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Abstract— This paper deals with the task of finding certi-
fied lower bounds for the performance of Analog to Digital
Converters (ADCs). A general ADC is modeled as a causal,
discrete-time dynamical system with outputs taking values in a
finite set. We define the performance of an ADC as the worst-
case average intensity of the filtered input matching error. The
input matching error is the difference between the input and
output of the ADC. This error signal is filtered using a shaping
filter, the passband of which determines the frequency region
of interest for minimizing the error. The problem of finding
a lower bound for the performance of an ADC is formulated
as a dynamic game problem in which the input signal to the
ADC plays against the output of the ADC. Furthermore, the
performance measure must be optimized in the presence of
quantized disturbances (output of the ADC) that can exceed
the control variable (input of the ADC) in magnitude. We
characterize the optimal solution in terms of a Bellman-type
inequality. A numerical approach is presented to compute the
value function in parallel with the feedback law for generating
the worst case input signal. The specific structure of the problem
is used to prove certain properties of the value function that
allow for iterative computation of a certified solution to the
Bellman inequality. The solution provides a certified lower
bound on the performance of any ADC with respect to the
selected performance criteria.

I. INTRODUCTION AND MOTIVATION

Analog to Digital Converters (ADCs) act as the interface
between the analog world and digital processors. They are
present in almost all digital control and communication
systems and modern high-speed data conversion and storage
systems. Naturally, the design and analysis of ADCs have, for
many years, attracted the attention and interest of researchers
from various disciplines across academia and industry. De-
spite the progress that has been made in this field, the design
of optimal ADCs remains an open challenging problem, and
the fundamental limitations of their performance are not well
understood. This paper is concerned with the latter problem.

A particular class of ADCs primarily used in high resolu-
tion applications is the Delta-Sigma Modulator (DSM). Fig.
1, illustrates the classical first-order DSM [1], where Q is a
quantizer with uniform step size.

An extensive body of research on DSMs has appeared in
the signal processing literature. One well known approach is

Project partially supported by: Army Research Office ELASTx program.
†Mitra Osqui is currently a Ph.D. candidate at the department of EECS,

Laboratory for Information and Decision Systems (LIDS) at the Mas-
sachusetts Institute of Technology, Cambridge, MA. E-mail: mitra@mit.edu
‡ Alexandre Megretski is currently a professor of EECS at LIDS at MIT,

Cambridge, MA. E-mail: ameg@mit.edu.
] Mardavij Roozbehani is currently a research scientist at LIDS at MIT,

Cambridge, MA. E-mail: mardavij@mit.edu.

j - -

�

6

- -1
1−z−1

z−1

-
+

r[n] y[n]
Q

u[n]

Fig. 1. Classical First-Order Sigma-Delta Modulator

based on linearized additive noise models and filter design
for noise shaping [1]-[6]. The underlying assumption for
validity of the linearized additive noise model is availability
of a relatively high number of bits. Alternative approaches
based on a formalism of the signal transformation performed
by the quantizer have been exploited for deterministic anal-
ysis in [7]-[9]. Some other works that do not use linearized
additive noise models are reported in [10]-[12].

In the control field, [13]-[15] find performance bounds and
suboptimal policies for linear stochastic control problems
using Bellman inequalities with quadratic value functions.
The problem is relaxed and solved using linear matrix
inequalities and semidefinite programming. Finally, some
work on quantized control are reported in [16]-[18].

In [19] we provided a characterization of the solution to
the optimal ADC design problem and presented a generic
methodology for numerical computation of sub-optimal so-
lutions along with computation of a certified upper bound on
the performance. The performance of an ADC is evaluated
with respect to a cost function which is a measure of the
intensity of the error signal (the difference between the input
signal and its quantized version) for the worst case input. The
error signal is passed through a shaping filter which dictates
the frequency region in which the error is to be minimized.
Furthermore, we showed that the dynamical system within
the optimal ADC is a copy of the shaping filter used to define
the performance criteria. In [19] we also presented an exact
analytical solution to the optimal ADC for first-order shaping
filters, and showed that the classical first-order DSM (Figure
1) is identical to our optimal ADC. This result proved the
optimality of the classical first-order DSM with respect to
the adopted performance measure, and was a step towards
understanding the limitations of performance.

In this paper, we present a framework for finding certified
lower bounds for the performance of ADCs with shaping
filters of arbitrary order. We use the same ADC model and
performance measure adopted in [19]. The objective is to
find a lower bound on the infimum of the cost function. The
approach is to find a feedback law for generating the input of
the ADC such that regardless of its output, the performance
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is bounded from below by a certain value. Thus, the input
of the ADC is viewed as the control, and the problem is
posed within a non-linear optimal feedback control/game
framework. We show that the optimal control law can be
characterized in terms of a value function satisfying an
analog of the Bellman inequality. The value function in the
Bellman inequality and the corresponding control law can be
jointly computed via value iteration.

Since searching for the value function involves solving
a sequence of infinite dimensional optimization problems,
some approximations are needed for numerical computation.
First, a finite-dimensional parameterization of the value
function is selected. Second, the state space and the input
space are discretized. Third, the computations are restricted
to a finite subset of the space. The latter step deserves
further elaboration. If the dynamical system inside the ADC
is strictly stable, then a bounded control invariant set exists,
thus it is possible to do the computations over a bounded
region. The challenge arises when the filter has poles on
the unit circle. In this case, there does not exist a bounded
control invariant set, since the disturbances can exceed the
control variable in magnitude. Under the condition that there
is at most one pole on the unit circle, we present a theorem
that states that the value function is zero outside a certain
bounded space. Thus, we have an a priori knowledge of an
analytic expression for the value function beyond a bounded
region. As a result, the computations need to be carried out
only over this bounded region. This is in dramatic contrast
with the case of upper bound computations [19], something
to be discussed in section III.

The organization is as follows. Section II provides a
rigorous problem formulation. The main contributions are
presented in Section III and IV. Section III describes our
methodology for finding certified lower bounds for ADCs.
Section IV provides our theoretical results. We provide an
example in section V, and section VI concludes the paper.

A. Preliminaries

Notation 1: Function f : Rm 7→ R is called BIBO if
condition

sup
x∈Ω
|f(x)| <∞ (1)

holds for every bounded set Ω ⊂ Rm.

Notation 2: Given a set P , `+(P ) is the set of all se-
quences that map Z+ to P :

`+(P )
def
= {x : Z+ 7→ P} . (2)

II. PROBLEM FORMULATION

The problem setup in this section is taken from [19].

A. Analog to Digital Converters

In this paper, a general ADC is viewed as a causal,
discrete-time, non-linear system Ψ, accepting arbitrary inputs
in the [−1, 1] range, and producing outputs in a fixed finite

subset U ⊂ R, as shown in Fig. 2. We assume that the
smallest element in the set U is less than −1 and the largest
element is greater than 1.

- -Ψ
r[n] ∈ [−1, 1]

n ∈ Z+

u[n] ∈ U

n ∈ Z+

Fig. 2. Analog to Digital Converter as a Dynamical System

Equivalently, an ADC is defined by a sequence of func-
tions Υn : [−1, 1]

n+1 7→ U according to

Ψ : u[n] = Υn (r[n], r[n− 1], · · · , r[0]) , n ∈ Z+. (3)

The class of ADCs defined above is denoted by YU .

B. Asymptotic Weighted Average Intensity (AWAI) of a Signal

The Asymptotic Weighted Average Intensity (AWAI) of
a signal w is denoted by ηG,φ (w) , which depends on the
transfer function G (z) of a strictly causal LTI dynamical
system LG and a non-negative function φ : R 7→ R+:

ηG,φ (w) = lim sup
N 7→∞

1

N + 1

N∑
n=0

φ (q[n]) , (4)

where the sequence q is the response to input w of the
dynamical system LG defined by:

x[n+ 1] = Ax[n] +Bw[n], x[0] = 0, ∀n ∈ Z+ (5)
q[n] = Cx[n], (6)

where A, B, C are given matrices of appropriate dimensions.
Examples of functions that we consider for φ are: φ(·) = |·|
and φ(·) = |·|2. The motivation for these selections for φ and
for using the AWAI as a measure of the quality of analog to
digital conversion is presented in [19].

C. ADC Performance Measure

The setup that we use to measure the performance of an
ADC is illustrated in Fig. 3. The performance measure of
Ψ ∈ YU , denoted by JG,φ (Ψ) , is the worst-case AWAI of
the error signal for all input sequences r ∈ `+([−1, 1]), that
is:

JG,φ (Ψ) = sup
r∈`+([−1,1])

ηG,φ (r −Ψ (r)) . (7)

f- - -

6

- Ψ +−
r[n] u[n] w[n] q[n]LG

Fig. 3. Setup Used for Measuring the Performance of the ADC
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D. ADC Optimization
Given LG and φ, we consider Ψo ∈ YU an optimal ADC

if JG,φ (Ψo) ≤ JG,φ (Ψ) for all Ψ ∈ YU . The corresponding
optimal performance measure γG,φ (U) is defined as

γG,φ (U) = inf
Ψ∈YU

JG,φ (Ψ) . (8)

The objective is to find certified lower bounds for (8).

III. OUR APPROACH
We find the lower bound on the performance of any

given ADC belonging to the class YU by associating the
problem with a full-information feedback control problem.
The objective is to find a feedback law for generating the
input of the ADC, r, such that regardless of the output u, the
performance is bounded from below by a certain value. Thus,
in this setup, r is viewed as the control and u is viewed as the
input of a strictly causal system with output r. The setup is
depicted in Fig. 4, where the function Kr : Rm 7→ [−1, 1] is
said to be an admissible controller if there exists γ ∈ [0,∞)
such that every triplet of sequences (x, u, r) satisfying

x[n+ 1] = Ax[n] +Br[n]−Bu[n], x[0] = 0, (9)
r[n] = Kr (x[n]) , (10)
q[n] = Cx[n], (11)

also satisfies the dissipation inequality

inf
N

N∑
n=0

(φ (q[n])− γ) > −∞. (12)

Note that if (12) holds subject to (9)-(11), then γG,φ (U) ≥
γ. Let γo be the minimal upper bound of γ, for which an
admissible controller exists. Then Kr is said to be an optimal
controller if (12) is satisfied with γ = γo.

?

r[n]
�

x[n]f- -
-+−

u[n] w[n]

q[n]

LG

Kr(·)

Fig. 4. Full State-Feedback Control Setup

A. The Bellman Inequality
The solution to a well-posed state-feedback optimal con-

trol problem can be characterized as the solution to the
associated Bellman equation [20]-[23]. Herein, standard
techniques are used to show that there exists a controller Kr

such that (12) holds, if and only if the solution to an analog
of the Bellman equation exists. The formulation will be made
more precise as follows. Define function σγ : Rm 7→ R by

σγ (x) = γ − φ (Cx) . (13)

The control sequence r satisfying (10) results in an output
sequence q satisfying (12), if and only if there exists a
function V : Rm 7→ R+, such that inequality

V (x) ≥ σγ (x) + inf
r∈[−1,1]

max
u∈U

V (Ax+Br −Bu) (14)

holds for all x ∈ Rm (see Theorem 1). We refer to inequality
(14) as the Bellman inequality, and to a function V satisfying
(14) as the value function.

B. Numerical Solutions to the Bellman Inequality

In this section, we outline our approach for numerical
computation of the value function V and the control function
Kr. We can simplify the problem of searching for a solution
to inequality (14) by instead finding a solution V ≥ 0 to the
inequality

V (x) ≥ σγ (x) + min
r∈Γr

max
u∈U

V (Ax+Br −Bu) , ∀x ∈ Rm

(15)
where Γr is a finite subset of [−1, 1]. Since for every function
g : [−1, 1] 7→ R, we have

inf
r∈[−1,1]

g (r) ≤ min
r∈Γr

g (r) , (16)

a solution V of (15) is also a solution of (14). In the
remainder of this section we focus on finding a solution to
(15).

A control invariant set of system (9), with respect to Γr,
is formally defined as a subset I ⊂ Rm such that:

∀x ∈ I, ∃r ∈ Γr : Ax+Br −Bu ∈ I, ∀u ∈ U. (17)

Furthermore, a strong invariant set of system (9), with
respect to Γr, is defined as a subset I ⊂ Rm such that:

∀x ∈ I : Ax+Br −Bu ∈ I, , ∀r ∈ Γr, ∀u ∈ U. (18)

Ideally we would like to have a bounded invariant set,
so that the search for V satisfying the Bellman inequality
is restricted to a bounded region of the state space. If
max | eig(A)| < 1, then a bounded set I satisfying (18) is
guaranteed to exist. However, if max | eig(A)| = 1, then
there does not exist a bounded set I satisfying (17), due
to the assumption that the smallest element in the set U
is less than −1 and the largest element is greater than 1.
The case when max | eig(A)| = 1 presents difficulties, since
we cannot search for a numerical solution to (15) over an
unbounded state space. However, for the case that there is
only one pole on the unit circle, we will establish in Theorem
2 that the value function is zero for all x outside a certain
bounded region. Hence, the numerical search for V satisfying
(15) needs to be carried out only over a bounded subset
of the state space. Next, uniform grids are created for the
state space. In this paper, these are uniformly-spaced, discrete
subsets of the Euclidean space, and are defined precisely as
follows. The set

G = {i∆ | i ∈ Z} (19)
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is a grid on R, where D = 1/∆ is a positive integer. The
corresponding grid on I is

Γ = Gm ∩ I. (20)

Furthermore, we define Γr = {r1, r2, · · · , rL} as

Γr = G ∩ [−1, 1] .

The next step is to create a finite-dimensional parame-
terization of V. In this paper, the search is performed over
the class of piecewise constant (PWC) functions assuming a
constant value over a tile. A tile in Gn, n ∈ N is defined as
the smallest hypercube formed by 2n points on the grid, and
thus, has 2n faces (the faces are hypercubes of dimension
n−1). By convention, we assume that the n faces that contain
the lexicographically smallest vertex are closed, and the rest
are open. The union of all such tiles covers Rn and their
intersection is empty. Let Ti denote the ith tile over the grid
Gm, and T the set of all tiles that lie within I, and NT the
number of all such tiles:

T = {Ti | i ∈ {1, 2, · · · , NT }} .

The PWC parameterization of V is as follows

V (x) = Vi, ∀x ∈ Ti, i ∈ {1, 2, · · · , NT } (21)

where Vi ∈ R+. We then search for a solution V : I 7→ R+

of (15) for all x ∈ I within the class of PWC functions
defined in (21). The corresponding PWC control function
Kr : I 7→ Γr is given by

Kr (x) = arg min
r∈Γr

max
u∈U,x̄∈T (x)

V (Ax̄+Br −Bu) , ∀x ∈ I.
(22)

where T (x) = Ti for x ∈ Ti. In the next subsection we show
how to search and certify functions V and Kr satisfying (15)
and (22).

C. Searching for Numerical Solutions

The Bellman inequality (15) is solved via value iteration.
The algorithm is initialized at Λ0 (x) = 0, for all x ∈ T , and
at stage k+ 1 it computes a PWC function Λk+1 : T 7→ R+

satisfying

Λk+1 (x) =

max

{
0, σγ (x) + min

r∈Γr
max

u∈U,x̄∈T (x)
Λk (Ax̄+Br −Bu)

}
.

(23)

At each stage of the iteration, Λk+1 is computed and
certified to satisfy (23) for all x ∈ T as follows:

1) For every i ∈ {1, 2, · · · , NT } and j ∈ {1, 2, · · · , L},
define

σi = sup
x∈Ti

σγ (x) ,

Yij = {Ax+Brj −Bu | x ∈ Ti, rj ∈ Γr, u ∈ U} ,

and find all the tiles that intersect with Yij

Θij = {p | Tp ∩ Yij 6= {∅} , p ∈ {1, 2, · · · , NT }} .

2) Let

vs = Λk (x) , x ∈ Ts, s ∈ {1, 2, · · · , NT } .

Compute
vij = max

s∈Θij
vs.

3) For every tile x ∈ Ti compute PWC functions:

Λk+1 (x) = max

{
0, σi + min

j
vij

}
.

When the iteration converges, it converges pointwise to a
limit Λ : T 7→ R+, where the limit satisfies, for all x ∈ T ,
the equality

Λ (x) =

max

{
0, σγ (x) + min

r∈Γr
max

u∈U,x̄∈T (x)
Λ (Ax̄+Br −Bu)

}
.

(24)

The largest γ for which (23) converges is found through
line search. We take V (x) = Λ (x) , for all x ∈ T . The
associated suboptimal control law is a PWC function defined
over all tiles Ti in the control invariant set I that satisfies
(22).

IV. THEORETICAL STATEMENTS

In this section, we show that under some technical as-
sumptions, the value function in (14) is zero beyond a
bounded region. However, we first present a theorem that
establishes the link between the full information feedback
control problem and the Bellman inequality (14). Note that in
this section we use subscript notation for values of sequences
at specific time instances instead of the bracket notion used
elsewhere in the paper.

Theorem 1: Let X be a topological space, Ω be a compact
metric space, U be a finite set, and f : X × Ω × U 7→ X
and σ : X 7→ R be continuous functions. Then the following
statements are equivalent:

(i)
V∞(x̄)

def
= sup

τ∈Z+

Vτ (x̄) <∞, ∀x̄ ∈ X, (25)

where Vτ : X 7→ R+ is defined by

Vτ (x̄) = max
θ0

inf
r0

max
u0,θ1

· · · inf
rτ−2

max
uτ−2,θτ−1

τ−1∑
n=0

hn+1σ(xn),

(26)
with rn, un, θn restricted by rn ∈ Ω, un ∈ U, θn ∈
{0, 1} and xn, hn defined by

xn+1 = f(xn, rn, un), x0 = x̄, ∀n ∈ Z+ (27)
hn+1 = θnhn, h0 = 1, ∀n ∈ Z+. (28)

(ii) The sequence of functions Λk : X 7→ R+ defined by

Λ0 (x) ≡ 0

Λk+1 (x) = max

{
0, σ (x) + inf

r∈Ω
max
u∈U

Λk (f(x, r, u))

}
(29)
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converges pointwise to a limit Λ∞ : X 7→ R+.
(iii) There exists a function V : X 7→ R+ such that

V (x) = max

{
0, σ(x) + inf

r∈Ω
max
u∈U

V (f(x, r, u))

}
(30)

for every x ∈ X .
(iv) There exists a function V : X 7→ R+ such that

V (x) ≥ σ(x) + inf
r∈Ω

max
u∈U

V (f(x, r, u)), ∀x ∈ X.
(31)

Moreover, if (i)−(iv) hold, then V∞ is a solution of (30) and

V∞ = Λ∞ ≥ Vk = Λk, ∀k ∈ Z+ (32)
V ≥ V∞. (33)

Furthermore, if the sequence of functions Rn : X 7→ Ω are
such that

max
u∈U

V∞(f(x,Rn(x), u)) ≤ 2−nε+ inf
r∈Ω

max
u∈U

V∞(f(x, r, u))

(34)
then,

sup
τ

max
{uk}τ−2

k=0

τ−1∑
n=0

σ(xn) ≤ ε+ V∞(x0) (35)

subject to xn+1 = f(xn, Rn(xn), un).
Proof: Omitted due to space constraints, please see the

full paper on arXiv.
Definition 1: Let ν be a non-zero vector in Rm. A cylin-

der of radius β and axis ν is defined as:

Cβ(ν) =

{
p ∈ Rm : inf

t∈R
|p− tν| ≤ β

}
. (36)

The following theorem establishes that the value function
is zero for all x outside a certain bounded region.

Theorem 2: Let U ⊂ R be a fixed finite set. Consider the
system defined by equation (9), where x ∈ `+(Rm), r ∈
`+([−1, 1]), u ∈ `+(U), and the pair (A,B) is controllable.
Suppose that A has at most one eigenvalue on the unit
circle. Let e1 denote the eigenvector corresponding to the
eigenvalue of A that is on the unit circle. Let V be defined
by (25) and σ be BIBO. If the set

S0 = {x ∈ Cβ(e1) : σ(x) > −1}, ∀β ∈ R+ (37)

is bounded, then there exists β̃ ∈ R+ such that the set

M = {x ∈ Cβ̃(e1) : V (x) 6= 0} (38)

is bounded.
Proof: Omitted due to space constraints, please see the

full paper on arXiv.

V. NUMERICAL EXAMPLE
Consider the example in [19], were the dynamical system

LG (5)−(6) has transfer function

H(z) =
z + 1

z(z − 1)
.

Let U = {−1.5, 0, 1.5}, φ(x) = |Cx|, and x =[
x1 x2

]T
. From [19], the strong invariant set I is given

by

I = {x ∈ R2 : |x1 − x2| ≤ 2.5}. (39)

Due to the pole at z = 1, the strong invariant set I given
by (39) is unbounded and defines an infinite strip in R2.
However, according to Theorem 2 we need to search for
V (x) only inside a bounded region within this infinite strip,
since V (x) = 0 for all x outside a certain bounded region.
The bounded region is found via trial and error. We select a
grid spacing of ∆ = 1/64. Following the procedures outlined
in subsections III-B and III-C, the largest γ for which the
iteration in (23) converges to the limit Λ in (24), is γ =
0.925, which is a certified lower bound on the performance of
any arbitrary ADC with respect to the specific performance
measure selected. Figures 5, 6, and 7 show the value function
V , the cross section of V , and the zero level set of V ,
respectively. Figures 8 and 9 show the control function and
its cross section, respectively. The certified upper bound for
the performance of the ADC designed in [19] with respect
to the same performance criteria is 1.1875.
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Fig. 5. Value Function V (x) for Lower Bound
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VI. CONCLUSION

In this paper, we studied performance limitations of Ana-
log to Digital Converters (ADCs). The performance of an
ADC was defined in terms of a measure that represents the
worst case average intensity of the filtered input matching
error. The passband of the shaping filter defines the frequency
region in which the error is to be minimized. The problem of
finding a lower bound for the performance of an ADC was
associated with a full information feedback optimal control
problem and formulated as a dynamic game in which the
input of the ADC (control variable) played against the output
of the ADC (quantized disturbance). Since the disturbances
can exceed the control variable in magnitude, if the shaping
filter has a pole on the unit circle, then there does not exist
a bounded control invariant set, which presents a challenge
for numerical computations. This challenge is overcome with
theoretical results that show that the value function is zero
beyond a bounded region, thus computations need to be done
only over this bounded region. A numerical algorithm was
presented that provided certified solutions to the underlying
Bellman inequality in parallel with the control law; hence,
certified lower bounds on the performance of arbitrary ADCs
with respect to the adopted performance criteria.
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