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Abstract— The problem of synchronization of systems over a
network, is a widely studied problem given the importance
of synchronization phenomena, in various natural science
and engineering applications. In this paper, we study one
of the important aspect of this problem that is, robustness
of synchronization to random link failure uncertainty. The
link failure uncertainty is modeled as an on-off Bernoulli
switch. The main results of this paper provide, for the first
time, analytical conditions for the maximum tolerable link
failure uncertainty to maintain mean square synchronization
among the network components. The analytical conditions are
expressed in terms of individual component dynamics, network
properties, and link uncertainty. The main results of this paper
can be used to determine, the weakest/strongest link in the
network. Simulation results are provided to verify the main
results of this paper.

I. INTRODUCTION

The problem of synchronization of systems over a network,
is of interest in various natural science and engineering
applications such as, synchronization of generators in elec-
trical power network, mechanical nano oscillators in sens-
ing applications, sensor network, circadian clocks, neural
networks in visual cortex in biological applications, and
synchronization of fireflies [1], [2], [3]. Synchronization in
coupled chaotic systems for secure communications and the
problem of consensus or distributed averaging in linear time
invariant (LTI) systems are also investigated [4].
One of the important problems in the study of synchro-
nization over network is that of robustness of synchro-
nization to the uncertainty in the network. Synchronization
and robustness of small world network models to random
removal of nodes has been studied in [5]. Synchronization
in blinking networks with random Bernoulli switching of the
interconnection links is investigated in [6], [7]. An informa-
tion theoretic approach to synchronization, under constraints
in information coding has been studied in [8]. Distributed
averaging problems with link failures have been studied,
as structured uncertainty problems and, bounds obtained on
convergence rates of the system based on network topology
properties [9], [10], [11].
In this paper we study synchronization of identical nonlinear
systems which are connected over a network. We are inter-
ested in studying robustness properties of the synchronization
over the network when some links are uncertain. The link
failure uncertainty is modeled as on-off Bernoulli switch.
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However the proposed framework can be easily extended to
more general uncertainty model with continuous probability
distribution. The mean square exponential synchronization
is used as a performance measure for robustness to link
failure uncertainty. The main contribution of this paper is
that it provides analytical conditions, expressed in terms
of individual component dynamics, network property and
link failure uncertainty, to maintain mean square exponential
synchronization among network component dynamics. With
link failure uncertainty model as on-off Bermoulli switch,
we show that there exists a critical probability below which
mean square exponential synchronization is not possible.
We carry out an analysis based on the linearized system
obtained from the given nonlinear dynamics. Here the lin-
earized system at any time instant is derived from the state
of the nonlinear system. Hence it encodes global stability
information of the nonlinear system as opposed to local
information contained within the linearization around an
equilibrium point. A major contribution of this work is
to demonstrate how non-equilibrium global dynamics of a
nonlinear system affects synchronization over a network in
terms of Lyapunov exponents. Furthermore, the main results
of this paper can be used to determine the weakest link in the
network. The identification of such weakest critical link is
important in application such as network power systems for
the prevention of cascade failures [12], [13]. Furthermore
the uncertainty model and the synchronization results are
particularly attractive from the point of view of its application
to study the synchronization in neurons [14].
The paper is organized as follows. Preliminaries and problem
formulation are discussed in section II. The main results
are proved in section III. Simulation results are provided in
section IV followed by conclusion in section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider M identical systems given by

xi(t +1) = f (xi(t)), ∀i ∈ {1, . . . ,M} (1)

where xi(t) ∈ X ⊆ RN , for all i ∈ {1, . . . ,M}. We make the
following assumptions on the system (1).
Assumption 1: The system mapping f is assumed to be
C1 function of x and the Jacobian ∂ f

∂x (x) is invertible and
bounded for almost all Lebesgue measurable x ∈ X .
We are interested in the synchronization of these M systems
when they are coupled together through a network where,
synchronization is achieved when all the components have
identical state at all times i.e. xi(t) = x j(t), ∀i, j, ∀t. Further-
more we assume the network coupling to be undirected. Let
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the underlying network for the coupling be denoted by an
undirected graph G (V ,E ). Let V and E be the set of all
vertices and edges respectively, of the graph G . Henceforth
when we refer to the network we imply G .
Assumption 2: We assume that the components are con-
nected over the network through an identical scalar value
function of states.
We can now write the equation for the networked system as

xi(t +1) = f (xi(t))+
M

∑
j=1, j 6=i

ai jb(g(x j(t))−g(xi(t))) (2)

for all i ∈ {1, . . . ,M}, where b ∈ RN and g : RN → R a C1

function and ai j = 1, ∀ei j ∈ E . As we have assumed that the
graph is undirected we have ai j = a ji, ∀i 6= j. We define the
graph Laplacian as L = [li j]n×n where

li j =

{
ai j if j 6= i

−∑k,i 6=k aik j = i (3)

Hence (2) may be written as

x̄(t +1) = f̄ (x̄(t))+(L⊗b) ḡ(x̄(t)) (4)

where x̄(t) = [x′1(t), · · · ,x′M(t)]′, x′i(t) denotes the transpose
of xi(t), f̄ (x̄(t)) = [ f ′(x1(t)), · · · , f ′(xM(t))]′ and ḡ(x̄(t)) =
[g(x1(t)), · · · ,g(xM(t))]′. Here, L⊗b denotes the Kronecker
product. We now describe the model for randomness in
the network. The uncertainty in the links connecting any
two components (i.e. edges of the graph G ) is modeled
as a on-off Bernoulli switch ξi j ∈ {0,1} with following
probability distribution Prob

{
ξi j(t) = 1

}
= p,∀ei j ∈ E . The

random variable ξi j is independent for all pairs (i, j). Thus
(4) with Bernoulli switching may be written as

x̄(t +1) = f̄ (x̄(t))+(L1⊗b+L2 (Ξ(t))⊗b) ḡ(x̄(t)) (5)

where L2(Ξ(t)) is the random graph Laplacian for the
random graph obtained due to the stochastic on-off coupling,
where Ξ(t) = diag{ξ1(t), · · · ,ξr(t)} where r is the cardinality
of the total number of uncertain edges.
The synchronization manifold of the system given by S =
{s(t) : s(t + 1) = f (s(t)), t ∈ Z}, is the set we desire the
network components to eventually converge to. We can write
the error between each component state and the S to be
ei(t) = xi(t)− s(t). In order to achieve synchronization, it is
sufficient for this error to converge to zero. Now suppose
we write ē(t) = [e′1(t), · · · ,e′M(t)]′ we can write the error
dynamics for each error in a compact form as

ē(t +1) = f̄ (x̄(t))− f̄ (s(t))+(L1⊗b)(ḡ(x̄(t))− ḡ(s(t)))

+(L2(Ξ(t))⊗b)(ḡ(x̄(t))− ḡ(s(t))) (6)

where we use the property of every Laplacian for M
node graph that, it has an eigenvector of all ones 1M,1 :=
[1, . . . ,1]′ ∈ RM with zero eigenvalue.
We are interested in deriving conditions for the stability of
the synchronization error dynamics (6). The stochastic nature
of error dynamics due to on-off switching in the network cou-
pling, requires an appropriate stochastic notion of stability,

for the synchronization of the dynamics. Consider a general
random dynamical system (RDS) of the form:

x(t +1) = S(x(t),ζ (t)) (7)

where x(t) ∈ X ⊂ RN , a compact set, ζ (t) ∈ W ≡ {0,1}
compact for t ≥ 0, is a sequence of i.i.d random variables,
S : X ×W → X is the nonlinear map assumed to be atleast
C1 with respect to x(t) ∈ X for any given fixed ζ (t) ∈W .
We assume that x = 0 is an equilibrium point for (7) i.e.,
S(0,ζ (t)) = 0. The following notion of stability can be
defined for (7) [15], [16].
Definition 3 ( Exponential Mean Square (EMS) Stable):
The solution x = 0 is said to be EMS stable for (7) if there
exists a positive constants K < ∞ and β < 1 such that

Eζ t
0

[
‖ x(t +1) ‖2]≤ Kβ

t‖x(0)‖2, ∀t ≥ 0

for almost all w.r.t. Lebesgue measure initial condition x(0)∈
X where Eζ t

0
[·] is the expectation taken over {ζ (0), . . . ,ζ (t)}.

For further information regarding the definition we direct the
reader to [17], [15], [16].
Remark 4: We will say the coupled system (5) is synchro-
nized in exponential mean square sense if for the error
dynamics (6), origin is exponentially mean square stable.
Next we define Lyapunov exponents from ergodic theory of
dynamical systems. For more details refer to [18], [19].
Definition 5 (Lyapunov exponents): For deterministic sys-
tem x(t + 1) = f (x(t)), let x 7→ M (x) where M (x)
is an N × N invertible matrix. Furthermore, suppose
M(x(t)) satisfies the condition limt→∞

1
t log(||M (x(t))||) and

limt→∞
1
t log(||M (x(t))−1||), then we can define

Λ(x(0)) = lim
t→∞

(
M (x(0), t)′M (x(0), t)

) 1
2t (8)

where M (x(0), t) := M(x(t)) . . .M(x(0)). Let λ i
exp for i =

1, . . . ,N be the eigenvalues of Λ(x(0)) such that λ 1
exp ≥

λ 2
exp ≥ ·· · ≥ λ N

exp. Then the Lyapunov exponents Λi
exp are

defined as Λi
exp = logλ i

exp for i = 1, . . . ,N. Also Λ1
exp is

known as the maximum Lyapunov exponent. Furthermore,
if Λ(x(0)) 6= 0 then

lim
t→∞

1
t

log |det(M (x(0), t))|= log
N

∏
k=1

λ
k
exp(x(0)) (9)

The limit (8) is known to exists by Oseledet’s Multiplicative
Ergodic theorem [20]. For the proof of (9), we refer the
readers to [21] Proposition 1.3 and Theorem 1.6 and [22].

III. MAIN RESULTS

There are two main results of this paper. Our first main result
provides necessary condition for the mean square exponential
synchronization where only one link in the network is uncer-
tain. The second main result provides necessary condition for
mean square exponential synchronization when all the links
in the network are uncertain but with only one uncertainty.
Theorem 6 (Single Link Uncertain): Consider the uncertain
network system (5) and let the link between the vertices
vi,v j ∈ V be uncertain, where the uncertainty is model as
Bernoulli random variable with probability of non-erasure
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equal to p. Let H j(s(t)) =
∂ f
∂x (s(t)) + σ jb

∂g
∂x (s(t)), where

σ j is the jth eigenvalue of the deterministic Laplacian L1
and λ k

exp( j) = exp(Λk
exp( j)) and Λk

exp( j) be the kth Lyapunov
exponent of the system

y j(t +1) = H j(s(t))y j(t), s(t +1) = f (s(t)) (10)

We denote by Λ̄k
exp( j) the positive Lyapunov exponents of

(10) and λ̄ k
exp( j) = exp(Λ̄k

exp( j)) The necessary condition for
(5) to synchronize exponentially in mean square sense is
given by

(1− p)

M−1

∏
j=1

(
N j

∏
i=1

λ̄
ki
exp(σ j)

)2
< 1 (11)

where ki ∈ {1, . . . ,N j} and 1≤ N j ≤ N for j = 1, . . . ,M−1.

The next theorem provides necessary condition for the mean
square synchronization for simultaneous switching of all
links.
Theorem 7 (All Links Uncertain): Consider the uncertain
network system (5) with all links uncertain and with single
uncertainty i.e. L1 ⊗ b + L2 (Ξ(t))⊗ b = ξ (t)L⊗ b where
ξ (t) is a Bernoulli random variable with probability of non-
erasure equal to p. Then the necessary condition for (5) to
synchronize exponentially in mean square sense is given by

(1− pnetwork)

(
N̄

∏
i=1

λ̄
ki
exp

)2

< 1 (12)

where pnetwork = p σ1
σM−1

(
2− σ1

σM−1

)
, where σi is the ith

non-zero eigenvalue of the Laplacian matrix L of the
graph G (V ,E ) and λ k

exp = exp(Λk
exp) and Λk

exp is the kth

Lyapunov exponent of the system x(t + 1) = f (x(t)). Here
we denote by Λ̄

ki
exp the positive Lyapunov exponents of

x(t +1) = f (x(t)) where ki ∈ {1, . . . , N̄} and 1≤ N̄ ≤ N and
λ̄ k

exp = exp(Λ̄k
exp).

For the synchronization problem, our aim is to get all
the systems to converge to the set S = {s(t) : s(t + 1) =
f (s(t)), t ∈ Z} which is a fixed sequence. Then for this
sequence of maps M (s(t)) if limt→∞

1
t log(||M(s(t))||) = 0

and limt→∞
1
t log(||M(s(t))−1||) = 0 we can define Lyapunov

exponents as in Definition (5) for sequence M(s(t)). These
exponents being defined for a sequence of matrices are
unique with respect to the initial condition in RN as given
by Oseledet’s Multiplicative Ergodic Theorem [20]. We will
make use of this general definition of Lyapunov exponents
to define exponents of certain linear maps in the proofs of
the main theorems.
The error equation in (6) resembles the observer error equa-
tion with s(t) being the true state and x̄ the estimated states.
In [23], the problem of nonlinear observation over analog
erasure channel, modeled as a Bernoulli random variable,
is studied. In particular, the main results of [23] (Theorem
10) provides necessary condition for the mean square ex-
ponential stabilziation of the observer error dynamics. This
resemblence between the synchronization problem and the

observation problem will now be used to prove the two main
results of this paper. The first Lemma towards the proof of
the main Theorems 6 and 7 provides necessary condition for
the synchronization of (6) in terms of the linearization of the
error dynamics.
Lemma 8: The necessary condition for the synchronization
of the system (6) is that the following linearized error
dynamics

s(t +1) = f (s(t))

η̄(t +1) =
(

∂ f̄
∂ x̄

(s(t))+((L1 +L2(Ξ(t)))⊗b)
∂ ḡ
∂ x̄

(s(t))
)

η̄(t)

=
(

IM⊗A(s(t))+(L1 +L2(Ξ(t)))⊗bG(s(t))
)

η̄(t)
(13)

is mean square exponentially stable i.e. there exist positive
constants K2 < ∞ and β < 1 s.t.

EΞt
0

[
‖ η̄(t +1) ‖2]≤ K2β

t ‖ η̄(0) ‖2, ∀t > 0 (14)

for almost all Lebesgue measurable initial condition η̄(0) ∈
RN where EΞt

0
[·] is the expectation over {Ξ(0), . . . ,Ξ(t)}.

Proof: The proof uses Mean Value Theorem for vector
valued functions and Fatou’s Lemma and is on similar lines
to the proof in [23].
We now use some properties of graph Laplacian to simplify
the system equation (13). We choose V to be the ortho-
normal eigenvectors of the deterministic network Laplacian
L1 as given in (13) to get

L1 =V
[

0 0
0 Λ̃1

]
V ′ =V Λ1V ′ (15)

Here Λ̃1 is a diagonal matrix of non-zero eigenvalues of L1.
Then we can decompose the Laplacian with uncertain links
L2(Ξ(t)) as

L2(Ξ(t)) =V
[

0 0
0 L̃ (Ξ(t))

]
V ′ =VL(Ξ(t))V ′ (16)

We now give a simplified form of (13) in the following
lemma.
Lemma 9: The mean square exponential stability of (13) is
equivalent to the mean square exponential stability of

s(t +1) = f (s(t))

η̃(t +1) = (IM−1⊗A(s(t))) η̃(t)

+
((

Λ̃1 + L̃ (Ξ(t))
)
⊗bG(s(t))

)
η̃(t)

:= A (s(t),Ξ(t))η̃(t) (17)

where Λ̃1 is given in (15) and L̃ (Ξ(t)) is given in (16).
Proof: The proof uses the property of the graph Lapla-

cian matrix that it has an eigenvector with zero eigen value
which gives rise to average linearized error. This linearized
error cannot be stabilized as it signifies the difference of the
synchronized system from the trajectory s(t + 1) = f (s(t))
with initial condition s(0) that we have considered. This error
is not of significance to synchronization of the trajectories
as our aim is to synchronize to the manifold and not to the
specific trajectory we consider. Hence the exponential mean
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square stability of (13) is equivalent to exponential mean
square stability of (17).
To study the synchronization of the linear error dynamics we
will first give a Lyapunov function condition as a necessary
condition for exponential mean square stability
Theorem 10: Let the η̃(t) in the system (17) be exponen-
tially mean square stable (Definition 3). Then there exists
a matrix function P(s(t) as a function of s(t) and positive
constants α , γ such that, αIN(M−1) ≤ P(s(t))≤ γIN(M−1) and
P(s(t)) satisfies the following inequality

EΞ(t)
[
A ′(s(t),Ξ(t))P(s(t +1))A (s,Ξ(t))

]
< P(s(t)) (18)

where s(t +1) = f (s(t)).
Proof: This follows from equation (17) and necessary

condition for exponential mean square stability proved in
[23] Lemma 10.
We now give the proof for the different cases for the
stochastic coupling given in Theorem 6 and 7.

Proof of Theorem 6 for single link switching:
Since only one link is uncertain L2(Ξ(t)) = ξ (t)L2 for (5).
From the equations given in (17) we get

η̃(t +1) =
(

IM−1⊗A(s(t))+
(
Λ̃1 +ξ (t)L̃

)
⊗bG(s(t))

)
η̃(t)
(19)

where L̃ is obtained as follows L̃ = Ũ ′L2Ũ = Ũ ′`i j`
′
i jŨ =

˜̀ ˜̀′, where L2 is the Laplacian for just the uncertain edge
where between vertices vi,v j ∈ V and `i j ∈ RM with 1 in
the ith position and −1 in the jth position, rest all being
zeros. Thus Laplacian L̃ is a rank 1 matrix and has only
one non-zero eigenvalue σU = 2. Thus we can write (19) as

η̃(t +1) =
(
H (s(t))+ξ (t)b̃K̃(s(t))

)
η̃(t) (20)

where H (s(t)) = IM−1⊗A(s(t))+ Λ̃1⊗bG(s(t)), b̃ = ˜̀⊗b
and K̃(s(t)) = ˜̀⊗G(s(t)). We know from Lemma 9 and
Theorem 10, that the necessary condition for mean square
synchronization can be expressed in terms of the existence
of matrix P(s(t)) such that following condition is satisfied

Eξ (t)

[(
H (s(t))+ξ (t)b̃K̃(s(t))

)′P(s(t +1))× ·· ·

· · ·
(
H (s(t))+ξ (t)b̃K̃(s(t))

)]
< P(s(t)) (21)

for all t ≥ 0. Expanding the above equation, we get

H (s(t))′P(s(t +1))H (s(t))+ pK̃(s(t))′b̃′P(s(t +1))H (s(t))

+ pH (s(t))′P(s(t +1))b̃K̃(s(t))

+ pK̃(s(t))′b̃′P(s(t +1))b̃K̃(s(t))< P(s(t)) (22)

The gain K̃(s(t)) in the above equation has a special
structure, in particular K̃(s(t)) = ˜̀′⊗G(s(t)). Since we are
interested in deriving necessary condition for mean square
synchronization, the necessary condition for inequality (22)
to be true can be written as

H (s(t))′P(s(t +1))H (s(t))+ pK (s(t))′b̃′P(s(t +1))H (s(t))

+ pH (s(t))′P(s(t +1))b̃K (s(t))

+ pK (s(t))′b̃′P(s(t +1))b̃K (s(t))< P(s(t)) (23)

where K (s(t)) is not constrained to be equal to ˜̀′ ⊗
G(s(t)). The solution to the inequality (23) for unknown gain
K (s(t)) and Lyapunov function matrix P proceeds in two
steps. In first step, the optimal gain K (s(t)) can be obtained
in terms of the unknown Lyapunov function matrix P. The
optimal gain K (s(t)) can be obtained by minimizing the
r.h.s of (23) w.r.t. K (s(t)) and can be shown to be equal to
K (s(t)) =− b̃′P(s(t+1))H (s(t))

b̃′P(s(t+1))b̃
. Substituting K (s(t)) in (23),

we get

H ′(s(t))P(s(t +1))H (s(t))

− p
H ′(s(t))P(s(t +1))b̃b̃′P(s(t +1))H (s(t))

b̃′P(s(t +1))b̃
< P(s(t))

(24)

The second step is to search over the optimal (smallest)
matrix Lyapunov function P that satisfies the above in-
equality. Following the proof in [23], it can be shown that
the necessary condition for the existence of optimal matrix
Lyapunov function P(s(t)) that satisfies above inequality is
given by

(1− p)

(
NM

∏
k=1

λ̄
ki
exp

)2

< 1 (25)

where λ̄
ki
exp = exp(Λ̄ki

exp), and Λ̄
ki
exp are the positive Lya-

punov exponents for the system y(t +1) = H (s(t))y(t), y ∈
RN(M−1), and s(t +1) = f (s(t)), where ki ∈ {1, . . . ,NM} and
1≤ NM ≤ N(M−1). Let H j(s(t)) =

∂ f
∂x (s(t))+σ jb

∂g
∂x (s(t)),

where σ j is the jth eigenvalue of the deterministic Laplacian
L1 and Λk

exp( j) be the kth Lyapunov exponent of the system

y j(t +1) = H j(s(t))y j(t), s(t +1) = f (s(t)) (26)

for j = {1, . . . ,M− 1}. We denote by Λ̄
ki
exp( j) the positive

Lyapunov exponents of (26) and λ̄
ki
exp( j) = exp(Λ̄ki

exp( j))
where ki ∈ {1, . . . ,N j} and 1≤ N j ≤ N for j = 1, . . . ,M−1.
As y(t+1) =H (s(t))y(t) is just M−1 decoupled equations
given by (26) the positive Lyapunov exponents Λ̄

ki
exp in (25)

are the positive Lyapunov exponents Λ̄
ki
exp( j) for M − 1

systems (26). Hence we get the necessary condition for mean
square exponential stability of (5) to be

(1− p)

M−1

∏
j=1

(
N j

∏
i=1

λ̄
ki
exp(σ j)

)2
< 1 (27)

for ki ∈ {1, . . . ,N j} and 1≤ N j ≤ N for j = 1, . . . ,M−1.

Proof of Theorem 7 for all links switching in unison:
We now consider the case in Theorem 7 where the entire net-
work is blinking in unison. For the system s(t+1) = f (s(t))
we can define the Lyapunov exponents from Definition 5 for
the matrices M(s(t)) = ∂ f

∂x (s(t)). For the case of all links
switching, we assume that either all the systems are coupled
or none are coupled at a time instant. In this case we have
Ξ(t) = ξ (t).Therefore we get L1 = 0 and L2(Ξ(t)) = ξ (t)L,
where L is the Laplacian matrix of the network G . Let
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L =V1ΛV ′1. Let ζ̄ (t) = (V ′1⊗ IN) η̄(t). We can then write the
linearized error dynamics as follows

ζ̄ (t +1) = (IM⊗A(s(t))+ξ (t)Λ⊗bG(s(t))) ζ̄ (t) (28)

where Λ is diagonal matrix of eigenvalues of L. Thus we can
write each of these equations in a decoupled form as

ζi(t +1) = (A(s(t))+σibG(s(t)))ζi(t), (29)

∀i = {1, . . . ,M−1} where σi are non-zero eigenvalues of Λ.
From (29) we can construct a sample system of the kind

ζ (t +1) = (A(s(t))+ξ (t)τbG(s(t)))ζ (t) (30)

From Theorem 10, we knwo that the necessary condition
for the mean square exponential stability of (30) can be
expressed in terms of the existence of matrix Lyapunov
function P such that

Eξ (t)
[
(A(s(t))+ξ (t)τbG(s(t)))′P(s(t +1))× ·· ·

· · · (A(s(t))+ξ (t)τbG(s(t)))]< P(s(t))

Expanding the above equation and minimizing the L.H.S.
of the above inequality w.r.t. G to determine the optimal
gain G, we get G(s(t)) = −1

τ

b′P(s(t+1))A(s(t))
b′P(s(t+1))b . We choose the

strictest possible τ =σM−1 for the gain so as to at least satisfy
the equation for the maximum eigenvalue σM−1 of Λ1 Now
we use this Lyapunov function P(s(t)) and gain G(s(t)) =
−1

σM−1

b′P(s(t+1))A(s(t))
b′P(s(t+1))b for each of the systems in (29). This

gives us the necessary condition for mean square stability of
each decoupled linearized error to be equal to

A(s(t))′P(s(t +1))A(s(t))

− pnetwork
A(s(t))′P(s(t +1))bb′P(s(t +1))A(s(t))

b′P(s(t +1))b
< P(s(t))

for all i = {1, . . . ,M − 1}, where pnetwork :=

p
(

2σ1
σM−1

− σ2
1

σ2
M−1

)
. The search for the optimal matrix

Lyapunov function P will proceed similar to the proof from
[23], where it can be shown that the necessary condition for
the existence of optimal matrix Lyapunov function P is that
following inequlaity is satisfied.

(1− pnetwork)

(
N̄

∏
i=1

λ̄
ki
exp

)2

< 1 (31)

where pnetwork = p σ1
σM−1

(
2− σ1

σM−1

)
, where σi is the ith non-

zero eigenvalue of the Laplacian matrix L of the graph
G (V ,E ) and λ k

exp = exp(Λk
exp) where Λk

exp is the kth Lya-
punov exponent of the system x(t + 1) = f (x(t)). Λ̄

ki
exp de-

notes the positive Lyapunov exponents of x(t +1) = f (x(t))
where ki ∈ {1, . . . , N̄}, 1≤ N̄ ≤ N and λ̄

ki
exp = exp(Λ̄ki

exp).

IV. SIMULATION RESULTS

A. All Links Switching in Unison
In this case the whole network blinks with a given probability
p simultaneously. We choose the system to synchronize as
the one dimensional logistic map given by

xi(t +1) = axi(t)(1− xi(t)) := f (xi(t)) (32)

(a) (b)

Fig. 1. (a) Error dynamics at all link non-erasure probability p = 0.45, (b)
Error dynamics at all link non-erasure probability p = 0.8

where a = 3.6. We consider a simple net-
work of NV = 6 nodes with edge set E =
{e12,e15,e16,e24,e34,e36,e45,e46,e56}. We assume that
all the links switch in unison and the probability of
switching is p. We set the connection over the network as
in [24] such that, k(xi(t)) = b

aNV
f (xi(t)) = b

NV
xi(t)(1− xi(t))

where we choose b = 4. This coupling ensures that each
logistic map evolves in [0,1] even after coupling. The
Lyapunov exponent of the system for is λexp = 1.203. The
second smallest eigenvalue of the Laplacian matrix is given
by σ1 = 1.6072. The maximum eigenvalue of the Laplacian
is σM−1 = 5.5869. This gives a critical probability of
synchronization as p∗ =

(
1− 1

λ 2
exp

)
σ2

M−1
σ1(2σM−1−σ1)

= 0.6148.

We add uniform noise with variance σ2 = 0.01 to be able to
visualize the stability of the interconnection. In Figure (1a)
and (1b) we plot the error dynamics between adjacent nodes
vi − vi+1 for i ∈ {1, . . . ,VN − 1} at switching probabilities
p1 = 0.45 and p2 = 0.8, below and above the critical
probability respectively. As we can see the plots in Figure
(1a) the error dynamics is shows much more fluctuation as
compared to those in Figure (1b) by an order of magnitude
difference.

B. Single Link Switching

In this case a single link blinks with a given probability
p at a given time. We choose coupled periodically forced
Duffing’s oscillators (33) linearly coupled over the network
GD(VD,ED) in Figure 2

ẋi1(t) = xi2(t)

ẋi2(t) =−0.1xi2(t)+ xi1(t)−0.25xi1(t)3 +1.4cos(2t)

+ ∑
ei j∈ED

K(x j1(t)− xi1(t))+ ri2(t) (33)

where the coupling constant is chosen as K = 2.5 and ri j(t)
is zero mean gaussian noise with variance R= 0.1. The noise
is added to the system to help us visualize the mean square
unstable nature of the system. We take iterations of this
system after every π seconds to obtain the Poincaré map
of the system. We make the link between oscillator 3 and
4 uncertain with probability p. We compute the Lyapunov
exponents for the duffing oscillator with coupling scaled by
each of the 6 Laplacian eigenvalues. Then using the fact that
the Lyapunov exponents for the Poincaré map are simply
the exponents of the flow scaled by the average return time
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x3 x4
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Fig. 2. Graph network G with on-off link between node 3 and 4.

[25], we obtain the exponents for the Poincaré map. Only
two of these exponents are positive and they give the critical
probability to be p∗ = 0.88 as in Theorem 6.

(a) (b)

(c) (d)

Fig. 3. (a) Position error as a function of time for p = 0.89, (b) Position
error as a function of time at p = 0.91, (c) Phase space trajectories for
p = 0.89, (d) Phase space trajectories for p = 0.91

In Figure (3a) and Figure (3b) we give the error dynamics
between neighboring oscillators at probabilities p = 0.89
and p = 0.91. We see that at p = 0.89 the error doesn’t
converge to zero while for p = 0.91 the error dynamics
almost converges to zero. In Figure (3c) and Figure (3d) we
plot the phase space of all the coupled oscillators for non-
erasure probabilities p = 0.89 and p = 0.91 respectively. We
clearly see that for p = 0.91 the oscillators are synchronized,
while for p = 0.06 in Figure (3c) the oscillators are not
able to synchronize. Thus we see that the critical transition
probability p∗ = 0.88 is necessary for synchronization.

V. CONCLUSION AND FUTURE WORK

We studied the problem of robust synchronization in non-
linear network, where the interconnection link between the
individual subsystems is uncertain. The main result of this
paper provides critical value of non-erasure probability p∗,
below which the mean square synchronization among the
subsystem states is not possible. The critical probability
is shown to be the function of the individual components
dynamics and the network property. Future research efforts
will focus on generalizing this work to consider arbitrary
uncertain links with heterogenous components dynamics.
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