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Abstract— A distributed Voronoi-based sensor deployment
approach is proposed to optimize sensor network coverage. It
is assumed that each sensor can construct its Voronoi polygon
using the information it receives from the neighboring sensors.
To increase the local coverage of the sensors, it is desired to
find a point in each polygon, such that if the corresponding
sensor is placed there, then its covered area within the polygon
is maximized. A nonlinear optimization algorithm is proposed
based on the gradient projection to find the optimal location
for each sensor. The algorithm can be implemented in a
distributed fashion with minimum communication among the
sensors. Examples are provided to demonstrate the effectiveness
of the proposed approach in terms of convergence rate, coverage
performance, and energy consumption.

I. INTRODUCTION

The past decade has seen significant advances in micro-

electromechanical systems (MEMS) technology. This in turn

has enabled the development of highly reliable low-cost

sensor networks for a broad range of applications. Some

examples of recent applications of this type of network in-

clude traffic surveillance, intrusion detection, environmental

monitoring and object tracking, to name only a few [1], [2],

[3], [4].

Coverage optimization is an important problem in mobile

sensor networks, which has been addressed by researchers

in various fields of science and engineering [5], [6]. This

problem is concerned with maximizing the area covered by

the network, while some important constraints such as energy

efficiency and limited communication among the sensors

[7], [8]. In other words, it is desired to develop distributed

deployment algorithms to move the sensors in such a way

that the total coverage of the network is maximized, subject

to some constraints on the energy consumption. Additional

constraints such as collision and obstacle avoidance and may

be introduced, depending on the specifics of a particular

application. Furthermore, no a priori knowledge of the initial

positions of the sensors may be available [9], [10].

In [11] an approach called basic protocol is introduced

to find the position of each sensor iteratively such that the

total coverage is maximized. An energy efficient strategy

called virtual movement protocol is proposed in [12] which

takes the communication cost into account before the sensors

are moved. In both techniques Voronoi diagram [13], [14]
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is used to find the coverage holes. Three distributed self-

deployment strategies, namely VEC (vector-based), VOR

(Voronoi-based), and minimax are presented in [12] to find

the proper position for each sensor. In the VOR strategy,

the desired location for each sensor is calculated based on

its distance from the vertices of the corresponding Voronoi

polygon. The algorithm performs poorly when a sensor is

located close to a narrow edge in its Voronoi polygon. The

VEC algorithm, on the other hand, attempts to move the

sensor in such a way that they are evenly distributed in the

sensing field. This algorithm may not perform satisfactorily

for a network with a large number of sensors. In the Minimax

strategy the location of each sensor in its Voronoi polygon is

obtained such that its maximum distance from the vertices of

the polygon is minimized. The shortcoming of this algorithm

is similar to that of the VOR strategy.

A distributed Voronoi-based coverage maximization strat-

egy is proposed in the present article which is entitled as

Max-Area. The main contribution of the proposed algorithm

is that in order to maximize the total coverage, each sensor

at each round maximizes its own coverage in its Voronoi

cell. Finding the optimum point inside each polygon is a

complicated task and is solved here using some approaches

form nonlinear optimization theory.

The paper is organized as follows. Some preliminaries and

problem statement is outlined in the next section. As a main

element of proposed coverage optimization algorithm, so-

called sensor location problem is introduced in section III.

Detailed nonlinear optimization approach to sensor location

problem is presented in section IV. The overall multi-sensor

coverage optimization algorithm is described in section V

along with presentation of simulation results. Section VI

concludes the paper.

II. PRELIMINARIES

The sensing field is assumed to be a flat two-dimensional

space with known boundaries and no obstacle. Furthermore,

it is assumed that initially the sensors are randomly located

in the field. Let the sensing field be denoted by FS, and the

sensors by Si, i ∈ n := {1, . . . ,n}, with equal sensing range

of Rs and communication range of Rc. A general point in R
2

is represented by q = [q1,q2]
T . The position of the sensor

Si is denoted by xSi
with the corresponding sensing disk of

D(xsi
).

The Voronoi polygon (or cell) of the sensor Si is defined

as Πi = {q ∈ R
2 : d(q,xsi

) ≤ d(q,xs j
),∀ j ∈ n, j 6= i} where

d(., .) denotes the euclidean distance between two points.
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The union of n Voronoi polygons Π1, . . . ,Πn constitutes a

diagram called the Voronoi diagram.

The Voronoi decomposition in a sensor network, is used

to assign to each sensor a region in the field to monitor. It is

important to note that any sensor in the network can construct

its own Voronoi polygon using the information about the

location of itself and its neighbors in the field. This means

that any sensor deployment strategy based on the Voronoi

diagram can be implemented in a distributed manner with

limited information available for each agent about the whole

network.

Distributed Voronoi-based coverage improvement opti-

mization approaches in mobile sensor networks can, in

general, be described in an abstract simplified form in the

sequel.

General Procedure for Voronoi-based Coverage Improve-

ment

1) Based on the information received from neighboring

sensors, each sensor Si constructs its own Voronoi

polygon Πi.

2) Each sensor calculates the area it covers in its own

Voronoi polygon.

3) Using a proper destination point selection strategy,

each sensor finds a candidate point inside its own

Voronoi polygon as its next position.

4) Each sensor calculates the area it would cover if it

moved to the new position. If the covered area from the

new position would be more than the current covered

area by a prespecified amount (e.g. 1 %), the sensor

moves to the new location. If not, it remains in its

current position.

5) If any of the sensors in the previous step moves to a

new point, the algorithm repeats from step 1. If not,

then every sensor has already reached a stable point,

and the algorithm is terminated. �

It is shown in [12] that the total coverage of mobile

sensors is convergent, given the locally increasing coverage

of each sensor. The coverage optimization methods which

follow the above-mentioned framework differ mainly in the

destination point selection strategy for each sensor (step 3).

In fact, network coverage performance highly depends on

the deployment strategy for relocating individual sensors.

The problem statement will be defined in the next section.

III. OPTIMAL SENSOR LOCATION (OSL) PROBLEM

Consider a sensor S located at xs, and let it have a disk-

shaped sensing domain D(xs) with radius Rs. Assume that a

density function ϕ(q) is given over the corresponding convex

polygon Π, to determine coverage priority for different points

in the polygon (and eventually in the field). In other words,

the density function specifies the relative importance of

coverage for different points inside Π, and is considered as

a weight function over the polygon.

The OSL problem looks for an optimal point inside Π,

such that if the sensor moves to that point, its weighted

covered area inside Π would be maximized. This can be

Fig. 1: Geometrical interpretation of the optimal sensor

location problem.

formulated as the following optimization problem:

x∗s = argmax
xs∈Π

F(xs) = argmax
xs∈Π

∫

Π∩D(xs)

ϕ(q)dq (1)

A geometrical representation of the optimal sensor loca-

tion problem is demonstrated for a simple setup in Fig. 1.

It is desired in this figure to maximize the hatched region

by properly locating the center of the disk (xs) inside

the polygon. The vectors n(q) and ∇F(xs) are important

elements of the proposed optimization algorithm in this paper

and will be referred later.

The problem introduced above is, in fact, a nonlinear

optimization problem with linear constraints (imposed by the

edges of the polygon). Note that in general it is very difficult

to express the objective function as an explicit function

of the elements of xs (i.e., decision variables). Even the

computation of the objective function for a specific value of

xs requires double integration over a convex region, which

is simple but time-consuming. The limited computational

capability of the sensors should be taken into account in

the design and implementation of any deployment strategy

for distributed mobile sensing agents.

It can be observed that the solution to the sensor location

problem is obvious for some extreme cases. Let the center

and radius of the smallest enclosing disk of a polygon be

denoted by xenc and Renc, respectively. The center of the

largest inscribed disk inside a polygon is known as the

Chebyshev center of the polygon and can be computed

efficiently, e.g., by solving a simple linear programming

problem [15]. Let the center and radius of this circle (also

shown in Fig. 2), be denoted by xcheb and Rcheb, respectively.

Obviously, xcheb is the solution to the OSL problem if the

density function is uniform over the polygon and the sensing

range is less than or equal to Rcheb. However, for the cases

where Rcheb < Rs < Renc the solution is not straightforward,

and a method is proposed in the next section to tackle this

problem.

IV. NONLINEAR OPTIMIZATION APPROACH TO OSL

PROBLEM

The approach presented in this section is a gradient-based

optimization algorithm which finds a suitable movement
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Fig. 2: Enclosing and Chebyshev circles.

direction pk in an iterative fashion to increase the objective

function in the OSL problem, based on its gradient with

respect to the sensor position xs. Given the direction pk, a

procedure called line search determines the optimal step size

for maximizing the objective function in that direction. The

optimization variable is updated in each iteration as follows:

xk+1 = xk +αk pk (2)

The value of αk is obtained from the line search procedure

as noted above. It is discussed later that for the most efficient

solution, the movement of the sensor should not be exactly in

the direction of the gradient of the objective function; instead,

it should be a scaled version of it. Different elements of this

optimization strategy are described in detail in the following

subsections.

A. Computation of the Gradient Vector

The gradient of the objective function is computed in the

sequel using the results of [16].

Consider a region defined by the intersection of k

inequalities hi(xs,q) ≤ 0 for i = 1, . . . ,k. By concatena-

tion of the boundary functions hi(xs,q) as h(xs,q) =
[h1(xs,q), . . . ,hk(xs,q)]T , this region can be represented by

h(xs,q)≤ 0. Define also µ(xs) = {q ∈ R
n : h(xs,q)≤ 0}, and

denote the boundary of this set by ∂ µ(xs). The boundary

of the region corresponds to the equalities in the above

formulation. Note that this boundary has k segments, where

each segment can be expressed as:

∂iµ(xs) = µ(xs)∩{q ∈ R
n : hi(xs,q) = 0} (3)

A generic integral function over the region is considered as

follows:

F(xs) =
∫

h(xs,q)≤0

p(xs,q)dq (4)

The gradient of F(xs) with respect to xs can be computed

as:

∇xsF(xs) =
∫

µ(xs)

∇xs p(xs,q)dq (5)

−
k

∑
i=1

∫

∂iµ(xs)

p(xs,q)
∥

∥∇qhi(xs,q)
∥

∥

∇xshi(xs,q)dL

For the sensor location problem, it is desired to find the

gradient with the integrand p(xs,q) = ϕ(q). For a polygon

with m facets, the corresponding region is described by a set

of m linear inequalities as Hq−K ≤ 0, where Hm×2 and Km×1

are matrices with real entries. The sensing disk centered at xs

can also be expressed as ‖q− xs‖
2 −R2

s ≤ 0, or equivalently

as (q−xs)
T (q−xs)−R2

s ≤ 0. With this formulation, one can

set hi(xs,q) = Hiq−Ki for i ∈ m := {1, . . . ,m} (where the

Hi and Ki denote the i-th row of the matrices H and K,

respectively) and hm+1(xs,q) = (q− xs)
T (q− xs)−R2

s .

Now, one can find the gradient of the objective function

from equation (5). Since the density function is independent

of xs, thus ∇xsϕ(q) = 0, and hence the first term in the right

side of (5) vanishes. Also, the first m functions defining the

region (hi(xs,q) for i = 1, . . . ,m) do not depend on xs, which

means that ∇xshi(xs,q) = 0, for i = 1, . . . ,m. The gradients

of hm+1(xs,q) is computed as follows:

∇xshm+1(xs,q) = −2(q− xs) (6)

∇qhm+1(xs,q) = 2(q− xs) (7)

Therefore, the gradient of F(xs) with respect to the position

of the sensor is given by:

∇xsF(xs) =

∫

∂m+1µ(xs)

q− xs

‖q− xs‖
ϕ(q)dL (8)

where ∂m+1µ(xs) is the portion of the perimeter of the

sensing disk which is inside the polygon P. Note that the (8)

is, in fact, the integral of a vector normal to the perimeter,

pointing out of the sensing disk, and that the result of the

integration is also a vector ( the normal vector is denoted by

n(q) in Fig. 1).

The gradient function (8) provides an ascent direction for

the area of the disk inside the polygon, which implies that

moving the disk in this direction will increase the covered

area within the polygon.

The points on the perimeter of the sensing disk can be

characterized as:

q = xs +Rs

[

cos(θ)
sin(θ)

]

(9)

where θ ∈ [0,2π). As a result, ‖q− xs‖= Rs,∀q∈ ∂m+1µ(xs).
On the other hand, the path ∂m+1µ(xs) can also be described

by a number of arcs defined by a set of intervals Θ =
{[θ1,θ2], [θ3,θ4], . . .}. Thus, the integral in the right side of

(8) can be equivalently calculated as follows:

∇xsF(xs) = Rs

∫

θ∈Θ

[

cos(θ)
sin(θ)

]

ϕ(q)dθ (10)

where q in given by (9). Note that dL in (8) is replaced by

Rsdθ in (10). This relation is important in that it presents a

simple technique for finding the gradient by each individual

mobile computing agent. More precisely, by choosing a

sufficiently large number of points on the perimeter and

using a proper numerical integration method, one can find a

sufficiently close approximation of (10).
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In order to reformulate the underlying optimization as

a more conventional minimization problem, define F̄(xs) =
−F(xs). As a result, the OSL problem can be rewritten as:

x∗s = arg min
xs∈Π

F̄(xs) = arg min
xs∈Π

[−
∫

Π∩D(xs)

ϕ(q)dq] (11)

It is important to note that the sensor is displaced after the

iterations in (2) converge to a sufficiently small neighborhood

of the optimal location. In order to distinguish the iteration

variable in different steps of (2) from the sensor location, the

vector of decision variables is denoted by x in the following

formulation:

∇F̄(x) = −Rs

∫

θ∈Θ

n(q)ϕ(q)dθ (12)

(note that the vector x will eventually converge to the

optimum point x∗s ).

In order to present the proposed nonlinear optimization

approach, some relevant analytical results are first derived in

the next subsection.

B. Optimality Conditions

The gradient vector given in the previous subsection

is used here to develop some important results. To this

end, the Karush-Kuhn-Tucker (KKT) optimality conditions

are obtained next for the solution of previously-mentioned

constrained nonlinear optimization problem ([17], p. 342).

Theorem 1. Given the optimization problem (11), at least

one of the following conditions holds:

(i) ∇F̄(x∗s ) = 0

(ii) x∗s ∈ ∂Π
In addition for any positive-valued function of ϕ(q), the first

holds at the optimum, and x∗s /∈ ∂Π.

The proof is omitted here for the sake of brevity. �

The analytical results given above can be used to define a

criterion for termination of the underlying iterative nonlinear

optimization algorithm. Moving in a descent direction, the

optimum is reached at the boundary of the Voronoi polygon

unless the gradient becomes zero elsewhere. In particular,

for positive-valued density functions the stationary point of

the generated sequence can be distinguished by the gradient

measure only.

C. Line Search

Given a descent direction, it is of great importance to find

a proper step size to move. This is usually performed using

one of several existing line search methods. In particular,

consider the following optimization problem:

αk = argmin
α

F̄(xk +α pk) (13)

For a given function F̄(x), this is an optimization problem

in scaler α and can be solved using simple optimization

methods. However for the OSL problem the objective func-

tion is known implicitly, and hence conventional optimization

techniques are ineffective. Alternatively, one can use a direct

line search to find the optimal value of α by iteratively

evaluating the objective function on the selected line. This

requires the computation of the weighted intersected area

of the polygon and the sensing disk while the center of

the disk moves on the selected line. Such a computation

is time-consuming in general , and to avoid it a line search

based on the information obtained from the gradient vector

is proposed here. To this end, it is important to note that

the differentiation of the function F̄(xk + α pk) with respect

to the parameter α yields pT
k ∇F̄(xk +α pk) = 0. This means

that at the optimum point, the gradient is perpendicular to

the search direction pk. Define the function:

M(α) = pT
k ∇F̄(xk +α pk) (14)

One can find the zero of M(α) numerically (e.g., using the

Newton-Raphson search). Obviously this is much less com-

putationally demanding than the direct line search approach.

Using the optimal value of α at some iterations might lead

to a point xk+1 outside the Voronoi polygon. A projection

procedure can be used to handle this problem as spelled out

in the next subsection.

D. Projection onto the Voronoi Polygon

It is desired to project any point that falls outside the

convex Voronoi polygon at some iteration of the proposed

nonlinear optimization approach, onto the polygon. For a

point x0 /∈ Π, its projection onto Π is denoted by [x0]Π and

is defined as follows:

[x0]Π = argmin
x∈Π

‖x− x0‖
2

(15)

The minimization problem given above seeks the nearest

point to x0 inside Π and constitutes a quadratic programming

problem. However, the convexity of the Voronoi polygons

as well as the simplicity of the corresponding geometry

makes the projection a rather straightforward problem. The

following lemma states that the projected point is either a

vertex of the Voronoi polygon or a perpendicular foot of x0

on a facet.

Lemma 1. Consider the Voronoi polygon Π with m vertices

denoted by vi for i ∈ m and m facets, and denote the

perpendicular foot of x0 onto the i-th facet by (x0)
i
⊥, for

i ∈ m (note that (x0)
i
⊥ may be on the extension of a facet,

and hence may not belong to ∂Π). Define the set I as:

I = {i ∈ m : (x0)
i
⊥ ∈ ∂Π} (16)

and the corresponding points as:

(x0)
I
⊥ = {(x0)

i
⊥ : i ∈ I} (17)

Then:

[x0]Π = argmin
x∈A

‖x− x0‖
2

(18)

where:

A =

{

(x0)
I
⊥ I 6= /0

{v1, . . . ,vm} I = /0
(19)

The proof is omitted here for the sake of brevity. �

The lemma simply states that the search for finding the

projected point can be limited to the set of perpendicular
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foots on the border of the polygon (if any) and the vertices of

the polygon. Using the above lemma, one can limit the search

domain in order to find the projected point more efficiently.

E. Scaled Gradient Projection Algorithm

A gradient projection method with non-diagonal scaling

of the descent direction will now be provided. The descent-

based optimization methods might demonstrate zigzag be-

havior while approaching the optimum point. It is known that

using the Hessian matrix of the objective function (∇2F̄(x))
as the scaling matrix in the optimization algorithm results in

better convergence. In particular, one can use the following:

∇2F̄(xk)pk = −∇F̄(xk) (20)

or equivalently:

pk = −[∇2F̄(xk)]
−1∇F̄(xk) (21)

Typically, in the OSL problem the computation of the

Hessian matrix and its inverse is cumbersome. To remedy

this shortcoming, one can use a positive-definite matrix as

an approximation to the Hessian matrix at each iteration. One

of the efficient approaches for this purpose is called Broyden

class, and will be used here. The approximate matrix for the

inverse of the Hessian matrix is obtained iteratively, initiated

by an arbitrary positive definite matrix (e.g., the unity matrix)

and updated at each iteration in such a way that the positive-

definiteness of the matrix is preserved ([18] p. 470). Define

sk and yk as follows:

sk = xk+1 − xk (22)

yk = ∇F̄(xk+1)−∇F̄(xk) (23)

and denote the approximation of the inverse of the Hessian

matrix with Hk. The Sherman-Morrison update is given by:

Hk+1 =

[

I −
skyT

k

yT
k sk

]

Hk

[

I −
yksT

k

yT
k sk

]

+
sksT

k

yT
k sk

(24)

Now, using the formula (21) with the above approximate

matrix, one can write:

pk = −Hk∇F̄(xk) (25)

The scaling given above for the descent direction improves

the convergence of the gradient projection algorithm ([19] p.

233).

To find a proper termination condition for the proposed

iterative algorithm, two different cases are considered for the

optimum point: (i) it is located inside the polygon; (ii) it is

located on the boundary. For the first case, ‖∇F̄(x)‖ is small

enough to deduce that the current position is in a sufficiently

small neighborhood of the optimum point. Since the updating

formula for Hk uses the difference of the gradient vectors in

the last two last steps of the algorithm, the value of ‖yk‖
can also be important to check as part of the termination

condition, for the numerical stability of the algorithm. On the

other hand, if x∗s ∈ ∂Π, it can be shown that for the optimum

point x∗s = [x∗s ]Π. This means that in this case, sufficiently

small values of ‖sk‖ represents “small” neighborhood of the

optimum point.

Following the above discussion, one can choose a small

positive number ε and compare it with ‖∇F̄(x)‖, ‖yk‖ and

‖sk‖ in each round of the algorithm. As soon as any of these

values is smaller than ε , the algorithm is terminated. This

will be hereafter be referred to as the termination condition.

Using the results obtained thus far, the nonlinear optimiza-

tion approach for solving the OSL problem will be provided

next. To avoid trivial cases described before, it is assumed

that the sensing range is neither too small nor too large,

such that the covered area within the Voronoi polygon is not

fixed w.r.t. the location of the sensor (within a sufficiently

small neighborhood). This issue will be further clarified in

section V.

Scaled Gradient Projection Algorithm

1) Choose the initial values of xk and Hk as x0 = xs and

H0 = I.

2) Compute the value of ∇F̄(xk) from (12), and the

descent direction pk from (25).

3) Perform the line search procedure described earlier to

find the value of αk.

4) Update the desired position as xk+1 = xk +αk pk.

5) If xk+1 falls outside the corresponding Voronoi polygon

Π, use the projection procedure and set xk+1 = [xk+1]Π.

6) Compute the value of ∇F̄(xk+1).
7) Check the termination condition; if it is satisfied, then

set x∗s = xk+1 and terminate the algorithm. Otherwise,

go to the next step.

8) Find sk and yk from (22) and (23), respectively, as well

as the matrix Hk+1 using the updating formula (24).

9) set k = k +1 and go to step 2. �

To illustrate the above algorithm, consider the OSL prob-

lem for a Voronoi polygon depicted in Fig. 3. Let the sensing

radius be Rs = 1.5m. Let also the coverage priority of the

field be characterized by a non-uniform density function

given below:

ϕ(q) = e−2(q1−2.8)2−2(q2−1)2

To clarify the procedure, the level sets of the objective

function are also depicted in Fig. 3. Note that the objective

function in the OSL problem (the term in the right side of

11) implicitly takes the required constraints into account. As

a result, the level sets are not centered around the maximum

of ϕ(q) which corresponds to the point q̄ = [2.8,1]T . In fact,

placing the sensor at q̄ would lead to poor weighted coverage

inside the polygon (note that q̄ is outside the polygon, and

hence some part of the covered area of the corresponding

sensor falls outside the polygon).

Given the initial point x0 = [2.5,3.7]T , the points generated

in the first two steps of the algorithm fall outside the polygon,

and hence the projection procedure is to be used. The path

toward the optimum point under the proposed algorithm

is also shown in Fig. 3. To better illustrate the projection

results, a zoomed view of the points near the boundary of

the polygon is also depicted in Fig. 4. It can be observed
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Fig. 3: Sequence of the points obtained by using the proposed
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from this figure that the algorithm converges to the point

x∗s = [1.80,2.05]T (which is sufficiently close to the optimum

point) in only 5 steps.

Remark 1. Note that new measurements are not required

in the proposed optimization procedure. In other words,

a sensor does not need to move before the termination

of the iterations in the optimization algorithm. The sensor

physically moves to its new location once the optimum point

inside the polygon is obtained.

Remark 2. The sensor placement is discussed in [7], and the

problem is introduced as the area problem. The gradient is

derived in an alternative way, and an algorithm is presented

accordingly, which uses line search. The approach presented

here, however, is more general as it considers the relevant

constraints, and also properly scales the steepest descent

direction.

V. SENSOR NETWORKS COVERAGE OPTIMIZATION

In a multi-sensor setting, a strategy similar to the single-

sensor case discussed in the previous section is adopted by

every sensor for coverage optimization. This technique is

referred to as the Max-Area strategy.

A steady-state configuration of the network w.r.t. a given

sensor deployment strategy is characterized as the case where

the sensors are properly located in the plane such that none

of them is required to move under this deployment strategy.

In a Voronoi-based algorithm, this means that the sensing

coverage of none of the sensors would increase by the

prescribed threshold in the corresponding region Voronoi

cell if the sensors move to their new locations under that

deployment strategy.

In general, coverage maximization problem in a sensor

network using a distributed decision making is a challenging

problem. Hence, different coverage algorithms are usually

compared to each other by Monte Carlo simulations, where

the performance criteria are assessed by simulating the algo-

rithms for several random initial values. The same method of

comparison is used here to show the superiority of the pro-

posed algorithm over the Minimax as a well-known coverage

strategy [12]. The rate of convergence, final coverage pattern

and traveled distance (as a measure of energy consumption)

are common assessment criteria for a multi-sensor coverage

algorithm, and will be used in the simulations to compare

the efficiency of the strategies.

Example 1. To examine the Max-Area strategy, it is applied

to a network of 24 mobile sensors in a 50m by 50m

square field. Let Rs = 6m and Rc = 20m, and consider the

initial sensor configuration (and the corresponding Voronoi

diagram) depicted in Fig. 5. The movement paths of the

sensors under the Max-Area strategy are also given in this

figure and the blank circles show the position of the sensors

after 16 rounds. The initial coverage factor (defined as the

ratio of the covered area in the field to the total area of the

field) in this example is 63%, and the proposed algorithm

achieves 88% coverage in 16 rounds. The configuration of

the network (location of sensors and their local coverage

along with the corresponding Voronoi polygons) after 16

rounds is depicted in Fig. 6. The relatively short movement

paths and 25% improvement in total coverage confirm the

effectiveness of the Max-Area strategy in this example.

Example 2. To compare the performance of the Max-Area

and Minimax strategies, 50 different initial settings of 30

identical sensors with the same sensing and communication

capabilities as the previous example are considered, and both

algorithms are applied to each setting. Taking the average

coverage factor for each algorithm over the 50 settings, the

graphs depicted in Fig. 7 are obtained. It can be seen from

this figure that the Max-Area strategy outperforms Minimax

in terms of both coverage and the rate of convergence.

This figure shows that in the worst case scenarios, the

Minimax algorithm takes a longer time compared to the Max-

Area algorithm to converge (in particular, in this example it

took four more rounds for the Minimax algorithm to meet

the termination condition). The average travel distance of the

sensors (which is important as far as energy consumption is

concerned) under both algorithms is about 119 meters. Note
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Fig. 5: The initial configuration of sensor network considered

in Example 1, and the corresponding Voronoi diagram.
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Fig. 6: The configuration of the sensor network after 16

rounds of the Max-Area strategy in Example 1.
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Fig. 7: Coverage factor in different rounds of the Max-Area

and Minimax strategies in Example 2.

that the better performance of the Max-Area algorithm comes

at the price of a higher computational complexity.

VI. CONCLUSION

In this paper, a nonlinear optimization algorithm called

Max-Area is introduced to maximize coverage in a mobile

sensor network by properly relocating the sensors. Under

the proposed strategy, each sensor uses available informa-

tion about other sensors to find its optimal location in the

corresponding Voronoi polygon. The algorithm is based on

the gradient projection technique which is properly scaled

for better convergence. A step-by-step procedure is provided

to find the desired location of each sensor systematically.

Monte-Carlo simulations demonstrate the efficacy of the

proposed strategy in maximizing the network coverage.
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