
Design of distributed esitimators over arbitrary causal networks

Andalam Satya Mohan Vamsi Nicola Elia

Abstract— We consider the problem of designing distributed
estimators that are realizable over a given causal communica-
tion network. We consider the following two cases - 1) Given
an interconnected plant over a given network, we design a
distributed estimator with sub-units interacting over the same
network such that each sub-unit estimates the states of the
corresponding sub-system of the plant; 2) Given a general
plant, we design a distributed estimator on a given network
such that each sub-unit estimates the whole state vector of
the plant by exchanging information with other sub-units. In
the first case, we model the problem as a special case of
distributed controller design problem discussed in our previous
work. In the second case, we use the structure of the distributed
estimator to decompose the problem into n sub-problems which
can be solved separately, given that the plant satisfies certain
detectability assumptions. The solutions of these sub-problems
are finally combined together to form a distributed estimator
that is realizable over the given network.

Index Terms— Distributed estimation, Interconnected sys-

tems, Network realizability, H2 filtering

I. INTRODUCTION

The problem of distributed estimation has been studied

for networked systems and sensor networks using various

distributed algorithms like local Kalman filtering (LKF),

distributed Kalman filtering (DKF) [1], [2], gossip interactive

Kalman filtering (GIKF) [3] to estimate the states of a

plant at each node of a sensor network by inter-sensor

communication of local observations. In the consensus based

approaches like DKF [1], [2], [4], [5], the estimation algo-

rithms are designed to perform distributed fusion of sensor

measurements and covariance data which is then provided to

micro-Kalman filters that provide estimates at each node.

In this paper, we approach the distributed estimation

problem by posing it as a distributed control problem. Sim-

ilar approaches were used when the underlying information

pattern is partially nested [6]. In the case when the nodes

communicate over a causal network interconnection, we

provided the theory to design optimal distributed controller

that can be implemented over the given causal network [7].

Posing the distributed estimation problem as a distributed

control problem and using the results from [7], we solve

two different distributed estimation problems.

This paper is presented in the following format. Section II

reviews the results given in [7], [8] regarding the state-space

and input-output representations for interconnected systems
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and the notion of network realizability over causal networks.

Section III poses two distributed estimation problems: 1) to

design distributed estimators for interconnected systems such

that each sub-unit of the estimator estimates the states of a

corresponding sub-system of the given plant, 2) to design

distributed estimators for any general plant such that each

sub-unit of the estimator estimates the state vector of the

given plant. These two problems are analyzed and solved in

Section IV and Section V. The main contribution of this

paper is that, given a causal network interconnection we

provide the best linear distributed estimator (for both the

above mentioned problems) that can be realized over the

given causal network. The proposed methodologies work for

any arbitrary network configuration as long as the detectabil-

ity conditions are satisfied. With the framework provided in

this paper, it is also easy to extend the results to distributed

H∞ filtering. A thorough comparison with other distributed

estimation algorithms will be provided in a future work.

II. INTERCONNECTED SYSTEMS

In this paper, we follow the notation used in [7] to describe

the various matrices and the interconnected systems. In [7],

[8], we provided a framework to describe the properties of

interconnected systems and introduced the notion of realiz-

ability over causal communication networks. In order to de-

scribe the design of network realizable distributed estimators,

we provide a brief summary of the results on realizability of

systems over causal networks, in this section. The structural

properties of state-space and input-output representations of

interconnected systems over causal networks and the results

corresponding to the notion of network realizability are vital

to the problem formulation and solutions provided in the later

part of this paper.

A group of plants or sub-systems interacting over a

communication network is termed as an Interconnected

system. Fig. 1 depicts an interconnected system where

{Pi}i=1,2,3 are sub-systems interacting over a communica-

tion network that can be described by a pseudograph G =
(V ,A ) where V = {1,2,3} is the vertex-set and A =
{(1,1),(1,2),(2,1),(2,2),(2,3),(3,3)} is the arc-set.

A. State-space and Input-output descriptions of intercon-

nected systems

Following the discussion in [7], we note that any discrete-

time, causal, finite-dimensional linear time-invariant (FDLTI)

interconnected system built on a causal network interconnec-

tion with an underlying graph G has a state-space realization

(A,B,C,D) where the state-space matrices are structured

according to G . The set of such state-space realizations
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Fig. 1. A simple example of an interconnected system made of 3 different
sub-systems interacting over a communication network

is denoted by S(G ,Px,Pu,Py), where Px, Pu and Py

correspond to the state, input and output partitions. Note

that a block-matrix A = [Ai j]i, j is structured according to

G = (V ,A ) if Ai j is a zero matrix when ever ( j, i) /∈ A .

Similarly, we note that the transfer function matrix of

any interconnected system over a given causal network

interconnection G is of the form P(z) = [Pi j(z)]i, j where

Pi j(z) =



















0 if there exists no path from

j to i on the graph G ,

z−l( j,i)+1Hi j(z) if the path length l( j, i) ≥ 1,

Hi j(z) if i = j
(1)

where Hi j(z) is a real-rational proper transfer function ma-

trix. The set of all such transfer function matrices [Pi j(z)]i, j

is denoted by T(G ,Pu,Py).

B. Realizing interconnected systems over the given network

A system is said to be realizable over a causal network

if it can be implemented as n individual sub-systems (with

their local states, inputs and outputs corresponding to each

node of the network) that pass messages to each other

along the directed links while respecting the causal network

interconnection and maintaining internal stability.

In this section, the network realizability property of the el-

ements of S(G ,Px,Pu,Py) and T(G ,Pu,Py) is reviewed

through Lemma 1 and Theorem 2, respectively.

Lemma 1: Given a causal network interconnection G

and the partitions Px, Pu and Py, any system Q ∈
S(G ,Px,Pu,Py) is realizable over the network G .

We define S(G ,Pu,Py) :=
⋃

Px∈Nn

S(G ,Px,Pu,Py).

Since any realizable system on the network G , with input

and output partitions as Pu and Py, is an element of

S(G ,Px,Pu,Py) for some state partition Px and any

element of S(G ,Px,Pu,Py) is realizable over G for any

Px, we can say that the set S(G ,Pu,Py) represents the set

of all discrete-time, causal FDLTI systems that are realizable

over a causal network interconnection G . We denote the set

of all stable systems in S(G ,Pu,Py) by Ss(G ,Pu,Py).

Theorem 2: Given a network represented by a directed

pseudograph G and the input and output partitions, Pu

and Py, any bounded-input bounded-output (BIBO) stable

system Q(z) ∈ T(G ,Pu,Py) is realizable over the network

G for some state partition Px.

We denote the set of all stable real-rational proper trans-

fer function matrices in T(G ,Pu,Py) by Ts(G ,Pu,Py).
One can show that Ss(G ,Pu,Py) and Ts(G ,Pu,Py) are

equivalent and represent the same set of all stable intercon-

nected systems realizable over G given the input and output

partitions Pu and Py.

III. DISTRIBUTED ESTIMATION PROBLEMS

In this paper, we consider the problem of designing linear,

distributed estimators that can be realized over a given causal

communication network. By a distributed estimator, we mean

a stable network realizable filter that can estimate the states

of a given plant using the measurements, such that the

estimates stay “close” to the states of the plant even in the

presence of process and measurement noise. Following are

the two distributed estimation problems that we analyze in

this paper.

1) We consider an interconnected plant over a causal

communication network and design a distributed es-

timator that can be realized over the same network.

The objective of this problem is to make each sub-unit

of the distributed estimator estimate the states of the

corresponding sub-system of the interconnected plant

by exchanging information with other estimator sub-

units.

2) We consider a general plant and design a distributed

estimator that can be realized over a given causal

communication network. The objective of this problem

is to make each sub-unit of the distributed estimator

estimate the complete state vector of the plant.

In the following sections, the above mentioned distributed

estimation problems are formulated and analyzed to estimate

the states of a given plant by minimizing the effect of external

disturbances and measurement noise. We shall make some

assumptions about detectability of the plant dynamics to

assure the existence of a distributed estimator.

IV. DISTRIBUTED H2 FILTERING FOR INTERCONNECTED

SYSTEMS

In this section, the first problem posed in Section III will

be addressed. Let the interconnected system P be made of

sub-systems {Pi}i interacting over a causal communication

network G . Let xi(k) be the state vector and wi(k) denote the

process and measurement noise vector corresponding to Pi at

time instant k. Due to the interactions over the network G ,

the dynamics of sub-system Pi can be given by the following

state-space equations

xi(k + 1) = Aixi(k)+ Biwi(k)+ Bν
i νi(k),

yi(k) = Cixi(k)+ Diwi(k),

ηi(k) = C
η
i xi(k)+ D

η
i wi(k) ∀ i

(2)

where ηi(k) = [ηi j(k)] j∈N
+

i \{i} and νi(k) = [νi j(k)] j∈N
−

i \{i}

denote the messages passed onto, and received from, the

network G by sub-system Pi at time instant k. In this

7306



paper, we assume that the communication links are delay-free

and noiseless. So, ηi j(k) = ν ji(k) for all (i, j) ∈ A , which

corresponds to the message passed from Pi to Pj at time

instant k.

Combining the above equations corresponding to the dy-

namics and the messages exchanged by the sub-systems

{Pi}i, we get the state equations corresponding to the in-

terconnected system P as follows

xi(k + 1) = Aixi(k)+ Biwi(k)

+ Bν
i [Cη

jix j(k)+ D
η
jiw j(k)] j∈N

−
i \{i}

= ∑
j∈N

−
i

Ai jx j(k)+ ∑
j∈N

−
i

Bi jw j(k) ∀ i
(3)

where Ai j and Bi j are appropriately defined for all i and j.

Note that Ai j and Bi j are zero matrices when ( j, i) /∈A . The

equations in (2) and (3) can be written in a simpler form as

x(k + 1) = Ax(k)+ Bw(k),

y(k) = Cx(k)+ Dw(k)
(4)

where x(k) = [xi(k)]i, y(k) = [yi(k)]i and w(k) = [wi(k)]i are

the state, measurement and disturbance vectors correspond-

ing to the interconnected plant P. Note that A and B matrices

are structured according to G while C and D matrices are

block-diagonal.

Corresponding to this interconnected system, we design a

distributed estimator (as shown in Fig. 2) such that each

sub-unit Ei estimates the states of the sub-system Pi by

exchanging messages over the same causal network G .

Network

Network

yn(k)

. . .

. . .P1 P2 Pn

EnE2E1

x1(k) x2(k) xn(k)

x̂n(k)x̂2(k)x̂1(k)

y1(k) y2(k)

Fig. 2. Interconnected plant P and a distributed estimator E in terms of
their sub-units {Pi}i and {Ei}i.

This problem can easily be converted into a distributed

control problem discussed in [7] by treating estimates as

control inputs and writing an equivalent generalized plant’s

sub-systems Gi as follows

xi(k + 1) = ∑
j∈N

−
i

Ai jx j(k)+ ∑
j∈N

−
i

Bi jw j(k),

zi(k) = xi(k)−ui(k),

yi(k) = Cixi(k)+ Diwi(k) ∀ i

(5)

where ui(k) = x̂i(k) is the state estimate and zi(k) represents

the estimation error corresponding to Pi at time instant k, for

all i. Pictorially, we can view the problem as Fig. 3 where G

is the generalized plant, corresponding to the interconnected

system P, with a state-space representation given by




x(k + 1)
z(k)
y(k)



 =





A B 0

I 0 −I

C D 0









x(k)
w(k)
u(k)



 (6)

where A = [Ai j]i, j, B = [Bi j]i, j are structured according to

the network G ; and C = diag[Ci]i, D = diag[Di]i are block

diagonal matrices; and E is stable and network realizable

over the given causal network G .

y(k)
G

E

z(k) = x(k)− x̂(k)

x̂(k)

w(k)

Fig. 3. An equivalent model using a generalized plant G in a feedback
interconnection with the distributed estimator E .

Our objective in this paper is to design a distributed

H2 estimator for an interconnected plant P which can be

interpreted as design of a stable and network realizable

controller E for the generalized plant G that minimizes the

closed-loop system norm ‖Tzw‖2 = ‖lft(G,E)‖2. Thus the

distributed H2 filtering problem can be written as

min ‖Tzw‖2

subject to E ∈ S
s(G ,Py,Pu),

Tzw is stable.

(7)

Note that the estimation problem does not require stabiliza-

tion of the given plant and thus the problem in (7) is much

simpler than the corresponding distributed controller design

problem discussed in [7].

A. Parametrization of all network realizable estimators

Using the methodology given in [7], we parametrize the

set of all possible stable estimators that are realizable over

the network G for a given interconnected plant P using the

following theorem.

Theorem 3: Given an interconnected system P over a

causal network G with a state-space representation given by

(4). Given P is detectable and given a matrix L structured

according to G , and partitioned accordingly, such that A+LC

is stable. Then the set of all stable and network realizable es-

timators that keeps the estimation error (x(k)− x̂(k)) bounded

is given by

E = lft(J,Q)

where Q is FDLTI, causal, stable and realizable over the

given network G and

J =





A + LC −L 0

I 0 −I

−C I 0



 . (8)
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B. Stability conditions for constructing L

In Theorem 3, we assumed the existence of a matrix L that

is structured according to G such that A+LC is Schur-stable.

One can treat this as a network detectability condition.

Lemma 4: Given matrices A and C that are partitioned

according to (Px,Px) and (Py,Px), respectively, there

exists a matrix L that is structured according to G and

partitioned according to (Px,Py) such that A+LC is Schur-

stable if the following feasibility problem has a solution

min 1

subject to

[

M A′G+C′R

(A′G+C′R)′ G+ G′−M

]

> 0,

G is block-diagonal and partitioned

according to (Px,Px),

R′ is structured according to G and

partitioned according to (Py,Px).

(9)

Proof: The proof of this lemma follows the stability

test for discrete-time systems, as given in [9].

C. Optimal distributed H2 filter

From the previous sections, we know that the set

of FDLTI, causal and stable systems that are realizable

over a causal communication network G are given by

Ss(G ,Py,Pu) or Ts(G ,Py,Pu). We consider Q(z) ∈
T

s(G ,Py,Pu) to parametrize all stabilizing controllers re-

alizable over G . If there exists matrix L with the properties

described in the hypothesis of Theorem 3, the set of all

closed-loop transfer matrices from w(k) to z(k) can be

obtained using Theorem 3 and the results from [10] as

Tzw = lft(T,Q) = {T11 + T12QT21 : Q ∈ T
s(G ,Py,Pu)}

(10)

where T is given by

T =

[

T11 T12

T21 T22

]

=









A 0 B 0

0 A + LC −B−LD 0

0 −I 0 I

0 −C D 0









=





A + LC −B−LD 0

−I 0 I

−C D 0



 .

(11)

Note that (11) corresponds to

T11 =

[

A + LC −B−LD

−I 0

]

, T12 = I,

T21 =

[

A + LC −B−LD

−C D

]

, T22 = 0.

Since the closed-loop transfer matrix is simply an affine

function of the controller parameter matrix Q while the delay

and sparsity constraints on the transfer function of Q are

linear, we can rewrite the distributed H2 problem in (7) as a

convex optimization problem

min ‖T11 + QT21‖2

subject to Q ∈ T
s(G ,Py,Pu).

(12)

Vectorization techniques can be applied to write the op-

timization problem in (12) as an equivalent unconstrained

problem. To represent the vectorization of a transfer function

matrix, we make a slight change of notation for representing

the matrices. Instead of treating Qi j as a sub-matrix of Q,

we consider Qi j to be the element of the matrix Q in the ith

row and jth column.

Let vec(Ts(G ,Py,Pu)) = {vec(Q)|Q ∈ Ts(G ,Py,Pu)}
denote the set of vectorized elements of Ts(G ,Py,Pu).
If Pu = {P1

u , . . . ,Pn
u} denotes the output partition, then

denote nu = ∑i P
i
u to represent the total number of outputs.

Similarly, denote ny to represent the total number of inputs.

It can be seen that vec(Ts(G ,Py,Pu)) ∈ RH
nuny×1
∞ is a

sub-space due to the delay and sparsity constraints imposed

by the network G . Let a denote the total number of elements

of Q ∈Ts(G ,Py,Pu) that are not constrained to be zero. It

can be shown that there exists a matrix H ∈ R
nuny×a
p whose

columns form an orthonormal basis for vec(Ts(G ,Py,Pu)).
Thus, we know that

Q∈T
s(G ,Py,Pu)⇐⇒ vec(Q)= Hx for some x∈RH

a×1
∞ .

Note that H contains the delay and sparsity constraints

imposed by the causal network interconnection G . Using the

results of vectorization, we get that

‖T11 + QT21‖2 = ‖vec(T11 + QT21)‖2

=
∥

∥vec(T11)+ (T t
21 ⊗ I)vec(Q)

∥

∥

2

=
∥

∥vec(T11)+ (T t
21 ⊗ I)Hx

∥

∥

2

Thus, we can pose the problem (12) as an unconstrained

H2 problem

min
∥

∥vec(T11)+ (T t
21 ⊗ I)Hx

∥

∥

2

subject to x ∈ RH
a×1
∞

(13)

which can be solved using standard techniques. Let x⋆ denote

the solution of the optimization problem (13). Then the

corresponding optimal Q⋆ is given by Q⋆ = vec−1(Hx⋆).
Since Q⋆ ∈ T

s(G ,Py,Pu), we can obtain a realization

(A⋆
Q,B⋆

Q,C⋆
Q,D⋆

Q) (using Theorem 2) that satisfies the con-

straints imposed by the causal network interconnection G

and the corresponding controller is given by E⋆ = lft(J,Q⋆),
where J is given by (8). From Theorem 3, we can see that

E⋆ thus designed is the optimal estimator that is realizable

over the given causal network G .

V. DISTRIBUTED FILTERING FOR GENERAL PLANTS

In this section, the second problem posed in Section III

will be addressed. Consider a general plant P with the

following dynamics

x(k + 1) = Ax(k)+ Bw(k),

yi(k) = Cix(k)+ Diw(k) ∀ i ∈ V
(14)

where {yi(k)}i are n measurement vectors corresponding to

n sensor units. In the case (shown in Fig. 4) when each sub-

unit Ei has to estimate the full state vector x(k) of the plant,

we define estimation error vectors zi(k) = x(k)− x̂i(k) for all

i, where x̂i(k) is the estimate provided by Ei. The objective
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is to keep the estimation error vector “close” to zero even in

the presence of external disturbance.

Network

y1(k)

P

. . . EnE2E1
x̂n(k)x̂2(k)x̂1(k)

y2(k)

w(k)

y3(k)

Fig. 4. A distributed estimation problem with a general plant and a
distributed estimator.

The distributed H2 filtering problem in this case can be

formulated as a distributed control problem by treating the

estimates as control inputs to a generalized plant G with the

following dynamics














x(k + 1)
z1(k)

...

zn(k)
y(k)















=















A B 0 . . . 0

I 0 −I
...

...
. . .

I 0 −I

C D 0 . . . 0





























x(k)
w(k)
u1(k)

...

un(k)















(15)

where ui(k) = x̂i(k) ∀ i, y(k) = [yi(k)]i, C = vert[Ci]i and D =
vert[Di]i. Thus the distributed H2 filtering problem can be

written as

min ‖Tzw‖2

subject to E(z) ∈ T
s(G ,Py,Pu), Tzw is stable

(16)

where Tzw = lft(G,E) is the closed-loop map from the

disturbance w(k) to the overall estimation error vector z(k) =
[zi(k)]i. Using the structure of G and E(z), the optimization

problem in (16) can equivalently be expressed as n indepen-

dent problems given by

min ‖Tziw‖2

subject to Ei(z) = hor[Ei j(z)] j∈V ,

Ei j(z) satisfying (1), Tziw is stable

(17)

where Tziw is the closed-loop map from w(k) to zi(k), for all

i. Based on the delay and sparsity constraints given in (1),

we define transfer function matrices (of size (P j
y ,P

j
y ))

Mi j(z) =



















0 if there exists no path from

j to i on the graph G ,

z−l( j,i)+1I if the path length l( j, i) ≥ 1,

I if i = j

(18)

Since E(z) = [Ei(z)]i ∈ Ts(G ,Py,Pu), the equations (1)

and (18) can be used to write

Ei(z) = hor[Ei j(z)] j = hor[Hi j(z)Mi j(z)] j

= hor[Hi j(z)] j diag[Mi j(z)] j := Hi(z)Mi(z)
(19)

where Hi j(z) is a stable real-rational proper transfer function

matrix. Note that Mi(z) is dependent only on the network

G and is always diagonal and stable because it has only

delay terms of the form of z−r (for some r ≥ 0) or 0 on the

diagonal. Using this separation, we can treat P̃i := MiP as

the new plant and define a corresponding generalized plant

G̃i given by








x(k + 1)
xi

M(k + 1)
zi(k)
ỹi(k)









=









A 0 B 0

Bi
MC Ai

M Bi
MD 0

I 0 0 −I

Di
MC Ci

M Di
MD 0

















x(k)
xi

M(k)
w(k)
ui(k)









(20)

where ui(k) = x̂i(k) and Mi = (Ai
M,Bi

M,Ci
M,Di

M). In the

following theorem, we show that each of the n sub-problems

in (17) can be converted into an unconstrained optimization

problem and can be solved using standard techniques.

Theorem 5: Given the plant P and a network interconnec-

tion G , the optimization problem given by (17) is equivalent

to

min
∥

∥T̃ziw

∥

∥

2

subject to Hi(z) ∈ Rp ∩RH ∞, T̃ziw is stable
(21)

where T̃ziw = lft(G̃i,Hi).
Let H⋆

i (z) be the solution of the optimization problem

(21). Then we can construct E⋆
i (z) = H⋆

i (z)Mi(z) using (19).

After computing E⋆
i (z) for all i, we obtain the estimator

E⋆(z) = [E⋆
i (z)]i which, by construction, belongs to the set

Ts(G ,Py,Pu) and is realizable over G by Theorem 2.

A. Example

In this section, we present a simple example to describe

the first problem posed in Section III. We consider an

interconnected system made of 3 sub-systems interacting

over a communication network represented by a directed

psuedograph G as shown in Fig. 1. The dynamics of the

three sub-systems and their interaction over the network is

given by





x1(k + 1)
y1(k)

η12(k)



=













0.1 0.2 0.5 0.4 0 0

0.7 −0.5 0.1 0.2 0 1

0.4 0 0 0 1 0

1 0 0 0 0 0

0 0.5 0 0 0 0

















x1(k)
w1(k)
ν12(k)



 ,









x2(k + 1)
y2(k)

η21(k)
η23(k)









=











−0.6 0.3 0 1 −1.4

0.5 0 1 0 0

0.8 0 0 0 0

1 0 0 0 0















x2(k)
w2(k)
ν21(k)



 ,

[

x3(k + 1)
y3(k)

]

=

[

0.4 0.6 0 0.3

0.6 0 1 0

]





x3(k)
w3(k)
ν32(k)



 ,

ν12(k) = η21(k), ν21(k) = η12(k), ν32(k) = η23(k).

In this particular example, one can see that the individual

sub-systems {Pi}i are stable while the interconnected system

P is unstable. We design a network realizable distributed
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AE =









































0.013 0.2 0 0 0 0 0 −0.044 0 0 0 0

−0.031 −0.5 0 0 0 0 0 0.11 0 0 0 0

−0.375 0 −0.382 −0.273 0.379 −0.723 0.747 0.046 0 0 0 0

−0.058 0 −0.19 −0.11 −0.132 −0.434 0.075 −0.191 0 0 0 0

0.026 0 −0.855 1.236 −0.739 −0.231 −0.234 0.383 0 0 0 0

−0.473 0 −0.297 0.772 0.308 −0.342 1.126 0.065 0 0 0 0

0.287 0 0.013 −0.034 −0.024 −0.045 0.308 0.008 0 0 0 0

−0.044 −0.7 0 0 0 0 0 0.154 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.092 0.493 −0.01 −0.126 −0.637

0 0 0 0 0 0 0 0.141 0.542 −0.367 −0.278 −1.356

0 0 0 0 0 0 0 −0.064 −0.385 −0.506 0.365 0.201









































BE =









































0.219 0.088 0

1.829 1.38 0

0.937 −0.091 0

0.146 0.383 0

−0.066 −0.766 0

1.82 −0.129 0

−0.718 −0.016 0

2.61 −1.508 0

0 0.6 0.667

0 −0.184 −0.822

0 −0.283 −0.904

0 0.128 0.641









































, CE =









































0.932 −0.009 0 0

0 1 0 0

0.186 0.141 −0.151 0

−0.271 −0.436 0.18 0

−0.098 1.084 0.019 0

0.057 −0.293 0.092 0

0.602 1.899 −0.010 0

0.017 −0.011 0.268 0.048

0 0 0 0.822

0 0 0 0.393

0 0 0 0.503

0 0 0 0.455









































′

, DE =









0.170 −0.033 0

0.024 0.022 0

0 1.464 0

0 −0.097 0.297









estimator E = (AE ,BE ,CE ,DE) using the methodology given

in Section IV. Note that the coefficients of AE , BE , CE and

DE are truncated to 3 decimals due to lack of space. The

optimal performance cost is given by ‖Tzw‖2 = 2.2126.

To check the performance of this estimator, we consider a

process and measurement noise w(k)∼N (0, I). It is known

that the H2 norm of a transfer function is equal to the average

power of the output signal when the input is a zero-mean

Gaussian vector with covariance as I. The average power

of the estimation error signal z(k) (as shown in Fig. 5) was

found to be 2.2123 when simulated for 10000 time steps.

In this example, we show that a network realizable dis-

tributed estimator can be designed to even estimate the states

of an unstable interconnected system using the approach

discussed in this paper. A thorough comparison with other

distributed estimation techniques will be considered in future.
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