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Abstract— This paper deals with a formation control prob-
lem for second-order multi-agent systems with heterogeneous
time-delays. We aim to control multiple agents so as to form a
desired formation pattern and to move with an assigned velocity
in an assigned direction. The assigned velocity and direction are
transmitted through long-distance communication from human
operators as external signals. Some of the agents, called leaders,
can receive the external signals. As shown in this paper, in multi-
agent systems with heterogeneous time-delays, there remain
formation and velocity errors because of the asymmetry of
the time-delays. We investigate how large errors arise in these
systems, and propose the best selection of leaders so as to
minimize the velocity error. Finally, some numerical results
demonstrate the validity of the proposed analyses.

I. INTRODUCTION

Recently, the autonomous navigation of multi-agents, e.g.

autonomous robots and unmanned air vehicles (UAVs), has

been an area of significant interest. Thus, formation control

is the most essential for navigation in order to guide the

agents in a desired formation pattern. Fax and Murray [1]

have derived the necessary and sufficient condition to achieve

an assigned formation for multi-agent systems. These agents

can communicate with each other through a network such

as wireless LAN. Based on the local information transmitted

through the network communication, the group of agents can

achieve an assigned formation.

In many papers concerning formation control, e. g. [1],

[2], deploying the agents in a desired formation pattern is

dealt with as the control objective. In practice, the formation

control is available to redeploy the agents in a desired

direction. The command of the redeployment is transmitted

via long-distance communication from human operators as

external signals including a desired direction and velocity.

The expense to equip all agents with long-distance commu-

nication units to receive the external signals will be huge

in large-scale multi-agent systems. Therefore, the number of

the agents, called leaders, which can receive the external

signals is limited. The rest of the agents do not receive

the command signals, but can move according to network-

connected agents. As a result, the group of agents are

expected to move in the assigned direction at the assigned

velocity.

On the other hand, time-delays of local information are

caused by radio disturbance on networks. As this paper will
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reveal, these time-delays possibly interfere with the desired

formation and/or desired velocity in the case that not all

the agents can receive the external signals. We are naturally

interested in how accurately the agents form the formation

and move at the desired velocity in the presence of time-

delays. However, there are few papers which investigate the

accuracy of the formation in connection with time-delays.

This paper deals with a formation control problem with

constant velocity assignment for second-order multi-agent

systems with heterogeneous time-delays. The first contribu-

tion of this paper is to derive the formation and velocity

errors in terms of the network structures of the time-delayed

multi-agent systems. This result suggests that not only the

network structures but also the assignment of the leaders

affect the accuracy of the formation and velocity. The second

contribution of this paper is to propose the best selection

of leaders so as to minimize the velocity error. Using the

proposed method, we can decide which agents should be

leaders to improve the control performance.

For single-order multi-agent systems, Ren et al.[3] have

investigated the situation where the external signals can

be received by all agents. Ghabchelee et al.[4] have dealt

with the same situation for multi-agent systems with time-

delayed networks. As for second-order systems, Ren [5], [6]

has considered a tracking problem for multi-agent systems

without time-delays based on consensus, where time-varying

reference velocities are considered. J. Hu, Y. Hong [7], H.

Su and X. Wang [8] have dealt with multi-agent systems

including uniform time-delays. These existing papers have

mainly dealt with the case where all the agents can receive

the external signals; namely all of them are leaders. On the

other hand, this paper deals with the case where only some of

the agents are leaders, and investigates which agents should

be leaders to reduce undesirable errors.

The following notations are used in this paper: In and

On ∈ R
n×n are the identity and zero matrices, respectively.

1n and 0n ∈ R
n are the n dimensional vectors all of whose

entries are 1 and 0, respectively. Eij ∈ R
n×n is the matrix

whose (i, j) entry is 1 and the other entries are 0. Let ‖ · ‖
be the Euclidean norm for a vector. Let | · | be the number

of the elements for a countable set.

II. SECOND-ORDER MULTI-AGENT SYSTEM

Consider the multi-agent system consisting of n agents

which are governed by the second-order dynamics

ẍi(t) = ui(t), i ∈ N (1)
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where N = {1, 2, · · · , n} is the set of the agent numbers,

and xi(t), ui(t) ∈ R are the position and input of agent

i, respectively. Although this paper deals with the one-

dimensional space for simplicity, it is easy to extend the

following results to higher-dimensional spaces.

Each agent in this system communicates with the others

over a network, where the agent can measure the relative

positions and velocities from the network-connected agents.

The network structure is described by the coupling gains

aij

{

> 0, if agents i and j can communicate
= 0, if they cannot communicate.

Note that this network is directed, thus aij 6= aji in general.

We assume that this network has a globally reachable agent

[9]. The agents can compare their positions and velocities

with the network-connected agents’ ones. Then, the group

of agents are expected to form a desired formation by the

relative information via network communication.

Information through this network includes time-delays

in practice. We consider two types of time-delays:

communication-delay and computation-delay. Let τ c
ij ≥ 0

be the communication-delay, which occurs when agent i re-

ceives information from agent j via network communication.

Let τs
ij ≥ 0 be the computation-delay, which occurs when

agent i compares his position and velocity with agent j’s

ones by using agent i’s poor computational ability. In general,

these time-delays are heterogeneous, that is, τ c
ij 6= τ c

kl,

τs
ij 6= τs

kl and τs
ij 6= τ c

kl for i, j, k and l ∈ N .

Some matrices are defined in order to describe the network

structure of the multi-agent system in question. Let Laplacian

L ∈ R
n×n be

[L]ij =

{
∑n

k=1 aik, if j = i
−aij , otherwise

(2)

where [L]ij is the (i, j) entry of L. Note that all of the row-

sums of Laplacian L are 0, that is, L1n = 0n, which means

that one of the eigenvalues of L is zero. Let p ∈ R
1×n be the

left eigenvector of L corresponding to the zero eigenvalue,

whose sum of elements is 1, that is, pL = 0⊤n and p1n = 1.

Note that the row vector p is non-negative, namely, pi ≥ 0 for

all i ∈ N , where pi is the i-th element of p [10]. The delay-

Laplacian Lτ ∈ R
n×n describes the time-delayed network

as follows:

[Lτ ]ij =

{ ∑n

k=1 τs
ikaik, if j = i

−τ c
ijaij , otherwise

, (3)

which is weighted with the time-delays τs
ik and τ c

ik compared

with Laplacian L in (2). This matrix has been introduced

by the authors to express time-delays according to network

structures [11].

For this system, command signals are transmitted from

human operators. Only some of the agents are equipped with

long-distance communication devices, and can receive these

signals. Such agents are called leaders, which might be plural

or might be singular. The leaders guide the other agents,

followers. The followers do not receive the command signal,

but can move according to network-connected agents. As a

1!

2! 4!

3!

1!

1!

2! 2!

Fig. 1. Network structure of a multi-agent system

result, the group of agents, both leaders and followers, are

expected to move at a desired velocity which the leaders

receive via the long-distance communication. The set of

leaders is given by L ⊂ N . Whether agent i can receive

or not is expressed by the receiving gains such that

bi

{

> 0, i ∈ L (agent i receives command)
= 0, i 6∈ L (agent i cannot receive command).

Let the receiving matrix be defined as

B = diag(b1, b2, · · · , bn) ∈ R
n×n. (4)

Consider an example of the multi-agent systems.

Example 1: Fig. 1 depicts a networked multi-agent sys-

tem consisting of 4 agents, numbered from 1 to 4. The

arrows between the agents represent communication paths

between the agents. The numbers beside the arrows denote

the computation-delays τs
ij and communication-delays τ c

ij .

The dashed arrow means that agent 1 can receive a command

signal from a human operator; thus the set of leaders is given

by L = {1}. Let the coupling gains aij and receiving gains

bi be 1 if there is corresponding communication; otherwise

0. Then, the parameters aij , bi, τs
ij and τ c

ij are given by

a21 = 1, a23 = 1, a32 = 1, a43 = 1, b1 = 1

τs
21 =τ c

21 =τs
32 =τ c

32 =1, τs
23 =τ c

23 =τs
43 =τ c

43 =2

and the rest are 0. Then, the corresponding Laplacian, delay-

Laplacian and receiving matrix are given by

L=









0 0 0 0
−1 2 −1 0

0 −1 1 0
0 0 −1 1









, Lτ =









0 0 0 0
−1 3 −2 0

0 −1 1 0
0 0 −2 2









and B = diag(1, 0, 0, 0) from (2), (3) and (4).

III. PROBLEM SETTING

The control objective for the multi-agent system (1) is

that the group of agents achieve a desired formation and

move at an assigned velocity. Fig. 2 illustrates an example

of a formation pattern of 4 agents. The assigned formation

is given by the constant value x∗
i ∈ R, which is the desired

relative distance of agent i from a certain base point c(t) ∈
R. Note that the base point c(t) cannot be predetermined

because all agents do not obtain the information on their

1! 3!2! 4!

c(t) +x∗
1 +x∗

2 +x∗
3 +x∗

4

Fig. 2. Example of a formation pattern
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absolute positions. Instead, we can assign the formation

pattern through the relative positions x∗
i . Let ν∗ ∈ R be the

desired velocity of the group of agents. Then, our control

objective is represented as
{

limt→∞(ẋi(t) − ν∗) = 0
limt→∞{xi(t) − (c(t) + x∗

i )} = 0
(5)

for a time-varying function c(t). This is called formation con-

trol with velocity assignment. Note that the second equation

of (5) is reduced to the condition of the relative positions as

lim
t→∞

(xi(t) − xj(t)) = l∗ij , ∀(i, j) ∈ N ×N (6)

for the desired relative distance l∗ij = x∗
i −x∗

j between agents

i and j. (6) is equivalent to the consensus condition with the

bias l∗ij .

In order to achieve (5), we consider following controller,

which is a time-delayed version of the conventional forma-

tion controller introduced by Ren [6].

ui(t) = −
n

∑

j=1

aij{((xi(t−τs
ij) − xj(t−τ c

ij)) − l∗ij)

+kv(ẋi(t−τs
ij) − ẋj(t−τ c

ij))} − bi(ẋi(t−τ s
ij) − ν∗) (7)

Here, kv is a damping gain common among the agents. The

first/second term in the summation is the error feedback

between the relative position/velocity from agent j, which

is available when aij > 0. The final term represents the

feedback of the error between the absolute velocity and the

desired velocity. This feedback is available when bi > 0,

that is, agent i is a leader. These feedbacks includes the

computation-delay τ s
ij at the agent i’s own state qi(t) and

the communication-delay τ c
ij at the agent j’s state qj(t).

Note that the controller (7) does not use the information on

the absolute positions. Thus, all agents do not require GPS

tracking equipment.

Our question is whether the formation control (5) with

velocity assignment is realized, or not. If the formation

control is not perfectly realized, we are interested in how

accurately the agents achieve the desired formation and move

at the assigned velocity. In order to estimate these accuracies,

we introduce the formation error Fe and the velocity error Ve.

The formation error Fe is defined as the sum of the squared

steady errors of the agents’ positions as follows:

Fe := lim
t→∞

min
c(t)∈R

√

√

√

√

n
∑

i=1

{xi(t) − (c(t) + x∗
i )}2, (8)

where the base point c(t) is regarded as a point with which

the formation pattern is the most similar to the desired

formation pattern. The velocity error Fv is defined as the

sum of the squared steady errors of the agents’ velocities:

Ve := lim
t→∞

√

√

√

√

n
∑

i=1

(ẋi(t) − ν∗)2. (9)

The first topic of this paper is to investigate how accurately

the formation control (5) is achieved by calculating the

formation and velocity errors Fe and Ve.

Problem 1: Consider the multi-agent system (1) with the

network where the coupling and receiving gains are given

by aij , bi ≥ 0, respectively. Let τs
ij , τ c

ij ≥ 0 be the

computation-delays and communication-delays. For this sys-

tem and controller (7), derive the formation and velocity

errors Fe, Ve defined by (8) and (9), respectively.

Naturally, we expect that the group of agents to move

at the desired velocity as accurately as they can so as to

reach a goal on time. In order to satisfy this expectation,

we minimize the velocity error by appropriately assigning

leaders. Now, the number |L| of leaders is limited to m due

to cost controlling. Moreover, the gain bi should be smaller

than the upper limit b̄i from the viewpoint of the S/N ratio.

These assumptions are summarized as follows:

bi ∈ [0, b̄i] for i ∈ L, bi = 0 for i 6∈ L. (10)

The second topic of this paper is given as follows:

Problem 2: Consider the same setting to Problem 1 and

the additional condition of the upper limit b̄i > 0 of the

receiving gain bi. Then, determine the set L ⊂ N of

leaders such that |L| = m, and design the receiving gains

bi satisfying (10) so as to minimize the velocity error Ve

defined in (9), that is

min
L⊂N
|L|=m

min
bi≤b̄i,i∈L
bi=0,i 6∈L

Ve. (11)

IV. ESTIMATION OF FORMATION AND VELOCITY ERRORS

In this section, we consider Problem 1. Our strategy to

calculate the formation and velocity errors Fe and Ve is to

reduce the formation control problem (5) into a consensus

problem of a transformed system. Then, many results on the

consensus problem are available.

The expressions in (5) suggest that the base point c(t)
finally moves as a time-varying point (ν∗t + α) where ν∗ is

the assigned velocity and α is a bias of the position. Thus, we

expect that the position xi(t) will converge to the formation

pattern x∗
i plus this constantly moving point, namely, the

time-varying point (x∗
i + νt + α). However, as shown later,

this expectation is not correct due to the effect of the time-

delays of the controller (7). Let xe
i and νe be the errors

of agent i’s position and velocity from the expected point

(x∗
i +νt+α), respectively. Then, the new variable including

the errors xe
i and νe is introduced as

x̂i(t) = xi(t) − {(ν∗ + νe)t + α + (x∗
i + xe

i )}, (12)

and their collection with respect to all the agents is given by

x̂(t) = x(t) − (x∗ + xe) − {(ν∗ + νe)t + α}1n (13)

where x̂(t) = [x̂1(t), x̂2(t), · · · , x̂n(t)]⊤, x(t) =
[x1(t), x2(t), · · · , xn(t)]⊤, x∗ = [x∗

1, x
∗
2, · · · , x∗

n]⊤ and

xe = [xe
1, x

e
2, · · · , xe

n]⊤ ∈ R
n. If the new variable x̂(t) is

appropriately chosen, the formation and velocity errors Fe

and Ve can be represented by the errors xe
i and νe as follows.

Lemma 1: Assume that the system of x̂(t) defined by (13)

achieves consensus with zero velocities, that is

lim
t→∞

(x̂i(t) − x̂j(t)) = 0, lim
t→∞

˙̂xi(t) = 0, ∀i, j ∈ N ,
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for a constant vector xe ∈ R
n and a constant value νe ∈ R.

Then, the formation and velocity errors Fe and Ve in (8) and

(9) are represented as

Fe = ‖(In − C)xe‖, Ve =
√

n|νe| (14)

where C = 1n1⊤n /n.

The proof is omitted due to the limitation of space.

From (1), the dynamics of the variable x̂(t) is given as

¨̂x(t) = −
∑

i,j∈N

aij(Eiix̂(t − τs
ij) − Eij x̂(t − τ c

ij))

−kv

∑

i,j∈N

aij(Eii
˙̂x(t − τs

ij) − Eij
˙̂x(t − τ c

ij))

−
∑

i∈N

biEii
˙̂x(t − τs

ij) + d, (15)

where the vector d ∈ R
n is

d := ν∗Lτ1n − Lxe + (Lτ − B)1nνe. (16)

Thus, the vector d works on the system (15) as a disturbance.

This term can be canceled with an appropriate choice of xe
i

and νe as follows.

Lemma 2: The constant vector d in (16) is 0n by choosing

the constants xe ∈ R
n and νe ∈ R as

xe = ν∗[U, 0n][LU, (B − Lτ )1n]−1Lτ1n + 1nγ (17)

νe = ν∗ pLτ1n

p(B − Lτ )1n

(18)

for any constant γ ∈ R and matrix U ∈ R
n×(n−1) satisfying

rank[LU, (B−Lτ )1n] = n.

The proof is omitted due to the limitation of space.

From Lemma 2, the system (15) of the new variable

x̂(t) is not affected by the disturbance d for xe and νe in

(17) and (18). Then, the time-delayed system (15) does not

include any disturbances, and can achieve consensus with

zero velocities under some assumptions. Then, the formation

and velocity errors Fe and Ve are derived from Lemmas 1

and 2.

Theorem 1: Consider the multi-agent system given by

Problem 1 with the time-delayed controller (7). Assume that

the time-delayed system (15) achieves consensus with zero

velocities for d = 0. Then, the formation and velocity errors

of the original multi-agent system (1) defined in (8) and (9)

are given by

Fe =
∥

∥ν∗[(In−C)U 0n][LU (B−Lτ )1n]−1Lτ1n

∥

∥ (19)

Ve =
√

n

∣

∣

∣

∣

ν∗ pLτ1n

p(B − Lτ )1n

∣

∣

∣

∣

, (20)

where U ∈ R
n×(n−1) is a matrix such that rank[LU (B −

Lτ )1n] = n.

Proof: Let x̂(t) be the variable defined by (13) with

the constant vector xe and value νe given by (17) and (18).

Then, Lemma 2 guarantees that the constant vector d in (16)

is zero. From the assumption of this theorem, the system of

x̂(t) achieves consensus with zero velocities. Then, Lemma

1 guarantees that the formation and velocity errors Fe and

Ve are given by (14). Thus, by replacing xe and νe with (17)

and (18) in the errors (14), the resultant errors (19) and (20)

are derived.

Remark 1: Our stance in this paper is to investigate the

formation and velocity errors in the original multi-agent

system (1) under assumption that the time-delayed system

(15) achieves consensus. See other papers for the consensus

problems of multi-agent systems with/without time-delays

[10], [12], [13].

V. LEADER SELECTION PROBLEM

In this section, we consider Problem 2, and propose a

way to select leaders from the viewpoint of minimizing

the velocity error (9). The velocity error Ve calculated as

(20) can be minimized by maximizing pB1n =
∑n

i=1 pibi.

Thus, the minimizing problem (11) is reduced to how to

choose m agents as leaders whose values of pibi are larger

than the others. From this viewpoint, the following theorem

summarizes the ways to select leaders and to design their

receiving gains.

Theorem 2: Consider Problem 2. The velocity error Ve in

(9) is minimized in terms of (11) for the set L ⊂ N of leaders

such that |L| = m and

min
i∈L

pib̄i ≥ max
i6∈L

pib̄i, (21)

and the receiving gains

bi = b̄i, i ∈ L, bi = 0, i 6∈ L. (22)

Proof: From the calculated velocity error (20), the prob-

lem (11) is equivalent to maximizing pB1n =
∑n

i=1 pibi.

Thus, we consider the following problem instead of (11).

Q := max
L⊂N
|L|=m

max
bi≤b̄i,i∈L
bi=0,i 6∈L

n
∑

i=1

pibi (23)

Let L∗ ⊂ N be the set of m agents, which satisfies (21)

for L = L∗. Let L ⊂ N be a set of m agents, which is

not necessarily L∗. Note that the receiving gains bi have to

satisfy the conditions in (10). Then, the following equations

hold for the set L:
n

∑

i=1

pibi =
∑

i∈L

pibi ≤
∑

i∈L

pib̄i, (24)

where we use the property pi ≥ 0 of the left eigenvector p
of Laplacian L. Define the following sets:

N1 = L∗ ∩ L, N2 = L∗ ∩ Lc, N3 = Lc
∗ ∩ L,

where the superscript c denotes the complimentary set. Note

that L∗ = N1 ∪N2 and L = N1 ∪N3, and that |N2| = |N3|
because |L∗| = |L| = m. From the inequality (21) for L =
L∗ and the fact that N2 ⊂ L∗ and N3 ⊂ Lc

∗, the inequality

pib̄i ≥ pj b̄j holds for any pairs (i, j) ∈ N2 ×N3. Then, the

following expressions hold:
∑

i∈L

pib̄i =
∑

i∈N1

pib̄i +
∑

i∈N3

pib̄i

≤
∑

i∈N1

pib̄i +
∑

i∈N2

pib̄i =
∑

i∈L∗

pib̄i. (25)

768



!!

"!

#!

$!

%!

1!

Fig. 3. Network for simulations

Note that L can be any subset of N which has m elements.

Thus, from (24) and (25), the value (23) satisfies

Q ≤ max
L⊂N
|L|=m

∑

i∈L

pib̄i ≤
∑

i∈L∗

pib̄i.

The equations hold in these expressions if L = L∗ in the

middle of the expressions. Thus, Q =
∑

i∈L∗

pib̄i is the

solution. The proof is completed.

Note that the value pi represents agent i’s power of

propagating information to the group of agents through the

network represented by Laplacian L. This propagation is am-

plified via the receiving gain bi. Thus, as shown in Theorem

2, it is reasonable that the value pi and the upper limit b̄i of

the receiving gain hold the keys to minimizing the velocity

error Ve. (21) suggests how to select leaders according to the

network structure through the left eigenvector p of Laplacian

L. Note that (21) does not depend on the time-delays τ s
ij and

τ c
ij .

VI. NUMERICAL EXAMPLES

This section demonstrates the validity of the proposed

methods with simulation results. Consider the network de-

picted in Fig. 3. The coupling gains aij of connected agents

take the value 1, and the rest of aij take 0. Then, the

Laplacian is given by

L =

















1 0 0 0 −1 0
−1 2 −1 0 0 0

0 −1 1 0 0 0
−1 0 0 2 0 −1
−1 −1 0 −1 3 0

0 0 0 −1 0 1

















from (2). We consider two cases according to time-delays.

The first case is that the computation-delays and the

communication-delays are uniform such as τs
ij = τ c

ij = 0.15.

The second case is that the time-delays are non-uniform; the

communication-delays τ c
ij = 0.3, and no computation-delays

τs
ij = 0. Then, from (3), the delay-Laplacians in the two

cases are described as Lτ = 0.15L and

Lτ = −0.3

















0 0 0 0 1 0
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1
1 1 0 1 0 0
0 0 0 1 0 0

















, (26)
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Fig. 4. Trajectories of the agents on the x-y plane with uniform time-
delays: In (a1) and (a2), agents 1 and 2 are assigned as leaders, respectively.
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Fig. 5. Velocities of the agents with uniform time-delays.

respectively. The damping gain kv is given by 2. We will

assign one leader (m = 1) from the 6 agents with the upper

limit b̄i = 1 of the receiving gain bi.

The setting of simulations is as follows: We consider the

2-dimensional space for clear pictures on simulation results,

but actually two dimensions are individually dealt with. The

desired formation pattern is assigned as

x∗
1 = (0, 0), x∗

2 = (−1, 0), x∗
3 = (−2, 0)

x∗
4 = (0,−1), x∗

5 = (−1,−1), x∗
6 = (0,−2)

on the x-y plane. Let the assigned velocity be ν∗ =
(0.35, 0.35), whose elements represent the velocity along x
and y axes, respectively. The initial positions of the agents

are given by

x1(0) = (5, 5), x2(0) = (0, 8), x3(0) = (5, 0)

x4(0) = (2, 2), x5(0) = (4, 6), x6(0) = (1, 1).

Case 1 (τs
ij = τ c

ij = 0.15): the delay-Laplacian satisfies

Lτ1n = 0.3L1n = 0n. Thus, Theorem 1 guarantees that

the formation and velocity errors are Fe = Ve = 0 from (19)

and (20) for any receiving matrix B. Therefore, the formation

control (5) with velocity assignment is achieved regardless of

the choice of the leader. We verify this analysis result by two

simulations: either of agents 1 and 2 is the leader, and bi = 1
for the leader and the rest of bi are zero. Figs. 4 depict the

trajectories of the agents on the x-y plane from time t = 0
to 30. Figures (a1) and (a2) refer to the situations where
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Fig. 6. Trajectories of the agents on the x-y plane with non-uniform time-
delays: In (a1) and (a2), agents 1 and 2 are assigned as leaders, respectively.
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Fig. 7. Velocities of the agents with non-uniform time-delays.

agents 1 and 2 are the leaders, respectively. The circle marks

represent the positions of the agents at t = 30. In both the

simulations, the agents gather and form the desired formation

pattern assigned by x∗
i . Figs. 5 (a1) and (a2) depict the time-

plots of the velocities of the agents along the x axis for agent

1 or 2 as the leader. It is observed that the velocities of all

the agents converge to the desired velocity 0.35 in both the

simulations. These results show that the formation control (5)

with velocity assignment is achieved even if any agent is the

leader. Thus, the validity of the analysis result in Theorem

1 is verified.

Case 2 (τ c
ij = 0.3, τs

ij = 0): for the delay-Laplacian

(26), Lτ1n = −0.3[1, 2, 1, 2, 3, 1]⊤ 6= 0n is calculated; thus,

the formation and velocity errors will occur according to

Theorem 1. Now, we assign one agent to the leader in order

to minimize the velocity error Ve from the leader selection

method proposed in Theorem 2. Note that the left eigenvector

p of Laplacian L is given by

p = [0.38, 0.13, 0.13, 0.13, 0.13, 0.13].

Among the elements of p, p1 = 0.38 is the largest. Thus,

the leader’s condition (21) holds for L = {1} because the

upper limits of the receiving gains are given as b̄i = 1 for

all the agents. Then, agent 1 should be the leader in order

to minimize the velocity error Ve. The receiving gains are

designed as b1 = 1 and bi = 0 for the rest from (22). We

confirm this result by two simulations: either of agent 1 or

2 is the leader, bi = 1 for the leader, and the rest of bi

are zero. Figs. 6 (a1) and (a2) show the trajectories of the

agents on the x-y plane from time t = 0 to 30. In both

the simulations, the agents gather, but do not perfectly form

the desired formation. Figs. 7 (a1) and (a2) depict the time-

plots of the velocities of the agents along the x axis. It is

observed that the velocities of all the agents converge to 0.16
and 0.076, respectively. Although the desired velocity 0.35
is not achieved in both the cases, the convergent velocities

in the former case are closer to the desired velocity. Thus,

agent 1 is the best leader to minimize the velocity error,

which illustrates the validity of Theorem 2.

VII. CONCLUSION

This paper dealt with a formation control problem with

velocity assignment for multi-agent systems with hetero-

geneous time-delays. We revealed that heterogeneous time-

delays possibly cause formation and velocity errors, and de-

rived the formation and velocity errors according to network

structures of time-delayed multi-agent systems. Moreover,

we proposed a leader selection method in order to improve

the performance with respect to the velocity error. The

main result showed that the best leaders can be selected

independently of the time-delays of networks.

REFERENCES

[1] A. Fax and R. M. Murray, “Information flow and cooperative control
of vehicle formations,” IEEE Trans. on Automatic Control, vol. 49,
no. 9, pp. 1465–1476, 2004.

[2] K.-K. Oh and H.-S. Ahn, “A survey of formation of mobile agents,”
in IEEE Int. Symp. on Intelligent Control, 2010.

[3] W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and
consensus building in multiple vehicle systems,” Proc. of the Block

Island Workshop on Cooperative Control, Springer-Verlag Series:

Lecture Notes in Control and Information Sciences, vol. 309, pp. 439–
442, 2004.

[4] R. Ghabcheloo, A. P. Aguiar, A. Pascoal, and C. Silvestre, “Synchro-
nization in multi-agent systems with switching topologies and non-
homogeneous communication delays,” in Proc. of 46th IEEE Conf. on

Decision and Control, 2007.
[5] W. Ren, “Consensus strategies for cooperative control of vehicle

formations,” IET Control Theory Application, vol. 1, no. 2, pp. 505–
512, 2007.

[6] ——, “On consensus algorithms for double-integrator dynamics,”
IEEE Trans. on Automatic Control, vol. 53, no. 6, pp. 1503–1507,
2008.

[7] J. Hu and Y. Hong, “Leader-following coordination of multi-agent
systems with coupling time delays,” Physica A, vol. 374, no. 2, pp.
853–863, 2007.

[8] H. Su and X.Wang, “Second-order consensus of multiple agents with
coupling delay,” in Proc. of the 7th World Congress on Intelligent

Control and Automation, 2008.
[9] C. Gao, J. Cortés, and F. Bullo, “Notes on averaging over acyclic

digraphs and discrete coverage control,” Automatica, vol. 44, no. 8,
pp. 2120–2127, 2008.

[10] W. Ren and E. Atkins, “Distributed multi-vehicle coordinated control
via local information exchange,” Int. Jour. of Robust and Nonlinear

Control, vol. 17, pp. 1002–1033, 2007.
[11] K. Sakurama and K. Nakano, “Average-consensus problem for net-

worked multi-agent systems with heterogeneous time-delays,” in IFAC

World Congress on Automatic Control, 2011.
[12] G. H. W. Yu and M. Cao, “Some necessary and sufficient conditions

for second-order consensus in multi-agent dynamical systems,” Auto-

matica, vol. 46, pp. 1089–1095, 2010.
[13] C.-L. Liu and F. Liu, “Consensus problem of second-order dynamic

agents with heterogeneous input and communication delays,” Int. Jour.

of Computers, Communications & Control, vol. 5, no. 3, pp. 325–335,
2010.

770


