: Sample DNC data.

on a multi-loop gain-scheduled control architecture utilizing
a nonlinear backstepping-based control design [8].

III. EXPERIMENTAL SETUP AND HITL SIMULATION
PLATFORM

The HITL simulation platform incorporates a nonlinear
dynamic model of the USSV [7], emulation of sensors and
instrumentation onboard the USSV, and the actual hardware
and software components used for control of the USSV
in the experimental testbed. The dynamic model utilized
incorporates detailed models of hydrodynamic effects, ac-
tuators including thrusters/propellers and control surfaces,
and disturbances including ocean currents, waves, and wind.
The fidelity of the USSV dynamic model and HITL plat-
form have been tested [9] using experimental data collected
from two different USSVs in the Atlantic ocean: the U. S.
Navy PowerVent APTD (Advanced Propulsion Technology
Demonstrator), and the U. S. Navy USSV-HTF (High Tow
Force). The HITL simulation platform is designed to provide
the computer which runs the controls and obstacle avoidance
software with the exact environment which it sees when
operating on the experimental USSV platform. The HITL
simulator incorporates emulations of the instrumentation on-
board the USSV including the sensors and actuators and the
interface to these hardware components through a CAN bus.
The HITL simulator also includes a stochastic Radar simu-
lator interfaced via Ethernet. The HITL simulation platform
provides a high-accuracy real-time testbed for development
and evaluation of controllers and obstacle avoidance algo-
rithms for USSVs. The simulated environment includes both
data on static obstacle geometry from DNC and simulated
dynamic obstacles (other ships/USSVs).

The hardware architecture of the experimental USSV
platform is illustrated in Figure 7. The control and obstacle
avoidance algorithms are implemented on a notebook com-
puter. The sensors (except Radar) and actuators on the USSV

Fig. 6: Processed Radar data (as a probabilistic occupancy grid)
overlaid with DNC data.

are all connected to a common high-speed CAN bus accessed
via a USB-to-CAN adapter from the notebook computer. The
Radar data for the OAS module is accessed via Ethernet. The
available sensors on the USSV include a compass, a GPS,
water speed and depth sensors, rudder position sensor, engine
RPM sensor, and Radar. The available actuator inputs include
rudder angle and port and starboard throttles. In addition,
our avionics box (which is the same as used in our work
on helicopter control [16]) is interfaced with the notebook
computer via a serial port. This avionics box provides a six
degree-of-freedom IMU with an update rate of 50 Hz.

Fig. 7: Architecture of the experimental platform.
The architecture of the HITL simulation platform is

illustrated in Figure 8. The HITL simulator utilizes two
computers: Computer 1, which runs a real-time simulation
software of USSV dynamics, sensor models, and the operat-
ing environment; Computer 2, which runs the entire MSNS,
which includes the sensor data processing algorithms, the
OAS algorithms, and the inner-loop control laws. Computer
2 in the HITL simulation platform is the notebook computer
that is used to run control and obstacle avoidance algorithms
onboard the USSV during experimental testing. The USSV
dynamics simulation software on Computer 1 is designed to
be flexible to facilitate run-time customization of simulated
environment and USSV dynamics parameters. Computer 2
receives serial IMU data (which emulates data from the IMU
in our avionics hardware) from Computer 1 with an update
rate of 50 Hz. Computer 2 also interacts with Computer 1
through CAN bus and Ethernet. The software on Computer 1
includes a complete emulation of the CAN interface which is
seen by Computer 2 during operation on the USSV including
all sensor messages and actuator status messages with the
proper formats and update rates. The software on Computer 1
receives actuator commands through the CAN interface and
computes a full 6DOF dynamic simulation of the ship. The
software on Computer 1 also computes a simulation of the
environment geometry and Radar data. The Radar data are
communicated to Computer 2 via an Ethernet port. The result
of the dynamic simulation is visualized using an OpenGL
GUI front-end which can be displayed on Computer 1 or
can be exported to another computer via a network socket
interface. The HITL simulator also includes an environment
geometry server subsystem, which incorporates data from
DNC and a model of the Radar including its noise character-
istics. The simulator also supports both “natural” (maps from
DNC data) and “artificial” (simulated environments with
specified cuboidal and/or cylindrical obstacles) environments
with dynamic obstacles (other ships/USSVs). As illustrated
in Figure 8, the overall architecture of the HITL simulator
includes the following components:
• DNC: The DNC data layers from NGA are entered into
a PostgreSQL relational database. The DNC information
(which forms the static obstacle geometry) for any specified
region can be extracted efficiently with a database query.

• Radar: Two types of obstacle information are passed to
the Radar simulator component: Static obstacle (including
DNC) information within the Radar range; Locations of
other ships within the Radar range, typically simulated
as moving along pre-specified trajectories. The obstacle
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Fig. 8: Architecture of the HITL simulation platform.

information is converted into Radar scan data and trans-
mitted to Computer 2 through a network interface. The
Radar simulation is based on an empirical model of the
Radar characteristics, identified from experimentally ob-
tained Radar data (Figure 4) for both stationary and moving
objects in the environment, and takes into account stochas-
tic spatio-temporal properties of the Radar clutter and
its directional characteristics. The stochastic Radar model
generates physically realistic Radar data in simulations with
both static and moving obstacles.

• USSV dynamics: A high-fidelity USSV dynamic simula-
tor is utilized based on the model described in [7], which
includes 6DOF rigid body dynamics, hydrodynamic forces
and torques, and models of environmental disturbance ef-
fects. The simulated sensor data generated by the dynamic
simulator is passed to Computer 2 through a CAN interface
and a serial port (for IMU data). The actuator commands
from the inner-loop controller running on Computer 2 are
also received by Computer 1 through the CAN interface.

• Control computer (Computer 2): This computer runs all
the sensor processing, controls, and obstacle avoidance
algorithms. Typically, the GUI ground station is also run
on this computer.

• PIC: used to provide an accurate timing source.

The HITL simulation platform has been designed to be
able to support simultaneous simulation of multiple USSVs

(limited only by the processing, graphics, and I/O port capa-
bilities of the computers being utilized) as well as heteroge-
neous behaviors of the USSVs (e.g., USSVs running MSNS,
USSVs tracking pre-specified waypoints or moving along
pre-defined trajectories, etc.). Furthermore, the simulation
platform has been designed to be flexible so that depending
on available hardware, a subset of the USSVs could be
simulated in HITL mode while the dynamics of the other
USSVs could be simulated purely in software (with support
also for a soft HITL mode utilizing virtual CAN, serial, and
Ethernet ports for communication). This feature of the HITL
simulation platform facilitates development and testing of
path planning and obstacle avoidance algorithms for USSV
applications in cluttered environments with multiple USSVs.

IV. SIMULATION AND EXPERIMENTAL STUDIES
The performance of the proposed control and obstacle

avoidance algorithms has been verified through extensive
simulation studies based on the multi-USSV simulator im-
plementation described in Section III. Simulation studies
have been performed both for “natural” (maps from DNC
data) and “artificial” (simulated synthetic environments with
multiple cuboidal and/or cylindrical obstacles in specified
configurations) environments with dynamic obstacles (other
ships/USSVs). Sample screenshots from simulation studies
are shown in Figures 9 and 10. Simulation studies have been
performed both in single-USSV and multi-USSV scenarios
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in a variety of DNC-based and synthetic environments.
The robustness of the system in cluttered environments and
compliance with the basic right-of-way rules have also been
verified using the multi-USSV simulation platform.

Fig. 9: Screenshots from simulation testing in DNC-based envi-
ronments (Red and green circles: initial and target locations, green
track: trajectory of USSV, solid red areas: obstacles from DNC).

Fig. 10: Screenshots from multi-USSV obstacle avoidance simula-
tion studies.

A sample experimental run of the control and obstacle
avoidance system on the USSV-HTF is shown in Figure 11
wherein the black circle and the green circle represent the
initial location and the target location, respectively, and the
red “+” marks represent the obstacles in the vicinity. In
this experimental run, there were no moving obstacles in
the vicinity. It is seen that the obstacle avoidance system
successfully routes the ship around the detected obstacles.

V. CONCLUSION
The development of an integrated hierarchical control,

path planning, and obstacle avoidance system for USSVs
operating in uncertain cluttered environments was described.
The system has a modular structure incorporating a robust
inner-loop controller and a hierarchical combination of path
planning and obstacle avoidance algorithms including wide-
area, intermediate-area, and local-area planners. The devel-
opment of a HITL simulation platform including 6DOF
dynamics and emulation of all sensors and other components
on the experimental USSV testbed was also described.
The performance of the proposed system was demonstrated
through HITL simulation and experimental studies.
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Fig. 11: Experimental testing of obstacle avoidance performance.
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