
Structured Sum of Squares for Networked Systems Analysis

Edward J. Hancock and Antonis Papachristodoulou

Abstract— In this paper we introduce a structured Sum of
Squares technique that enables Sum of Squares programming
to be applied to networked systems analysis. By taking the
structure of the network into account, we limit the size and
number of decision variables in the LMI representation of the
Sum of Squares, which improves the scalability of the technique
for networked systems beyond taking advantage of symmetry
and sparsity. We apply the technique to test non-negativity
of fourth order structured polynomials in many variables and
show that for these problems the technique has improved
scalability over existing Sum of Squares techniques.

I. INTRODUCTION

Dynamical networks are prevalent in many areas of sci-

ence and technology; a number of techniques have been

proposed to analyse these large scale systems, see, for

example, [24], [13] and the references therein. However,

to translate theoretical concepts on dynamical networks

into useful tools, new computational techniques need to be

developed. In this paper we introduce a structured Sum

of Squares technique in order to apply Sum of Squares

programming to networks, which allows analysis of problems

which would otherwise be computationally infeasible. We

apply the technique to testing non-negativity of fourth order

polynomials in several variables but with a structure inherited

by the networked system, in order to show the practical

implementation of the technique. We show that the structured

Sum of Squares scales significantly better than existing Sum

of Squares techniques.

Sum of Squares (SOS) programming is a useful technique

for showing the non-negativity of polynomials [18], [19].

See [17] for a tutorial and [4] for a recent review. It

has extensive applications in systems theory for systems

with polynomial or rational vector fields, such as finding

Lyapunov functions for nonlinear systems [18], [15]. Sum

of Squares techniques can also be extended to any form of

smooth vector field using Generalised Sector concepts [5],

polynomial approximations [3] or by recasting the problem

into polynomial form [16]. The way these techniques work is

by translating the polynomial representation into a quadratic

form; the positivity test can then be formulated as a Linear

Matrix Inequality (LMI). This LMI can be tested using

efficient Semi Definite Programming (SDP) techniques such

as interior point methods [18].

Although SOS programming is very useful for analysing

polynomial systems, current Sum of Squares techniques do

This work was supported by the Clarendon Fund at Oxford University
and the Overseas Research Student Award Scheme (UK Government).

E. J. Hancock and A. Papachristodoulou are with the Department of
Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ,
UK. Email: {edward.hancock,antonis}@eng.ox.ac.uk

not scale well for large-scale systems. The factor limiting

the scaling of the algorithm to larger systems is the size

of the resulting SDP, which is a combination of the size of

the respective LMI and the number of decision variables. If

the polynomial is ‘sparse’, i.e. many of the monomials have

zero coefficients, then the size of the matrix and number

of decision variables can be reduced significantly [9], [23].

Structured Sum of Squares relaxations have been developed

specifically for sensor networks using the sparsity of the

LMI [14]. There are also a number of techniques to reduce

the size of the LMI built into the preprocessing of current

SOS computational tools [12].

In this paper we develop structured Sum of Squares

techniques for networks by using the structure of the network

to limit both the size of the LMI and number of decision vari-

ables in the resulting LMI representation. This is important

as the flop cost of interior point methods is approximately

linear with respect to the size of the LMI while polynomial

with respect to the number of decision variables [1]. The

technique improves the scalability of the Sum of Squares for

networked systems without necessarily assuming sparsity or

symmetry.

In the examples section we demonstrate how the technique

can be applied to the problem of testing non-negativity of

fourth order, structured polynomials in several variables and

find that scalability depends upon both the number of nodes

and the number of links in the network. For globally coupled

networks we apply the technique for up to 50 variables. For

1-D lattices we apply the technique for up to 400 variables.

In comparison, existing Sum of Squares techniques are found

to be impractical for networks with 15-20 variables.

This paper is organised as follows. In Section II we give

background and motivation. In Section III we develop the

structured Sum of Squares technique. In Section IV we apply

the developed technique to two examples.

II. BACKGROUND AND MOTIVATION

A. Background: Sum of Squares

Sum of Squares is a useful technique for showing whether

polynomial functions are non-negative. We often want to

know whether a function p(x) is non-negative, i.e., p(x) ≥ 0
but this problem is NP hard even when p(x) is a polynomial

of degree greater than or equal to 4 [18]. However, if we

show that a function is a Sum of Squares then we know that

it is non-negative. A polynomial p(x) ∈ R[x] is a sum of

squares if

p(x) =

m
∑

i=1

hi(x)
2 (1)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7236

for some other polynomials hi(x), which implies that p(x) ≥
0. Thus if a polynomial is a Sum of Squares then it is non-

negative.

If p(x) ∈ R[x] is a polynomial of degree 2d, where x ∈
R

n, then

p(x) = Z(x)TQ(λ)Z(x) (2)

where Z(x) is composed of monomials of the vector x up

to degree d and Q ∈ R
m×m is affinely parameterised by

decision variables λ ∈ R
r. The decision variables are due

to the non-uniqueness of Q in the representation of p(x)
in the quadratic form (2), as the elements of Z(x) are not

necessarily independent of each other. If a value of λ can

be found such that Q � 0 then p(x) is a Sum of Squares

– this can be seen by taking a Cholesky decomposition of

Q = LLT such that

p(x) = Z(x)TLLTZ(x) =

m
∑

i=1

hi(x)
2 (3)

where h(x) = LTZ(x).
In (2), Q is affinely parameterised by the decision variable

λ and since we require Q � 0, the whole problem can be

viewed as an LMI. Thus Semi-Definite Programming can

be used to find whether there exists a value of the decision

variable such that Q � 0. This can be implemented using

toolboxes such as SOSTOOLS [20].

Sum of Squares only show that a polynonial is non-

negative and so if we wish to determine whether a polyno-

mial is positive definite, as in the case for finding Lyapunov

functions, then we have to modify the technique. For exam-

ple, to show that V (x) ∈ R[x] is positive definite on D it

suffices to show that V (0) = 0 and

V (x)− φ(x) is a SOS (4)

where φ(x) is positive definite on D.

If we wish to test p(x) on a restricted domain then we

can use Positivestellensatz [18], which can be viewed as a

generalisation of the S-procedure, to show that a function is

non-negative on a region, rather than globally. We can show

that p(x) ≥ 0 when x satisfies γ(x) ≤ 0 if we can find sum

of squares β(x) as a multiplier such that

p(x) + β(x)γ(x) is a SOS (5)

See [18] for a more general version of Postivestellensatz for

SOS.

Sum of Squares programming is an efficient method for

small problems. However, the technique does not scale well

to large problems. This is the motivation for the technique

of Structured Sum of Squares that we develop in this paper.

B. Motivation: Lyapunov function candidates with a Net-

work Structure

In this paper we aim to develop computational tech-

niques to analyse networked systems with naturally highly

structured Lyapunov function candidates, such as ‘Damped

Hamiltonian’ or Gradient systems. Many types of networks

fit into this class of system, such as power systems [2],

synchronization models [6], [7], population dynamics [21]

and neural networks [8], [10]. The advantage of systems of

this form is that there exists a natural Lyapunov function can-

didate which is often highly structured and whose derivative

with respect to time is typically globally non-positive. Thus

if we can show that the Gradient or Hamiltonian function is

positive definite then we can show that the system is stable.

An example of this case is a network of Duffing oscillators

[8]. This can be written with 3rd order polynomial coupling

as

żi = −γizi − ai(yi − y3i) +

N
∑

j=1

bij(yj − yi)
3

ẏi = zi

(6)

where i = 1, . . . , N , bij = bji and bii = 0. If we let

V =

N
∑

i=1

[

1

2
z2i + ai

(

1

2
y2i −

1

4
y4i

)]

+
1

2

N
∑

i=1

N
∑

k=1

bik
1

4
(yk − yi)

4

(7)

it can be shown (See Appendix) that

V̇ = −

N
∑

i=1

γiz
2
i ≤ 0 (8)

We can see by observation that −V̇ is a Sum of Squares

and so we only need to show that V is positive definite for a

domain containing the origin to show that the origin is stable

[8]. It can be seen that (7) is highly structured and it is with

this problem as motivation that we develop Structured Sum

of Squares techniques.

III. STRUCTURED SUM OF SQUARES

In this section we impose a structure on Sum of Squares in

order for the technique to scale better for polynomials with

a network structure. Firstly, we remove all monomials and

decision variables associated with any missing link in the

network and secondly, we assume that the coupling terms

are of a certain form which allows us to choose decision

variables based on network weightings.

A. Structured SOS

We use the general definition of structured Sum of Squares

to mean that we will use the structure of the polynomial of

interest to limit either the size of the matrix Q in (2) and/or

the number of decision variables in the traditional Sum of

Squares programming technique.

Suppose we wish to study whether the polynomial p =
p(x1, . . . , xN) ∈ R is Sum of Squares, where xi ∈ R

n for

i = 1, . . . , N . Now

p(x1, . . . , xN) =

N
∑

i=1

pi(xi) +

N
∑

i=1

N
∑

k=1

pik(xi, xk)

+

N
∑

i=1

N
∑

k=1

N
∑

l=1

pikl(xi, xk, xl) + . . .

(9)

7237

For a networked system we often have functions of the

structured form

p(x1, . . . , xN) =
N
∑

i=1

pi(xi) +
N
∑

i=1

N
∑

k=1

bikpik(xi, xk) (10)

where bii = 0, bik is non-zero if the subsystems with states

xi and xk communicate on a network and zero otherwise.

For simplicity, we assume symmetry of the network (i.e.

bik = bki) and we restrict analysis to systems with pi(0) = 0
and pik(0, 0) = 0 for all i, k = 1, . . . , N . These assumptions

are not required for structured Sum of Squares but allow it

to be more easily derived and presented.

B. Structured SOS with parametrised coupling matrices

We look at the case where that the coupling term is of the

same form and so analyse polynomials of the form

p(x1, . . . , xN) =

N
∑

i=1

pi(xi) +

N
∑

i=1

N
∑

k=1

bikpc(xi, xk) (11)

We can see that the structure of the Hamiltonian function (7)

is of the form (11).

We first define

pi(xi) = Zi(xi)
TPiZi(xi) (12)

for i = 1, . . . , N where Zi(xi) ∈ R
m is a vector of

monomials and the symmetric matrix Pi = Pi(λi) ∈ R
m×m

is affinely parameterised by decision variables λi as in typical

Gram matrix representations. Furthermore, we write

pc(xi, xk) = Zc(xi, xk)
TQcZc(xi, xk) (13)

for i, k = 1, . . . , N , where Zc(xi, xk) is a vector of

monomials in xi and xk and Qc = Qc(λc) is affinely

parameterised by decision variables λc as in typical Gram

matrix representations. Importantly, note that Qc and λc are

independent of i and k.

Now we split the above representation further such that

Qc =





Q11
c Q12

c Q13
c

Q21
c Q22

c Q23
c

Q31
c Q32

c Q33
c



 , Zc(xi, xk) =





Zi

Zk

Zik



 (14)

where Q12
c = (Q21

c)T , Q13
c = (Q31

c)T , Q23
c = (Q32

c)T , Zi ∈
R

m contains all of the monomials which are only a function

of xi and Zik ∈ R
mc contains monomials which are a

combination of both xi and xk. For a standard representation

Zik and Zki have the same monomial elements but different

ordering.

Using (12) and (14) for the parameterisation of decision

variables rather than the standard form (2), we rewrite (11)

in the quadratic form

p(x1, . . . , xN) = Z(x1, . . . , xN)TGZ(x1, . . . , xN) (15)

We let di =
∑

k bik be the weighted degree of node i, and

let L be the number of links in the network, where link l

represents the edge between {i, k} for i < k as the network

is symmetric with no self-loops (i.e. an undirected graph).

We let cUi,l = bik if link l represents the link between

{i, k}, where i < k, and cUi,l = 0 otherwise. We let cLi,l = bik
if link l represents the link between {k, i}, where k < i, and

cLi,l = 0 otherwise. We let CL = [cLi,l] and CU = [cUi,l]. We

let b̂c,l = bik if link l represents the link between {i, k},

with i < k. B = [bik] is the weighted adjacency matrix and

C = CU + CL is the weighted incidence matrix.

Theorem 1: The polynomial (11) is a Sum of Squares

if there exist parameters λ1, . . . , λN and λc and matrices

Q̄13
c , Q̄23

c , Q̄33
c such that

G =

[

GA GB

GC GD

]

� 0 (16)

where, using (12), (13) and (14)

GA =diag(P1, . . . , PN) + diag(d1, . . . , dN)⊗ (Q11
c +Q22

c)

+B ⊗ (Q12
c + (Q12

c)T)

GB = GT
C = CU ⊗ (Q13

c + Q̄23
c) + CL ⊗ (Q̄13

c +Q23
c)

GD = diag(b̂c,1, . . . , b̂c,L)⊗ (Q33
c + Q̄33

c)

Q̄13
c Zik = Q13

c Zki

Q̄23
c Zik = Q23

c Zki

ZT
kiQ

33
c Zki = ZT

ikQ̄
33
c Zik

Moreover, if Q13
c = Q̄13

c , Q23
c = Q̄23

c , Q33
c = Q̄33

c then

GB = GT
C = C ⊗ (Q13

c +Q23
c)

GD = diag(b̂c,1, . . . , b̂c,L)⊗ 2Q33
c .

Proof: Combining (11)–(14) we obtain

p(x1, . . . , xN)

=
N
∑

i=1

ZT
i PiZi +

N
∑

i=1

N
∑

k=1

(bikZ
T
i Q

11
c Zi + bikZkQ

22
c Zk)

+

N
∑

i=1

N
∑

k=1

(bikZ
T
i Q

12
c Zk + bikZ

T
k Q

21
c Zi)

+

N
∑

i=1

N
∑

k=1

(bikZ
T
i Q

13
c Zik + bikZ

T
k Q

23
c Zik)

+

N
∑

i=1

N
∑

k=1

(bikZ
T
ikQ

31
c Zi + bikZ

T
ikQ

32
c Zk + bikZ

T
ikQ

33
c Zik)

(17)

By switching subscripts and using bik = bki then

p =

N
∑

i=1

N
∑

k=1

ZT
i G

ik
AZk +

N
∑

i=1

N
∑

k=1

bikZ
T
ikQ

33
c Zik

+

N
∑

i=1

N
∑

k=1

(bikZ
T
i Q

13
c Zik + bikZ

T
k Q

23
c Zik)

+
N
∑

i=1

N
∑

k=1

(bikZ
T
ikQ

31
c Zi + bikZ

T
ikQ

32
c Zk)

(18)

where

Gik
A = δikPi+δikdi(Q

11
c +Q22

c)+bik(Q
12
c +(Q12

c)T) (19)

7238

and δik is the Kronecker delta. We next remove any mono-

mials which are repeated in both Zik and Zki. Now

N
∑

i=1

N
∑

k=1

bikZ
T
i Q

13
c Zik

=
N
∑

i=1

N
∑

k>i

bikZ
T
i Q

13
c Zik +

N
∑

k=1

N
∑

i>k

bikZ
T
i Q

13
c Zik

=

N
∑

i=1

N
∑

k>i

(bikZ
T
i Q

13
c Zik + bikZ

T
k Q

13
c Zki)

=

N
∑

i=1

N
∑

k>i

(bikZ
T
i Q

13
c Zik + bikZ

T
k Q̄

13
c Zik)

(20)

Thus by changing summations and switching subscripts we

obtain

p =

N
∑

i=1

N
∑

k=1

ZT
i G

ik
AZk +

N
∑

i=1

N
∑

k>i

bikZ
T
ik[Q

33
c + Q̄33

c]Zik

+
N
∑

i=1

N
∑

k>i

(bikZ
T
i (Q

13
c + Q̄23

c)Zik + bikZ
T
k (Q̄

13
c +Q23

c)Zik)

+

N
∑

i=1

N
∑

k>i

(bikZ
T
ik(Q

31
c + Q̄32

c)Zi + bikZ
T
ik(Q̄

31
c +Q32

c)Zk)

(21)

We next remove all Zik for which bik = 0. If we let Zc,l

represent Zik, where l represents the link between {i, k},

with i < k, then

p =

N
∑

i=1

N
∑

k=1

ZT
i G

ik
AZk +

L
∑

l=1

b̂c,lZ
T
c,l(Q

33
c + Q̄33

c)Zc,l

+

N
∑

i=1

L
∑

l=1

ZT
i (c

U
i,l(Q

13
c + Q̄23

c) + cLi,l(Q̄
13
c +Q23

c))Zc,l

+
N
∑

i=1

L
∑

l=1

ZT
c,l(c

U
l,i(Q

31
c + Q̄32

c) + cLl,i(Q̄
31
c +Q32

c))Zi

(22)

where (CU)T = [cUl,i] and (CL)T = [cLl,i].
Thus p is a Sum of Squares if there exist decision variables

such that G � 0 where

p(x1, . . . , xN) = Z(x1, . . . , xN)TGZ(x1, . . . , xN)

ZT = (ZT
1 , . . . , Z

T
N , ZT

c,1, . . . , Z
T
c,L) (23)

With the representation we have just presented, without

any preprocessing we have

Size of LMI = N ∗ Dim(Zi) + L ∗ Dim(Zik) (24)

Number of Decision Variables = N ∗ Dim(λi) + Dim(λc)
(25)

We can see that the size of the LMI increases and the number

of decision variables remains constant as the number of links

in the network increases. In contrast, if we analyse (15)

without using its structure to reduce the size of the LMI

with

ZT = (ZT
1 , . . . , Z

T
N , ZT

1,2, Z
T
1,3, . . . , Z

T
N−2,N , ZT

N−1,N)
(26)

then before preprocessing we have

Size of LMI = N∗Dim(Zi)+
1

2
N(N−1)∗Dim(Zik) (27)

Number of Dec. Var. = N∗Dim(λi)+
1

2
N(N−1)∗Dim(λc)

(28)

Thus we have significantly reduced the number of decision

variables and the size of the LMI by introducing a struc-

ture to the Sum of Squares problem. As mentioned in the

introduction, this is important as the flop cost of interior

point methods is approximately linear with respect to the

size of the LMI and polynomial with respect to the number

of decision variables [1]. This allows the SOS algorithm to

better scale for polynomials with a network structure.

IV. EXAMPLES

In the following section we give details of structured Sum

of Squares computations which were carried out to analyse

4th order polynomials with a network structure.

We analysed globally coupled and 1-D lattice networks;

these are the two extremes of the number of links in a

connected network for a constant number of nodes. The

technique was tested using symmetric networks with node

and link weightings which were not identical. The CPU

time tcpu and Wall Clock time tclock for the computations

were recorded and, as the network weightings were random,

the times were averaged over a number of runs. The SDP

solution was carried out using SeDuMi 1.3 [22] on MATLAB

(R2011a) through a YALMIP interface [11] on a 2.66GHz

Intel Core i7-M620 CPU (dual core).

To analyse a 4th order polynomial where xi ∈ R for i =
1, . . . , N , the standard vectors of monomials are

Zi(xi) = (xi, x
2
i), Zik = (xixk) (29)

From these monomial vectors Qc is parameterised using the

dependencies between monomials of (x2
i)(x

2
k) = (xixk)

2,

(x2
i)(xk) = (xi)(xixk) and (x2

k)(xi) = (xk)(xixk). Also,

Zik = Zki and so Q13 = Q̄13, Q23 = Q̄23 and Q33 = Q̄33.

Example 2: We first tested the technique on the example

p =
N
∑

i=1

ai(x
2
i + x4

i)−
N
∑

i=1

N
∑

k=1

bikx
2
ix

2
k (30)

where xi ∈ R for all i. Now

Pi = ai

[

1 0
0 1

]

(31)

and

Qc =













0 0 0 λc2 −λc3

0 0 λc3 −λc1 0
0 λc3 0 0 −λc2

λc2 −λc1 0 0 0
−λc3 0 −λc2 0 −1 + 2λc1













7239

where λc = (λc1, λc2, λc3) are decision variables in the SDP.

Thus

Q11
c = Q22

c =

[

0 0
0 0

]

, Q12
c =

[

0 λc2

λc3 −λc1

]

(32)

Q13
c =

[

−λc3

0

]

, Q23
c =

[

−λc2

0

]

, Q33
c = [−1 + 2λc1]

(33)

For this system, Dim(Zi) = 2 and Dim(Zik) = 1 and so

before preprocessing

Size of LMI = 2N + L (34)

Number of Decision Variables = 3 (35)

We tested the technique on a globally coupled network

using randomly chosen weighting of 1 ≤ ai ≤ 2 and 0.5
N

≤
bij ≤

1.5
N

. We found that for a globally coupled network we

could determine SOS for N = 50.

Computational time for globally coupled network

N (nodes) 10 20 30 40 50

L (links) 45 190 435 780 1225

tcpu (s) 0.3 2.5 19.8 129.3 320.6

tclock (s) 0.2 1.4 10.7 73.5 211.2

For the globally coupled network the limit of scaling was

from the effect of L on the size of the LMI.

We next verified SOS for a 1-D lattice with a randomly

chosen weighting of 1.5 ≤ ai ≤ 2.5 and 0.5 ≤ bi,i+1 ≤ 1.

For a 1-D lattice network we could determine SOS for N =
400 due to the lower number of links.

Computational time for 1D lattice network

N (nodes) 50 100 200 300 400

L (links) 49 99 199 299 399

tcpu (s) 1.0 5.7 43.8 130.8 308.4

tclock (s) 0.6 3.0 23.8 76.9 196.2

For both of the above problems existing Sum of Squares

toolboxes were able to verify SOS for N = 15, but were

computationally impractical for N = 20. SOSTOOLS [20]

scaled in a similar manner for both network types.

Computational time for 1-D lattice with SOSTOOLS

N (nodes) 11 13 15 17

L (links) 10 12 14 16

tcpu (s) 5.2 21.8 80.0 532.5

For this example Structured Sum of Squares did not appear

to be conservative e.g for the 1-D lattice with N = 50, the

technique showed SOS for ai = 2, bi,i+1 = 1 but not for

ai = 1.99, bi,i+1 = 1, which is expected by noting that

x4
i + x4

i+1 − 2x2
ix

2
i+1 = (x2

i − x2
i+1)

2.

Example 3: We also analysed the domains on which

Hamiltonian functions for a Duffing oscillator network were

positive definite using structured SOS, in order to show

stability of system (6). Recall from (7) that

V =

N
∑

i=1

(
1

2
z2i +ai(

1

2
y2i −

1

4
y4i))+

1

2

N
∑

i=1

N
∑

k=1

bik
1

4
(yk − yi)

4

(36)

This can be reduced to testing

V1 =

N
∑

i=1

ai(
1

2
y2i −

1

4
y4i) +

1

2

N
∑

i=1

N
∑

k=1

bik
1

4
(yk − yi)

4 (37)

This is locally positive definite about yi = 0 but we require

techniques to find whether it is positive definite for a larger

domain. This an important starting point for analysing non-

linear behaviour such as finding the region of attraction

estimate if the equilibrium point is asymptotically stable.

To find the positive definite domain, we tested whether

p(y1, . . . , yN) = V1 −

N
∑

i=1

φi(yi) is SOS (38)

where

φi(yi) = λiy
2
i (g − y2i) (39)

and λi > 0, which, when true, implies that V1 is positive

definite for y2i < g.

In this case

pi = ai(
1

2
y2i −

1

4
y4i)− λiy

2
i (g − y2i) (40)

pc =
1

2
(0.25y4k − y3kyi + 1.5y2i y

2
k − yky

3
i + 0.25y4i) (41)

Pi = ai

[

0.5 0
0 −0.25

]

− λi

[

g 0
0 −1

]

where λi > 0 are parameters which are not due to dependen-

cies in the monomial vector and which are used as decision

variables in the SDP.

Qc =
1

2













0 0 0 λc2 −λc3

0 0.25 λc3 −λc1 −0.5
0 λc3 0 0 −λc2

λc2 −λc1 0 0.25 −0.5
−λc3 −0.5 −λc2 −0.5 1.5 + 2λc1













where λc = (λc1, λc2, λc3) are decision variables in the SDP.

Thus

Q11
c = Q22

c =
1

2

[

0 0
0 0.25

]

(42)

Q12
c =

1

2

[

0 λc2

λc3 −λc1

]

, Q13
c =

1

2

[

−λc3

−0.5

]

(43)

Q23
c =

1

2

[

−λc2

−0.5

]

, Q33
c =

1

2
[1.5 + 2λc1] (44)

For this system, Dim(Zi) = 2 and Dim(Zik) = 1 and so

before preprocessing

Size of LMI = 2N + L (45)

Number of Decision Variables = N + 3 (46)

where the N comes from the positive definite function

parameters.

For the globally coupled network we set g = 1.8 and we

randomly set 0.5
N

≤ bij ≤
1.5
N

and 0.5 ≤ ai ≤ 1.5.

Computational time for globally coupled network

7240

N (nodes) 10 20 30 40 50

L (links) 45 190 435 780 1225

tcpu (s) 0.3 3.2 19.7 103.4 348.1

tclock (s) 0.2 1.7 10.7 59.9 229.7

Once again, the limit on scaling for global coupling was the

size of the LMI due to L.

For the 1-D lattice network we set g = 1.8 and we

randomly set 0.5 ≤ bij ≤ 1 and 0.5 ≤ ai ≤ 1.5.

Computational time for 1D lattice network

N (nodes) 50 100 200 300

L (links) 49 99 199 299

tcpu (s) 1.2 5.6 41.3 137.6

tclock (s) 0.7 3.0 22.9 91.9

For the same problem existing Sum of Squares toolboxes

were able to verify SOS for N = 15, with N = 20
computationally impractical.

It would be expected that V1 should be positive definite for

at least g = 2, whereas structured SOS could only verify SOS

for g < 2 and so gave a conservative result. But this occurred

for N = 2, where Structured SOS is equivalent to standard

SOS programming, and so the conservatism was unlikely to

be due to the structured SOS technique. It may be possible

to overcome this using multipliers, using a transformation of

variables, or using some other form of preprocessing.

V. CONCLUSION

In this paper we have introduced the concept of structured

Sum of Squares in order to allow Sum of Squares program-

ming to scale for networked systems. We have also applied

this technique to analyse two examples of large polynomial

functions with a network structure. The technique was shown

to be applicable for large problems where typical Sum of

Squares programming techniques do not scale well.

One future direction is to extend the above techniques to

find structured Lyapunov functions for networked systems,

rather than testing known Lyapunov function candidates, as

well as to determine regions of attraction for large scale

systems. Another future direction of research is to apply the

technique to more complicated examples and a variety of

network types.

VI. APPENDIX A

V̇ =
N
∑

i=1

(zi(−γizi − ai(yi − y3i)) + ai(yi − y3i)zi)

+

N
∑

i=1

zi

N
∑

j=1

bij(yj − yi)
3 −

1

2

N
∑

i=1

N
∑

k=1

2bik(yk − yi)
3zi

= −

N
∑

i=1

γiz
2
i ≤ 0

(47)

using bij = bji.

REFERENCES

[1] P. Apkarian and H. D. Tuan. Parameterized LMIs in control theory.
SIAM Journal on Control and Optimization, 38:1241–1264, 2000.

[2] A. R. Bergen and D. J. Hill. A structure preserving model for power
system analysis. IEEE Transactions on Power Apparatus and Systems,
100(1):25–35, 1981.

[3] G. Chesi. Domain of attraction: Estimates for non-polynomial systems
via LMIs. Proc. 16th IFAC World Congress on Automatic Control,
2005.

[4] G. Chesi. LMI techniques for optimization over polynomials in con-
trol: a survey. IEEE Transactions in Automatic Control, 55(11):2500–
2510, 2010.

[5] E. J. Hancock and A. Papachristodoulou. Generalised absolute stability
and sum of squares. Proceedings of the American Control Conference,
2011.

[6] J. L. Hemmen and W. F. Wreszinski. Lyapunov functions for the
Kuramoto model of nonlinearly coupled oscillators. Journal of

Statistical Physics, 72(1/2):145–166, 1993.

[7] A. Jadbabaie, N. Motee, and M. Barahona. On the stability of the
Kuramoto model of coupled nonlinear oscillators. Proceedings of the

2004 American Control Conference, 2004.

[8] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[9] M. Kojima, S. Kim, and H. Waki. Sparsity in sum of squares
polynomials. Mathematical Programming, 103(1):45–62, 2005.

[10] E. Kosmatopoulos and M. Christodoulou. Structural properties of
gradient recurrent high-order neural networks. IEEE Transactions on

Circuits and Systems- II, 42(9), 1995.

[11] J. Löfberg. YALMIP : A toolbox for modeling and optimization in
MATLAB. In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[12] J. Löfberg. Pre- and post-processing sum-of-squares programs in
practice. IEEE Transactions on Automatic Control, 54(5):1007–1011,
2009.

[13] M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45(2):167–256, 2003.

[14] J. Nie. Sum of squares method for sensor network localisation.
Computational Optimization and Applications, 43(2):151–179, 2009.

[15] A. Papachristodoulou and S. Prajna. On the construction of Lyapunov
functions using sum of squares decomposition. Proceedings of the

IEEE CDC, 2002.

[16] A. Papachristodoulou and S. Prajna. Analysis of non-polynomial
systems using the sum of squares decomposition. Positive Polynomials

in Control, 312:23–43, 2005.

[17] A. Papachristodoulou and S. Prajna. A tutorial on sum of squares
techniques for systems analysis. Proceedings of the American Control

Conference, 2005.

[18] P. A. Parrilo. Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization. PhD Thesis, 2000.

[19] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic
problems. Mathematical Programming, 96:293–320, 2003.

[20] S. Prajna, A. Papachristodoulou, and P. A. Parrilo. Introducing
SOSTOOLS: A general purpose sum of squares program solver.
Proceedings of the IEEE CDC, 2002.

[21] Y. Pykh. Lyapunov functions for Lotka-Volterra systems: An overview
and problems. Proceedings of 5th IFAC Symposium ”Nonlinear

Control Systems”, 2001.

[22] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones. Optimization Methods and Software, pages
625–653, 1999.

[23] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares
and semidefinite programming relaxations for polynomial optimisation
problems with structured sparsity. SIAM Journal on Optimization,
17(1):218–242, 2006.

[24] X. F. Wang and G. Chen. Complex networks: small-world, scale-free
and beyond. Circuits and Systems Magazine, IEEE, 3(1):6 – 20, 2003.

7241

