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Abstract— This paper presents a gossip-style, distributed
asynchronous algorithm that solves constrained optimization
problems over networks with time-varying topologies, where
the objective function is a sum of uniformly strictly convex
local objective functions belonging to nodes in the network,
and the inequality and equality constraint functions are convex
and identical to every node. Referred to as Pairwise Equalizing
(PE), the algorithm operates by forcing the nodes’ estimates of
the unknown minimizer to asymptotically achieve consensus
while satisfying a conservation condition derived from the
Karush-Kuhn-Tucker condition. We show that as long as the
gossiping pattern is sufficiently rich, PE achieves asymptotic
convergence and solves the problem. The proposed algorithm
represents an alternative to the existing subgradient algorithms
and generalizes our earlier algorithm for problems without
constraints.

I. INTRODUCTION

In many envisioned applications of multi-agent systems,

ad hoc networks, and sensor networks, nodes in the network

have to accomplish tasks that require extensive processing

of information, rapid decentralized decision making, and

precise coordination of actions. Often, to achieve such goals,

they have to distributively solve a convex optimization prob-

lem of the form

min
x∈Ω

N
∑

i=1

fi(x), (1)

where fi represents a convex local objective function ob-

served by node i, Ω represents a convex constraint set

known to every node, and N denotes the number of nodes.

Since each node i knows only its own fi, all of them must

collaborate to solve problem (1) for the unknown minimizer

x∗.

The current literature offers a collection of distributed

algorithms for solving problem (1), which may be roughly

classified into two groups. The first group contains the sub-

gradient algorithms [1]–[17], which have a number of vari-

ations. For instance, a subset of the subgradient algorithms

[1], [4]–[6], [11]–[14], [17] operate incrementally, relying

on the passing of an estimate of x∗ around the network to

operate. Another subset of them [2], [3], [7]–[10], [15], [16]

operate non-incrementally, with which each node maintains

an estimate of x∗ and updates it iteratively by exchanging

information with neighbors. Regardless of the categories, the

algorithms require stepsizes to operate. In addition, if the

problem is constrained (i.e., the constraint set Ω is not the

entire space), such algorithms also require projection during

their operation. Moreover, in this case, different assumptions
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have been imposed concerning properties of the constraint set

Ω. More specifically, [2], [4]–[6], [11], [13], [14], [16], [17]

assume that Ω is nonempty, closed, and convex; [12] assumes

further that it is compact; and [1] assumes that it is convex

with a nonempty interior. Furthermore, in a recent work [10],

the nodes are allowed to have non-identical constraint sets

(i.e., each node i has a constraint set Ωi).

The second group of distributed algorithms intended to

solve problem (1) is made up of algorithms we developed,

which are non-gradient-based [18], [19]. These algorithms

were developed based on the ideas of satisfying a conserva-

tion condition and a dissipation condition. More specifically,

with each of these algorithms, every node i in the network

maintains an estimate xi of x∗ and updates it in such a

manner that the sum of the gradients of the local objective

functions, evaluated at these estimates, are conserved at

zero, i.e.,
∑N

i=1∇fi(xi) = 0—hence the name conservation

condition. In addition, all the nodes update the estimates xi’s

so that they gradually dissipate their differences, asymptoti-

cally achieving some consensus as the number of iterations

approaches infinity—hence the name dissipation condition.

For a problem without constraints, simultaneously satisfying

these two conditions implies that all the xi’s must converge to

the unknown minimizer x∗. It is based on these ideas that our

algorithms in [18], [19] were developed. Unfortunately, these

algorithms are limited only to problems without constraints.

In this paper, we show that the ideas of conservation and

dissipation used in our earlier work can be extended to a class

of problems with identical constraints, namely, problem (1)

where each fi is uniformly strictly convex, and Ω is closed,

convex, and such that every point in Ω is a regular point.

We present a gossip-style, distributed asynchronous algo-

rithm, referred to as Pairwise Equalizing (PE), which solves

problem (1) over networks with time-varying topologies, and

which may be regarded as a generalization of one of our

gossip algorithms for unconstrained problems reported in

[18]. With PE, the nodes’ estimates xi’s are forced to achieve

consensus while satisfying a new conservation condition de-

rived from the Karush-Kuhn-Tucker (KKT) condition. Using

a Lyapunov-like function based on the Lagrangian of the

problem, we show that as long as the gossiping pattern is

sufficiently rich, PE is asymptotically convergent, driving all

the xi’s to x∗ and solving problem (1). Finally, we show

that PE does not require stepsizes nor projection to operate,

but does require the solving of a pairwise local optimization

problem at each iteration, which may be computationally

expensive.

The outline of this paper is as follows: Section II

formulates the problem. Section III describes PE, while

Section IV establishes its asymptotic convergence. Finally,

Section V concludes the paper. Throughout the paper, let

P = {1, 2, . . .}, Pn = {1, 2, . . . , n}, N = {0, 1, 2, . . .}, and
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∇ denote the gradient. In addition, for any vector x ∈ R
m,

we write x = (x(1), x(2), . . . , x(m)).

II. PROBLEM FORMULATION

Consider a multi-hop network consisting of N ≥ 2 nodes,

connected by bidirectional links in a time-varying topology.

The network is modeled as an undirected graph G(k) =
(V, E(k)), where k ∈ N denotes time, V = {1, 2, . . . , N}
represents the set of N nodes, and E(k) ⊂ {{i, j} : i, j ∈
V, i 6= j} represents the nonempty set of links at time k.

Any two nodes i, j ∈ V are one-hop neighbors and can

communicate at time k ∈ N if and only if {i, j} ∈ E(k).
Suppose, at time k = 0, each node i ∈ V observes

functions fi, g
(1), ..., g(p), h(1), ..., h(m) : R

n → R. Also

suppose, upon observing the functions, all the N nodes wish

to solve the following constrained, separable, optimization

problem:

min
x∈Ω

F (x), (2)

where F : Rn → R is defined as F (x) =
∑

i∈V fi(x) and

Ω={x ∈ R
n : g(ℓ)(x) ≤ 0 ∀ℓ ∈ Pp, h

(ℓ)(x) = 0 ∀ℓ ∈ Pm}.

Moreover, suppose the following assumption holds. To state

the assumption, consider the definition below:

Definition 1. A differentiable function f : Rn → R is said to

be uniformly strictly convex if there exists a continuous and

strictly increasing function γ : [0,∞) → [0,∞) satisfying

γ(0) = 0 and limd→∞ γ(d) = ∞ such that f(y) − f(x) −
∇f(x)T (y − x) ≥ γ(‖y − x‖) ∀x, y ∈ R

n.

Remark 1. Notice that uniform strict convexity is weaker

than strong convexity (e.g., the function f : R→ R defined

as f(x) = x4 is uniformly strictly convex but not strongly

convex) but stronger than strict convexity (e.g., f(x) = e−x+
x is strictly convex but not uniformly strictly convex).

Assumption 1. The functions fi ∀i ∈ V , g(1), ..., g(p),
h(1), ..., h(m) satisfy the following:

1) For each i ∈ V , fi is uniformly strictly convex and

continuously differentiable.

2) For each ℓ ∈ Pp, g(ℓ) is convex and continuously

differentiable.

3) For each ℓ ∈ Pm, h(ℓ) is affine.

4) The set Ω is nonempty.

5) For each x ∈ Ω, x is a regular point [20], i.e., the

vectors ∇g(ℓ)(x) ∀ℓ ∈ J(x) and ∇h(ℓ)(x) ∀ℓ ∈ Pm

are linearly independent, where J(x) = {ℓ ∈ Pp :
g(ℓ)(x) = 0} is the index set of the active inequality

constraints.

Having introduced Assumption 1, we now show that

problem (2) is well-posed:

Lemma 1. For any uniformly strictly convex and continu-

ously differentiable function f : Rn → R and any nonempty

closed convex set D ⊂ R
n, there exists a unique z∗ ∈ D

such that f(z∗) ≤ f(x) ∀x ∈ D.

Proof. Let f : R
n → R be a uniformly strictly convex

and continuously differentiable function and D ⊂ R
n be a

nonempty closed convex set. Then, there exists a continuous

and strictly increasing function γ̃ : [0,∞)→ [0,∞) satisfy-

ing γ̃(0) = 0 and limd→∞ γ̃(d) =∞ such that f(y)−f(x)−
∇f(x)T (y − x) ≥ γ̃(‖y − x‖) ∀x, y ∈ R

n. Let x0 ∈ D and

D0 = {x ∈ R
n : f(x) ≤ f(x0)}. Note that D0 6= ∅. We first

show that D0 is convex and compact. Since f is convex, D0

is convex and closed. To show that D0 is bounded, pick any

y ∈ R
n and z ∈ R

n with ‖z‖ = 1. Because f is uniformly

strictly convex, we have ∀η ∈ P, f(y+ηz)−f(y+(η−1)z)−
∇f(y + (η − 1)z)T z ≥ γ̃(1) and f(y + (η − 1)z) − f(y +
ηz) + ∇f(y + ηz)T z ≥ γ̃(1). Adding the two inequalities

yields ∇f(y + ηz)T z − ∇f(y + (η − 1)z)T z ≥ 2γ̃(1)
∀η ∈ P. This, along with the fact that

∑ζ
η=1∇f(y +

ηz)T z−∇f(y+ (η− 1)z)T z = ∇f(y+ ζz)T z−∇f(y)T z
∀ζ ∈ P, implies that ∇f(y + ζz)T z − ∇f(y)T z ≥ 2ζγ̃(1)
∀ζ ∈ P. Hence, limζ→∞∇f(y + ζz)T z = ∞ and, thus,

lim‖x‖→∞∇f(x)
T z =∞. Since ∇f(x)T z is the directional

derivative of f along z at x, D0 must be bounded. Therefore,

D0 is convex and compact. Because D is nonempty, convex,

and closed, D∩D0 is nonempty, convex, and compact. Thus,

due to the strict convexity and continuity of f , there exists

a unique z∗ ∈ D ∩ D0 such that f(z∗) ≤ f(x) ≤ f(x0)
∀x ∈ D ∩ D0. Since f(x) > f(x0) ∀x ∈ D − D0, z∗

satisfies f(z∗) ≤ f(x) ∀x ∈ D and is unique.

Proposition 1. With Assumption 1, there exists a unique

x∗ ∈ Ω, which minimizes F over Ω and solves problem (2),

i.e., x∗ = argminx∈Ω F (x).

Proof. By Assumption 1, F is uniformly strictly convex and

continuously differentiable and Ω is nonempty, convex, and

closed. It follows from Lemma 1 that there exists a unique

x∗ ∈ Ω that minimizes F over Ω, solving (2).

Given the above, the goal of this paper is to construct

a distributed asynchronous iterative algorithm with which

every node is able to asymptotically determine the unknown

minimizer x∗.

III. PAIRWISE EQUALIZING

In this section, we develop a gossip algorithm that solves

problem (2).

To this end, note from Proposition 1 that with Assump-

tion 1, there exist Lagrange multipliers µ∗ ∈ R
p and λ∗ ∈

R
m of problem (2) such that x∗, µ∗, and λ∗ uniquely satisfy

the Karush-Kuhn-Tucker (KKT) conditions [21], i.e.,

∇xL(x
∗, µ∗, λ∗) = 0, (3)

x∗ ∈ Ω, (4)

µ∗(ℓ) ≥ 0, ∀ℓ ∈ Pp, (5)

µ∗(ℓ)g(ℓ)(x∗) = 0, ∀ℓ ∈ Pp, (6)

where the Lagrangian L : Rn×R
p×R

m → R is defined as

L(x, µ, λ)=F (x) +N

p
∑

ℓ=1

µ(ℓ)g(ℓ)(x) +N

m
∑

ℓ=1

λ(ℓ)h(ℓ)(x).

Note that the two N ’s in the Lagrangian L are introduced

only for later convenience.

Suppose, at time k = 0, each node i ∈ V creates state

variables xi ∈ R
n, µi = (µ

(1)
i , µ

(2)
i , . . . , µ

(p)
i ) ∈ R

p, and

λi = (λ
(1)
i , λ

(2)
i , . . . , λ

(m)
i ) ∈ R

m, representing its estimate
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of x∗, µ∗, and λ∗, respectively. Also suppose, at each

subsequent time k ∈ P, an iteration, referred to as iteration

k, occurs. Here we use xi(0) µi(0), and λi(0) to denote the

initial value of xi, µi, and λi, and xi(k) µi(k), and λi(k)
their values upon completing iteration k ∈ P. With the above,

the aim of the algorithm may be stated as

lim
k→∞

xi(k) = x∗, ∀i ∈ V. (7)

To satisfy (7), consider a conservation condition, defined

as
∑

i∈V

∇xLi(xi(k), µi(k), λi(k)) = 0, ∀k ∈ N, (8)

xi(k) ∈ Ω, ∀k ∈ N, ∀i ∈ V, (9)

µ
(ℓ)
i (k) ≥ 0, ∀ℓ ∈ Pp, ∀k ∈ N, ∀i ∈ V, (10)

µ
(ℓ)
i (k)g(ℓ)(xi(k)) = 0, ∀ℓ ∈ Pp, ∀k ∈ N, ∀i ∈ V, (11)

where Li : R
n × R

p × R
m → R is defined as

Li(x, µ, λ) = fi(x) +

p
∑

ℓ=1

µ(ℓ)g(ℓ)(x) +

m
∑

ℓ=1

λ(ℓ)h(ℓ)(x).

Note that
∑

i∈V Li(x, µ, λ) = L(x, µ, λ), which explains

why the two N ’s are inserted into the Lagrangian L. In

addition, consider a dissipation condition, defined as

lim
k→∞

xi(k) = x̃, ∀i ∈ V, for some x̃ ∈ R
n. (12)

The following theorem says that to achieve (7) in which

the unknown minimizer x∗ explicitly appears, it is sufficient

to satisfy both the conservation condition (8)–(11) and the

dissipation condition (12), which do not contain x∗:

Theorem 1. Suppose Assumption 1 holds. Then, with (8)–

(11) and (12), x̃ = x∗, i.e., (7) holds.

Proof. Due to space limitations, the proof is omitted.

Suggested by Theorem 1, we now construct a gossip

algorithm that satisfies the conservation condition (8)–(11)

and attempts to satisfy the dissipation condition (12). To

ensure the conservation condition, observe that (8) holds if

and only if

∇xLi(xi(0), µi(0), λi(0)) = 0, ∀i ∈ V (13)

and
∑

i∈V

∇xLi(xi(k), µi(k), λi(k))

=
∑

i∈V

∇xLi(xi(k − 1), µi(k − 1), λi(k − 1)), ∀k ∈ P.

(14)

The proposition below shows that (13), together with (9)–

(11), uniquely determines the initial states xi(0), µi(0), and

λi(0) ∀i ∈ V:

Proposition 2. Suppose Assumption 1 holds. Then, for each

i ∈ V , there exists a unique x∗
i ∈ Ω that minimizes fi over Ω,

i.e., x∗
i = argminx∈Ω fi(x). Moreover, there exist µ∗

i ∈ R
p

and λ∗
i ∈ R

m such that x∗
i , µ∗

i , and λ∗
i uniquely satisfy the

following KKT conditions:

∇xLi(x
∗
i , µ

∗
i , λ

∗
i ) = 0, (15)

x∗
i ∈ Ω, (16)

µ
∗(ℓ)
i ≥ 0, ∀ℓ ∈ Pp, (17)

µ
∗(ℓ)
i g(ℓ)(x∗

i ) = 0, ∀ℓ ∈ Pp. (18)

Proof. It follows from Assumption 1 and Lemma 1 that for

each i ∈ V , there exists a unique x∗
i = argminx∈Ω fi(x). It

follows from [21] that there exist µ∗
i and λ∗

i such that x∗
i ,

µ∗
i , and λ∗

i uniquely satisfy (15)–(18).

Proposition 2 asserts that to satisfy (13) and (9)–(11)

for k = 0, it suffices that each node i ∈ V finds the

unique minimizer x∗
i and the unique Lagrange multipliers

µ∗
i and λ∗

i of the constrained convex optimization problem

minx∈Ω fi(x), and then sets its initial states as follows:

xi(0) = x∗
i , (19)

µi(0) = µ∗
i , (20)

λi(0) = λ∗
i . (21)

Next, to satisfy (14) and (9)–(11) for k ∈ P, suppose at

each iteration k ∈ P, a pair u(k) = {u1(k), u2(k)} ∈ E(k)
of one-hop neighbors u1(k) and u2(k) gossip and update

their state variables, while the remaining nodes stay idle,

i.e.,

xi(k) = xi(k − 1), ∀k ∈ P, ∀i ∈ V − u(k), (22)

µi(k) = µi(k − 1), ∀k ∈ P, ∀i ∈ V − u(k), (23)

λi(k) = λi(k − 1), ∀k ∈ P, ∀i ∈ V − u(k). (24)

Thus, with (22)–(24), (14) becomes
∑

i∈u(k)

∇xLi(xi(k), µi(k), λi(k))

=
∑

i∈u(k)

∇xLi(xi(k − 1), µi(k − 1), λi(k − 1)), ∀k ∈ P.

(25)

Hence, (14) can be satisfied simply through a gossip between

nodes u1(k) and u2(k) to share their observed functions and

state variables, which allows the two nodes to jointly update

their state variables according to (25).

Observe that (25) does not uniquely determine xu1(k)(k),
xu2(k)(k), µu1(k)(k), µu2(k)(k), λu1(k)(k), and λu2(k)(k).
Therefore, we may use the available degree of freedom to

account for the dissipation condition (12). Since (12) requires

all the xi(k)’s to achieve consensus and since it is desirable

that all the µi(k)’s and λi(k)’s remain bounded, imposing

the following equalizing condition may make these happen:

xu1(k)(k) = xu2(k)(k), ∀k ∈ P, (26)

µu1(k)(k) = µu2(k)(k), ∀k ∈ P, (27)

λu1(k)(k) = λu2(k)(k), ∀k ∈ P. (28)

The following proposition says that (25), (26)–(28), and

(9)–(11) collectively have a unique solution, so that the

evolutions of the xi(k)’s, µi(k)’s, and λi(k)’s are well-

defined:
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Proposition 3. Suppose Assumption 1 holds. Then, with

(19)–(21), (22)–(24), (25), (26)–(28), and (9)–(11), xi(k),
µi(k), λi(k) ∀k ∈ N ∀i ∈ V are well-defined.

Proof. By induction on k ∈ N. Because of Assumption 1,

(19)–(21), and Proposition 2, xi(0), µi(0), λi(0) ∀i ∈ V
are well defined. Next, let k ∈ P and suppose xi(k − 1),
µi(k − 1), λi(k − 1) ∀i ∈ V are well-defined. Due to

(22)–(24), xi(k), µi(k), λi(k) ∀i ∈ V − u(k) are well-

defined. To show that xi(k), µi(k), λi(k) ∀i ∈ u(k) are

well-defined, note from Lemma 1 that there exists a unique

x′ ∈ R
n that minimizes the uniformly strictly convex

and continuously differentiable function
∑

i∈u(k) fi(x) −

xT∇xLi(xi(k−1), µi(k−1), λi(k−1)) over Ω. Also, there

exist unique µ′ ∈ R
p and λ′ ∈ R

m such that x′, µ′, and λ′

uniquely satisfy the KKT conditions

∑

i∈u(k)

∇xLi(x
′, µ′, λ′)

=
∑

i∈u(k)

∇xLi(xi(k − 1), µi(k − 1), λi(k − 1)),

x′ ∈ Ω,

µ′(ℓ) ≥ 0, ∀ℓ ∈ Pp,

µ′(ℓ)g(ℓ)(x′) = 0, ∀ℓ ∈ Pp.

This, along with (25), (26)–(28), (9)–(11), implies that ∀i ∈
u(k), xi(k) = x′, µi(k) = µ′, λi(k) = λ′, which are

uniquely defined. Therefore, xi(k), µi(k), λi(k) ∀k ∈ N

∀i ∈ V are well-defined.

Proposition 3 and its proof suggest that at each iteration

k ∈ P, the gossiping pair u1(k) and u2(k) can update their

state variables xu1(k)(k), xu2(k)(k), µu1(k)(k), µu2(k)(k),
λu1(k)(k), and λu2(k)(k) by first finding the unique mini-

mizer x′ and unique Lagrange multipliers µ′ and λ′ of the

local constrained convex optimization problem

min
x∈Ω

∑

i∈u(k)

fi(x)− xT∇xLi(xi(k − 1), µi(k − 1), λi(k − 1)).

(29)

Upon solving (29), nodes u1(k) and u2(k) set xu1(k)(k) and

xu2(k)(k) to x′, µu1(k)(k) and µu2(k)(k) to µ′, and λu1(k)(k)
and λu2(k)(k) to λ′. Note that to solve (29), one of the

two nodes, say, node u1(k), must send the other node, node

u2(k), its function fu1(k) at least once. Since fu1(k) is an

infinite-dimensional object (unless fu1(k) can be analytically

expressed), this represents a drawback of our approach.

With that said, we point out that for the one-dimensional,

unconstrained version of problem (2), this drawback can be

eliminated by a bisectioning algorithm [18].

Expressions (19)–(21), (22)–(24), (25), (26)–(28), and (9)–

(11) collectively define the following gossip-style, distributed

asynchronous iterative algorithm, which we refer to as Pair-

wise Equalizing (PE):

Algorithm 1 (Pairwise Equalizing).

Initialization:

1) Each node i ∈ V computes x∗
i ∈ Ω, µ∗

i ∈ [0,∞)p, and

λ∗
i ∈ R

m by solving (15)–(18).

2) Each node i ∈ V creates variables xi ∈ Ω, λi ∈ [0,∞)p,

and µi ∈ R
m and initializes them: xi ← x∗

i , µi ← µ∗
i ,

λi ← λ∗
i .

Operation: At each iteration:

3) A node with one or more one-hop neighbors, say, node

i, initiates the iteration and selects a one-hop neighbor,

say, node j, to gossip.

4) Nodes i and j select one of two ways to gossip by

labeling themselves as either nodes a and b, or nodes b
and a, respectively, where {a, b} = {i, j}.

5) If node b does not know fa, then node a transmits fa
to node b.

6) Node a transmits xa, µa, and λa to node b.

7) Node b determines x̂ ∈ Ω, λ̂ ∈ [0,∞)p, and µ̂ ∈ R
m

by solving:

∇xLa(x̂, µ̂, λ̂)+∇xLb(x̂, µ̂, λ̂) = ∇xLa(xa, µa, λa)+
∇xLb(xb, µb, λb),
x̂ ∈ Ω,

µ̂(ℓ) ≥ 0 ∀ℓ ∈ Pp,

µ̂(ℓ)g(ℓ)(x̂) = 0 ∀ℓ ∈ Pp.

8) Node b updates xb, µb, and λb: xb ← x̂, µb ← µ̂,

λb ← λ̂.

9) Node b transmits xb, µb, and λb to node a.

10) Node a updates xa, µa, and λa: xa ← xb, µa ← µb,

λa ← λb. �

PE in Algorithm 1 consists of an initialization part that

is executed once and an operation part that is executed

iteratively. In Steps 1 and 2, each node i ∈ V determines

its initial states on its own by solving (15)–(18), or equiva-

lently, solving the constrained convex optimization problem

minx∈Ω fi(x) for the unique minimizer and Lagrange mul-

tipliers. Step 3 may be performed either deterministically

or stochastically. Step 4 offers the gossiping nodes i and j
an opportunity to pick one of two ways to gossip, which

lead to the same updated values of their state variables but

require different communication and computational efforts.

This can been seen from Steps 5–10, whereby the node that

labels itself as node b has to compute, while the node that

labels itself as node a has to communicate more (except

that the condition “node b does not know fa” in Step 5 is

false). Clearly, such asymmetric actions help nodes i and

j to better utilize their communication and computational

resources. Note that Step 5 is a conditional step that does

not have to be carried out if node b has already stored fa
in its memory, in which case 2(n + p + m) real-number

transmissions are needed for each iteration. Also, Step 5,

together with Step 6, enables node b to update its state

variables in Steps 7 and 8, where Step 7 is equivalent to

solving the local optimization problem (29). Finally, Step 9

is needed so that node a can perform Step 10.

IV. CONVERGENCE ANALYSIS

As was stated in Section III, PE guarantees the conser-

vation condition (8)–(11) and tries to ensure the dissipation

condition (12) by imposing the equalizing condition (26)–

(28). In this section, we show that, with sufficiently rich

gossiping pattern, PE succeeds in ensuring the dissipation

condition (12) and, thus, achieves asymptotic convergence

to x∗.
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To show that the xi(k)’s asymptotically converge to x∗,

i.e., (7) holds, consider a function V : ΩN × [0,∞)pN ×
R

mN → R, defined as:

V (x(k),µ(k),λ(k))

=
∑

i∈V

Li(x
∗, µ∗, λ∗)− Li(xi(k), µi(k), λi(k))

−∇xLi(xi(k), µi(k), λi(k))
T (x∗ − xi(k)), (30)

where x(k) ∈ ΩN , µ(k) ∈ [0,∞)pN , and λ(k) ∈ R
mN

are obtained by stacking the xi(k)’s, µi(k)’s, and λi(k)’s.

Moreover, for convenience, let x
∗, µ∗, and λ∗ denote the

vectors obtained by stacking N copies of x∗, µ∗, and λ∗,

respectively. Note from (9), (10), (4), and (5) that indeed

x(k) ∈ ΩN ∀k ∈ N, µ(k) ∈ [0,∞)pN ∀k ∈ N, x∗ ∈ ΩN ,

and µ∗ ∈ [0,∞)pN . Also note from Assumption 1 that the

functions Li(x, µ, λ) ∀i ∈ V are continuously differentiable

with respect to x. Hence, V is well-defined and continuous.
The following two lemmas show that with PE, the se-

quence (V (x(k),µ(k),λ(k)))∞k=0 is nonnegative and non-

increasing:

Lemma 2. Consider the use of PE described in Algorithm 1.

Suppose Assumption 1 holds. Then, for any given (u(k))∞k=1,

V (x(k),µ(k),λ(k)) ≥ 0 ∀k ∈ N, where the equality holds

if and only if x(k) = x
∗. Moreover,

V (x(k),µ(k),λ(k)) ≥
∑

i∈V

γi(‖x
∗ − xi(k)‖), (31)

where γi : [0,∞) → [0,∞) is a continuous and strictly

increasing function satisfying γi(0) = 0, limd→∞ γi(d) =
∞, and fi(y) − fi(x) − ∇fi(x)

T (y − x) ≥ γi(‖y − x‖)
∀x, y ∈ R

n.

Proof. Let (u(k))∞k=1 be given and k ∈ N. Due to

(4) and (10), we have µ
(ℓ)
i (k)g(ℓ)(x∗) ≤ 0 ∀ℓ ∈ Pp

∀i ∈ V . This, along with (4), (6), and (9), implies that

Li(x
∗, µ∗, λ∗) ≥ Li(x

∗, µi(k), λi(k)) ∀i ∈ V . Hence,

V (x(k),µ(k),λ(k)) ≥
∑

i∈V Li(x
∗, µi(k), λi(k)) −

Li(xi(k), µi(k), λi(k)) − ∇xLi(xi(k), µi(k), λi(k))
T (x∗ −

xi(k)) =
∑

i∈V

(

fi(x
∗) − fi(xi(k)) − ∇fi(xi(k))

T (x∗ −

xi(k))
)

+
∑p

ℓ=1 µ
(ℓ)
i (k)

(

g(ℓ)(x∗) − g(ℓ)(xi(k)) −

∇g(ℓ)(xi(k))
T (x∗ − xi(k))

)

+
∑m

ℓ=1 λ
(ℓ)
i (k)

(

h(ℓ)(x∗) −

h(ℓ)(xi(k)) −∇h
(ℓ)(xi(k))

T (x∗ − xi(k)
)

. For each i ∈ V ,

since fi is uniformly strictly convex, there exists a continuous

and strictly increasing function γi : [0,∞) → [0,∞)
satisfying γi(0) = 0 and limd→∞ γi(d) = ∞ such that

fi(y)− fi(x)−∇fi(x)
T (y− x) ≥ γi(‖y− x‖) ∀x, y ∈ R

n.

Thus, the expression within the first big parentheses is no

less than γi(‖x
∗ − xi(k)‖). Moreover, for each ℓ ∈ Pp,

since g(ℓ) is convex, the expression within the second big

parentheses is nonnegative. Furthermore, for each ℓ ∈ Pm,

since h(ℓ) is affine, the expression within the third big

parentheses is zero. It follows from (10) that (31) holds,

implying that V (x(k),µ(k),λ(k)) ≥ 0. In addition, due

to (4), (6), (9), (11), and (30), V (x(k),µ(k),λ(k)) = 0 if

x(k) = x
∗. Because of this and (31) and because γ(d) = 0

if and only if d = 0, V (x(k),µ(k),λ(k)) = 0 if and only

if x(k) = x
∗.

Lemma 3. Consider the use of PE described in Algorithm 1.

Suppose Assumption 1 holds. Then, for any given (u(k))∞k=1,

(V (x(k),µ(k),λ(k)))∞k=0 is non-increasing and satisfies

V (x(k − 1),µ(k − 1),λ(k − 1))− V (x(k),µ(k),λ(k))

≥
∑

i∈u(k)

γi(‖xi(k)− xi(k − 1)‖), ∀k ∈ P, (32)

where the γi’s are as in Lemma 2.

Proof. Let (u(k))∞k=1 be given and k ∈ P.

From (22)–(24), (25), and (26), V (x(k −
1),µ(k − 1),λ(k − 1)) − V (x(k),µ(k),λ(k)) =
∑

i∈u(k)−Li(xi(k − 1), µi(k − 1), λi(k − 1)) +
∇xLi(xi(k − 1), µi(k − 1), λi(k − 1))xi(k − 1) +
Li(xi(k), µi(k), λi(k))−∇xLi(xi(k), µi(k), λi(k))xi(k) =
∑

i∈u(k) Li(xi(k), µi(k), λi(k)) − Li(xi(k − 1), µi(k −
1), λi(k − 1)) − ∇xLi(xi(k − 1), µi(k − 1), λi(k −
1))T (xi(k)−xi(k−1)). Due to (9), (10), and (11), we have

Li(xi(k), µi(k), λi(k)) ≥ Li(xi(k), µi(k − 1), λi(k − 1)).
Hence, V (x(k − 1),µ(k − 1),λ(k − 1)) −
V (x(k),µ(k),λ(k)) ≥

∑

i∈u(k) Li(xi(k), µi(k−1), λi(k−
1)) − Li(xi(k − 1), µi(k − 1), λi(k − 1)) − ∇xLi(xi(k −
1), µi(k − 1), λi(k − 1))T (xi(k) − xi(k − 1)) =
∑

i∈u(k)

(

fi(xi(k)) − fi(xi(k − 1)) − ∇fi(xi(k −

1))T (xi(k)−xi(k−1))
)

+
∑p

ℓ=1 µ
(ℓ)
i (k−1)

(

g(ℓ)(xi(k))−

g(ℓ)(xi(k − 1)) − ∇g(ℓ)(xi(k − 1))T (xi(k) − xi(k −

1))
)

+
∑m

ℓ=1 λ
(ℓ)
i (k − 1)

(

h(ℓ)(xi(k)) − h(ℓ)(xi(k − 1)) −

∇h(ℓ)(xi(k−1))T (xi(k)−xi(k−1))
)

. Similar to the proof

of Lemma 2, it can be shown that (32) holds, implying that

(V (x(k),µ(k),λ(k)))∞k=0 is non-increasing.

Lemmas 2 and 3 suggest that V (x(k),µ(k),λ(k)) may

be viewed as a Lyapunov-like function with respect to x(k),
taking nonnegative values in general and the value of zero if

and only if x(k) = x
∗. Moreover, the function lies “above”

a radially unbounded function
∑

i∈V γi(‖x
∗−xi(k)‖), with

values that are non-increasing as PE executes. This alone,

however, is insufficient to claim that the dissipation condition

(12) holds. Indeed, to satisfy (12), some restrictions must be

placed on the gossiping patterns (u(k))∞k=1.
To this end, let

E∞ = {{i, j} : u(k) = {i, j} for infinitely many k ∈ P},

so that a link {i, j} is in E∞ if and only if nodes i
and j gossip with each other infinitely often. Consider the

following assumption on the gossiping patterns, which was

first proposed in [22]:

Assumption 2. The sequence (u(k))∞k=1 is such that the

graph (V, E∞) is connected.

The following proposition says that, with gossiping pat-

terns that satisfy Assumption 2, PE does guarantee the

dissipation conditions (12):

Proposition 4. Consider the use of PE described in Algo-

rithm 1. Suppose Assumptions 1 and 2 hold. Then, (12) holds.

Proof. Suppose Assumptions 1 and 2 hold. From Lem-

mas 2 and 3, limk→∞ V (x(k),µ(k),λ(k)) = c for some
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c ≥ 0. Thus, ∀ǫ′ > 0, ∃k1 ∈ N such that c ≤
V (x(k),µ(k),λ(k)) < c + ǫ′ ∀k ≥ k1, implying that

0 ≤ V (x(k1),µ(k1),λ(k1)) − V (x(k),µ(k),λ(k)) <
ǫ′ ∀k ≥ k1. Due to this and (32), we have
∑∞

k=k1

∑

i∈u(k) γi(‖xi(k)−xi(k−1)‖) < ǫ′, where γi ∀i ∈
V are as in Lemma 2. Let γ : [0,∞)→ [0,∞) be defined as

γ(x) = mini∈V γi(x). Then, γ is a continuous and strictly

increasing function satisfying γ(0) = 0 and limd→∞ γ(d) =
∞. From (22), we have

∑∞
k=k1

∑

i∈V γ(‖xi(k) − xi(k −
1)‖) < ǫ′. Hence, limk→∞ γ(‖xi(k) − xi(k − 1)‖) = 0
∀i ∈ V . Due to the continuity of γ, limk→∞ ‖xi(k)−xi(k−
1)‖ = 0. Thus, limk→∞ xi(k) = si for some si ∈ Ω.

Let {s̃1, s̃2, . . . , s̃q} = {s1, s2, . . . , sN} where q ∈ V and

s̃i 6= s̃j ∀i, j ∈ Pq , i 6= j. Now suppose q ≥ 2. Let

ǫ > 0 be such that mini,j∈Pq, i6=j ‖s̃i− s̃j‖ = 4γ−1(ǫ). Then,

∃k2 ∈ N such that 0 ≤ V (x(k − 1),µ(k − 1),λ(k − 1)) −
V (x(k),µ(k),λ(k)) ≤ ǫ ∀k ≥ k2 + 1. It follows from (32)

that ‖xi(k)− xi(k − 1)‖ < γ−1(ǫ) ∀k ≥ k2 + 1 ∀i ∈ u(k).
Because of (26) and the triangle inequality,

‖xi(k − 1)− xj(k − 1)‖ < 2γ−1(ǫ),

∀k ≥ k2 + 1, ∀i ∈ u(k). (33)

Also, since limk→∞ xi(k) = si ∀i ∈ V , ∃k3 ∈ N such

that ‖xi(k) − si‖ < γ−1(ǫ) ∀k ≥ k3 ∀i ∈ V . Let K =
max{k2, k3}. Then, ‖xi(k) − xj(k)‖ ≥ 2γ−1(ǫ) ∀k ≥ K
∀i, j ∈ V with si 6= sj . This, along with (33), implies that

∀i, j ∈ V with si 6= sj , {i, j} 6= u(k) ∀k ≥ K + 1. Hence,

there exist q ≥ 2 disjoint nonempty subsets U1, U2, . . . , Uq

of V with ∪qi=1Ui = V , such that ∀k ≥ K + 1, u(k) is a

subset of one of them. This implies that the graph (V, E∞)
is not connected, i.e., Assumption 2 is violated. Therefore,

q = 1, i.e., (12) holds.

Built upon Proposition 4, the following theorem shows

that the xi(k)’s indeed asymptotically converge to x∗ under

Assumption 2, solving problem (2):

Theorem 2. Consider the use of PE described in Algo-

rithm 1. Suppose Assumptions 1 and 2 hold. Then, (7) holds.

Proof. The theorem is an immediate consequence of Theo-

rem 1 and Proposition 4.

Remark 2. We point out that the above analysis establishes

only the asymptotic convergence of the xi(k)’s to x∗. It

says nothing about the behavior of the Lagrange multipliers

µi(k)’s and λi(k)’s. Although the primary goal is to achieve

(7), it may be of interest to study in future work how these

multipliers behave.

V. CONCLUSION

In this paper, we have introduced and analyzed PE, a

gossip algorithm that solves a class of distributed convex

optimization problems with identical constraints over net-

works with time-varying topologies. We have shown that

unlike the existing subgradient algorithms, PE does not

require stepsizes nor projection to operate. Instead, it strives

to satisfy a conservation and dissipation condition induced

by the KKT conditions. We have shown that these two

conditions can be met by solving, in pairwise fashion, a

sequence of suitably defined local optimization problems.

Finally, we have shown that under a mild assumption on

the gossiping pattern, PE is asymptotically convergent to the

unknown minimizer, solving the given problem.
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